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Preface

This volume contains the proceedings of the Combined 24th International Workshop on Expressiveness
in Concurrency and the 14th Workshop on Structural Operational Semantics (EXPRESS/SOS 2017)
which was held on 4 September 2017 in Berlin, Germany, as an affiliated workshop of CONCUR 2017,
the 28th International Conference on Concurrency Theory.

The EXPRESS workshops aim at bringing together researchers interested in the expressiveness of
various formal systems and semantic notions, particularly in the field of concurrency. Their focus has
traditionally been on the comparison between programming concepts (such as concurrent, functional,
imperative, logic and object-oriented programming) and between mathematical models of computation
(such as process algebras, Petri nets, event structures, modal logics, and rewrite systems) on the basis
of their relative expressive power. The EXPRESS workshop series has run successfully since 1994 and
over the years this focus has become broadly construed.

The SOS workshops aim at being a forum for researchers, students and practitioners interested in new
developments, and directions for future investigation, in the field of structural operational semantics. One
of the specific goals of the SOS workshop series is to establish synergies between the concurrency and
programming language communities working on the theory and practice of SOS. Reports on applications
of SOS to other fields are also most welcome, including: modelling and analysis of biological systems,
security of computer systems programming, modelling and analysis of embedded systems, specifica-
tion of middle-ware and coordination languages, programming language semantics and implementation,
static analysis software and hardware verification, semantics for domain-specific languages and model-
based engineering.

Since 2012, the EXPRESS and SOS communities have organized an annual combined EXPRESS/SOS
workshop on the expressiveness of mathematical models of computation and the formal semantics of sys-
tems and programming concepts.

We received ten full paper submissions out of which the programme committee selected six full paper
submissions for publication and presentation at the workshop. These proceedings contain the selected
contributions. The workshop had two invited presentations:

SOS with Data: Bisimulation, Rule Formats, and Axiomatization,
by Mohammad R. Mousavi (University of Leicester, UK and Halmstad University, Sweden)

and
Rule Formats in Structural Operational Semantics,
by Rob van Glabbeek (CSIRO, Sydney, Australia)

Moreover, we had two presentations of short papers:
Delayed-choice semantics for pomset families and message sequence graphs,
by Clemens Dubslaff and Christel Baier

and
Branching Cell Decomposition, Confusion Freeness and Probabilistic Nets,
by Roberto Bruni, Hernan Melgratti, and Ugo Montanari

We would like to thank the authors of the submitted papers, the invited speakers, the members of the
programme committee, and their subreviewers for their contribution to both the meeting and this volume.
We also thank the CONCUR 2017 organizing committee for hosting EXPRESS/SOS 2017. Finally, we
would like to thank our EPTCS editor Rob van Glabbeek for publishing these proceedings and his help
during the preparation.
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The standard operational semantics of the sequential composition operator gives rise to unbounded
branching and forgetfulness when transparent process expressions are put in sequence. Due to trans-
parency, the correspondence between context-free and pushdown processes fails modulo bisimilarity,
and it is not clear how to specify an always terminating half counter. We propose a revised opera-
tional semantics for the sequential composition operator in the context of intermediate termination.
With the revised operational semantics, we eliminate transparency, allowing us to establish a close
correspondence between context-free processes and pushdown processes. Moreover, we prove the re-
active Turing powerfulness of TCP with iteration and nesting with the revised operational semantics
for sequential composition.

1 Introduction

Sequential composition is a standard operator in many process calculi. The functionality of the sequen-
tial composition operator is to concatenate the behaviours of two systems. It has been widely used in
many process calculi with the notation “·”. We illustrate its operational semantics by a process P ·Q in
TCP [2]. If the process P has a transition P

a−→ P′ for some action label a, then the composition P ·Q
has the transition P ·Q a−→ P′ ·Q. Termination is an important behaviour for models of computation [2].
A semantic distinction between successful and unsuccessful termination in concurrency theory (CT) is
especially important for a smooth incorporation of the classical theory of automata and formal languages
(AFT): the distinction is used to express whether a state in an automaton is accepting or not. Automata
may even have states that are accepting and may still perform transitions; this phenomenon we call inter-
mediate termination. From a concurrency-theoretic point of view, such behaviour is perhaps somewhat
unnatural. To be able to express it nevertheless, we let an alternative composition inherit the option to
terminate from just one of its components. The expression a.(b+1) then denotes the process that does an
a-transition and subsequently enters a state that is successfully terminated but can also do a b-transition.

To specify the operational semantics of sequential composition in a setting with a explicit successful
termination, usually the following three rules are added: the first one states that the sequential com-
position P ·Q terminates if both P and Q terminate; the second one states that if P admits a transition
P

a−→ P′, then P ·Q admits a transition P ·Q a−→ P′ ·Q; and the third one states that if P terminates, and
there is a transition Q

a−→ Q′, then we have the transition P ·Q a−→ Q′.
In this paper, we discuss a complication stemming from these operational semantics of the sequential

composition operator. The complication is that a process expression P with the option to terminate
is transparent in a sequential context P ·Q: if P may still perform observable behaviour other than
termination, then this may be skipped by doing a transition from Q. There are two disadvantages of
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transparency in our attempts to achieve a smooth integration of process theory and the classical theory
of automata and formal languages [7]:

The relationship between context-free processes (i.e., processes that can be specified with a guarded
recursive specification over a language with action constants, constants for deadlock (0) and successful
termination (1), and binary operations for sequential and alternative composition) and pushdown au-
tomata has been extensively discussed in the literature [4]. It has been shown that every context-free
process is equivalent to the behaviour of some pushdown automaton (i.e., a pushdown process) mod-
ulo contra simulation, but not modulo rooted branching bisimulation. By stacking unboundedly many
transparent terms with sequential composition, we would get an unboundedly branching transition sys-
tem. It was shown that unboundedly branching behaviour cannot be specified by any pushdown process
modulo rooted branching bisimulation [4]. In order to improve the result to a finer notion of behaviour
equivalence, we need to eliminate the problem of unbounded branching.

Transparency also complicates matters if one wants to specify some form of memory (e.g., a counter,
a stack, or a tape) that always has the option to terminate, but at the same time does not lose data. If
the standard process algebraic specifications of such memory processes are generalised to a setting with
intermediate termination, then either they are not always terminating, or they are ‘forgetful’ and may
non-deterministically lose data. This is a concern when one tries to specify the behaviour of a pushdown
automaton or a Reactive Turing machine in a process calculus [5, 19, 20]. The process calculus TCP
with iteration and nesting is Turing complete [11, 12]. Moreover, it follows from the result in [12] that
it is reactively Turing powerful if intermediate termination is not considered. However, it is not clear
to us how to reconstruct the proof of reactive Turing powerfulness if termination is considered. Due to
the forgetfulness on the stacking of transparent process expressions, it is not clear to us how to define a
counter that is always terminating, which is crucial for establishing the reactive Turing powerfulness.

In order to avoid the (in some cases) undesirable feature of unbounded branching and forgetfulness,
we propose a revised operational semantics for the sequential composition operator. The modification
consists of disallowing a transition from the second component of a sequential composition if the first
component is able to perform a transition. Thus, we avoid the problems mentioned above with the revised
operator. We shall prove that every context-free process is bisimilar to a pushdown process, and that
TCP with iteration and nesting is reactively Turing powerful modulo divergence-preserving branching
bisimilarity (without resorting to recursion) in the revised semantics.

The research presented in this article is part of an attempt to achieve a smoother integration of the
classical theory of automata and formal languages (AFT) within concurrency theory (CT). The idea is to
recognise that a finite automaton is just a special type of labelled transition system, that more complicate
automata (pushdown automata, Turing machines) naturally generate transition systems, and that there is
a natural correspondence between regular expressions and grammars on the one hand and certain process
calculi on the other hand. In [7, 9, 10] we have studied the various notions of automata from AFT modulo
branching bisimilarity. In [8] we have explored the correspondence between finite automata and regular
expressions extended with parallel composition modulo strong bisimilarity. In [5] we have proposed
reactive Turing machines as an extension of Turing machines with concurrency-style interaction.

The paper is structured as follows. We first introduce TCP with the standard version of sequential
composition in Section 2. Next, we discuss the complications caused by transparency in Section 3. Then,
in Section 4, we propose the revised operational semantics of the sequential composition operator, and
show that rooted divergence-preserving branching bisimulation is a congruence. In Section 5, we revisit
the relationship between context-free processes and pushdown automata, and show that every context-
free process is bisimilar to a pushdown process in our revised semantics. In Section 6, we prove that TCP
with iteration and nesting is reactively Turing powerful in the revised semantics. In Section 7, we draw
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some conclusions and propose some future work. The full version of this extended abstract, including
proofs of the results, is available as [6].

2 Preliminaries

We start with introducing the notion of labelled transition system, which is used as the standard math-
ematical representation of behaviour. We consider transition systems with a subset of states marked as
terminating states. We let A be a set of action symbols, and we extend A with a special symbol τ <A,
which intuitively denotes unobservable internal activity of the system. We shall abbreviate A∪{τ} by
Aτ.
Definition 1. AnAτ-labelled transition system is a tuple (S,−→,↑,↓), where

1. S is a set of states,

2. −→ ⊆ S×Aτ×S is anAτ-labelled transition relation,

3. ↑ ∈ S is the initial state, and

4. ↓ ⊆ S is a set of terminating states.

Next, we shall introduce the process calculus Theory of Sequential Processes (TSP) that allows us to
describe transition systems.

Let N be a countably infinite set of names. The set of process expressions P is generated by the
following grammar (a ∈ Aτ, N ∈ N):

P := 0 | 1 | a.P | P ·P | P+P | N .

We briefly comment on the operators in this syntax. The constant 0 denotes deadlock, the unsuccess-
fully terminated process. The constant 1 denotes termination, the successfully terminated process. For
each action a ∈ Aτ there is a unary operator a. denoting action prefix; the process denoted by a.P can
do an a-labelled transition to the process P. The binary operator + denotes alternative composition or
choice. The binary operator · represents the sequential composition of two processes.

Let P be an arbitrary process expression; and we use an abbreviation inductively defined by: P0 = 1;
and Pn+1 = P ·Pn for all n ∈ N.

A recursive specification E is a set of equations E = {N def
= P|N ∈ N ,P ∈ P}, satisfying:

1. for every N ∈ N it includes at most one equation with N as left-hand side, which is referred to as
the defining equation for N; and

2. if some name N′ occurs in the right-hand side P′ of some equation N′ = P′ in E, then E must
include a defining equation for N′.

An occurrence of a name N in a process expression is guarded if the occurrence is within the scope
of an action prefix a. for some a ∈ A (τ cannot be a guard). A recursive specification E is guarded if all
occurrences of names in right-hand sides of equations in E are guarded.

We use structural operational semantics to associate a transition relation with process expressions
defined in TSP. A term is closed if it does not contain any free variables. Structural operational semantics
induces a transition relation on closed terms. We let −→ be the Aτ-labelled transition relation induced
on the set of process expressions by operational rules in Figure 1. Note that we presuppose a recursive
specification E, and we omit the symmetrical rules for +.
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1 ↓ a.P
a−→ P

P1
a−→ P′1

P1+P2
a−→ P′1

P1 ↓
P1+P2 ↓

P1 ↓ P2 ↓
P1 ·P2 ↓

P1
a−→ P′1

P1 ·P2
a−→ P′1 ·P2

P1 ↓ P2
a−→ P′2

P1 ·P2
a−→ P′2

P
a−→ P′ (N def

= P) ∈ E

N
a−→ P′

P ↓ (N def
= P) ∈ E

N ↓

Figure 1: The operational semantics of TSP

Here we use P
a−→ P′ to denote an a-labelled transition (P,a,P′) ∈ −→. We say a process expression

P′ is reachable from P is there exist process expressions P0, . . . ,Pn and labels a1, . . . ,an such that P =
P0

a1−→ ·· · an−→ Pn = P′.
Given a TSP process expression P, the transition system T (P) = (SP,−→P,↑P,↓P) associated with P

is defined as follows:

1. the set of states SP consists of all process expressions reachable from P;

2. the transition relation −→P is the restriction to SP of the transition relation defined on all process
expressions by the structural operational semantics, i.e., −→P = −→∩ (SP×Aτ×SP);

3. ↑P = P; and

4. the set of final states ↓P consists of all process expressions Q ∈ SP such that Q ↓, i.e., ↓P = ↓ ∩SP.

We also use (a restricted variant of) the process calculus TCP in later sections. It is obtained by
adding a parallel composition operator to TSP. Let C be a set of channels and D� be a set of data
symbols. For every subset C′ ⊆ C, we propose a special set of actions IC′ ⊆ Aτ defined by: IC′ =
{c?d,c!d | d ∈ D�,c ∈ C′}.

The actions c?d and c!d denote the events that a datum d is received or sent along channel c, re-
spectively. We include binary parallel composition operators [ ‖ ]C′ (C ⊆ C). Communication along the
channels in C′ is enforced and communication results in τ.

The operational semantics of the parallel composition operators is presented in Figure 2 (We omit
the symmetrical rules).

P1
a−→ P′1 a < IC′

[P1 ‖ P2]C′
a−→ [P′1 ‖ P2]C′

P1 ↓ P2 ↓
[P1 ‖ P2]C′ ↓

P1
c?d−→ P′1 P2

c!d−→ P′2 c ∈ C′

[P1 ‖ P2]C′
τ−→ [P′1 ‖ P′2]C′

Figure 2: The operational semantics of parallel composition

The notion of behavioural equivalence has been used extensively in the theory of process calculi. We
first introduce the notion of strong bisimilarity [21, 23], which does not distinguish τ-transitions from
other labelled transitions.
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Definition 2. A binary symmetric relation R on a transition system (S,−→,↑,↓) is a strong bisimulation
if, for all states s, t ∈ S, sRt implies

1. if s
a−→ s′, then there exist t′ ∈ S, such that t

a−→ t′, and s′Rt′;

2. if s ↓, then t ↓.
The states s and t are strongly bisimilar (notation: s↔ t) if there exists a strong bisimulation R s.t. sRt.

The notion of strong bisimilarity does not take into account the intuition associated with τ that it
stands for unobservable internal activity. We proceed to introduce the notion of (divergence-preserving)
branching bisimilarity, which does treat τ-transitions as unobservable. Divergence-preserving branching
bisimilarity is the finest behavioural equivalence in van Glabbeek’s linear time - branching time spec-
trum [16], and, moreover, the coarsest behavioural equivalence compatible with parallel composition
that preserves validity of formulas from the well-known modal logic CTL minus the next-time modality

X [18]. Let −→ be an Aτ-labelled transition relation on a set S, and let a ∈ Aτ; we write s
(a)−→ t for the

formula “s
a−→ t∨ (a = τ∧ s = t)”. Furthermore, we denote the transitive closure of

τ−→ by −→+ and the
reflexive-transitive closure of

τ−→ by −→∗.
Definition 3. Let T = (S,−→,↑,↓) be a transition system. A branching bisimulation is a symmetric
relation R ⊆ S×S such that for all states s, t ∈ S, sRt implies

1. if s
a−→ s′, then there exist t′, t′′ ∈ S, such that t −→∗ t′′

(a)−→ t′, sRt′′ and s′Rt′;

2. if s ↓, then there exists t′∈ S such that t −→∗ t′, t′ ↓ and sRt′.
The states s and t are branching bisimilar (notation: s↔b t) if there exists a branching bisimulation R
such that sRt.

A branching bisimulation R is divergence-preserving if, for all states s and t, sRt implies

3. if there exists an infinite sequence (si)i∈N such that s = s0, si
τ−→ si+1 and siRt for all i ∈ N, then

there exists a state t′ such that t −→+ t′ and siRt′ for some i ∈ N.
The states s and t are divergence-preserving branching bisimilar (notation: s↔∆b t) if there exists a
divergence-preserving branching bisimulation R such that sRt.

The relation ↔∆b satisfies the conditions of Definition 3, and is, in fact, the largest divergence-
preserving branching bisimulation relation. Divergence-preserving branching bisimilarity is an equiv-
alence relation [15].

Divergence-preserving branching bisimilarity is not a congruence for TSP; it is well-known that it is
not compatible with alternative composition.. A rootedness condition needs to be introduced.
Definition 4. Let T = (S,−→,↑,↓) be a transition system. A divergence-preserving branching bismula-
tion relation R on T satisfies the rootedness condition for a pair of states s1, s2 ∈ S, if s1Rs2 and

1. if s1
a−→ s′1, then s2

a−→ s′2 for some s′2 such that s′1Rs′2;

2. if s1 ↓, then s2 ↓.
s1 and s2 are rooted divergence-preserving branching bisimilar (notation: s1 ↔∆rb s2) if there exists a
divergence-preserving branching bisimulation R that satisfies rootedness condition for s1 and s2.

We can extend the above relations (↔,↔b,↔∆b , and↔∆rb) to relations over two transition systems by
defining that they are bisimilar if their initial states are bisimilar in their disjoint union. Namely, for two
transition systems T1 = (S1,−→1,↑1,↓1) and T2 = (S2,−→2,↑2,↓2), we make the following pairing on
their states. We pair every state s ∈ S1 with 1 and every state s ∈ S2 with 2. We have T ′i = (S′i ,−→′i ,↑′i ,↓′i)
for i= 1,2 where S′i = {(s, i) | s ∈Si}, −→′i= {((s, i),a, (t, i)) | (s,a, t) ∈−→i}, ↑′i= (↑i, i), and ↓′i= {(s, i) | s ∈↓i}.
We say T1 ≡ T2 if in T = (S′1∪S′2,−→′1∪−→′2,↑′1,↓′1∪↓′2) we have ↑′1≡↑′2.
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Xstart X ·Y X ·Y2 X ·Yn−1 X ·Yn

YnYn−1Y2Y1

a

b

a

b b

a

b b

c

c
c

c
c

c
c

c

c

c

c

Figure 3: A transition system with unboundedly branching behaviour

3 Transparency

Process expressions that have the option to terminate are transparent in a sequential context: if P has the
option to terminate and Q

a−→ Q′, then P ·Q a−→ Q′ even if P can still do transitions. In this section we
shall explain how transparency gives rise to two phenomena that are undesirable in certain circumstances.
First, it facilitates the specification of unboundedly branching behaviour with a guarded recursive speci-
fication over TSP. Second, it gives rise to forgetful stacking of variables, and as a consequence it is not
clear how to specify an always terminating half-counter.

We first discuss process expressions with unbounded branching. It is well-known from formal lan-
guage theory that the context-free languages are exactly the languages accepted by pushdown automata.
The process-theoretic formulation of this result is that every transition system specified by a TSP speci-
fication is language equivalent to the transition system associated with a pushdown automaton and, vice
versa, every transition system associated with a pushdown automaton is language equivalent to the transi-
tion system associated with some TSP specification. The correspondence fails, however, when language
equivalence is replaced by (strong) bisimilarity. The currently tightest result is that for every context-
free process there is a pushdown process to simulate it modulo contra simulation [4]; we conjecture that
not every context-free process is simulated by a pushdown process modulo branching bisimilarity. The
reason is that context-free processes may have an unbounded branching degree. Consider the following
process:

X = a.X ·Y +b.1 Y = c.1+1 .

The transition system associated with X is illustrated in Figure 3. Note that every state in the second
row is a terminating state. The state Yn has n c-labelled transitions to 1,Y,Y2, . . . ,Yn−1, respectively.
Therefore, every state in this transition system has finitely many transitions leading to distinct states,
but there is no upper bound on the number of transitions from each state. Therefore, we say that this
transition system has an unbounded branching degree.

We can prove that the process defined by the TSP specification above is not strongly bisimilar to
a pushdown process since it has an unbounded branching degree, whereas a pushdown process is al-
ways boundedly branching. The correspondence does hold modulo contra simulation [4], and it is an
open problem as to whether the correspondence holds modulo branching bisimilarity. In Section 5, we
show that with a revised operational semantics for sequential composition, we eliminate such unbounded
branching and indeed obtain a correspondence between pushdown processes and context-free processes
modulo strong bisimilarity.
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Next, we discuss the phenomenon of forgetfulness. Bergstra, Bethke and Ponse introduce a process
calculus with iteration and nesting [11, 12] in which a binary nesting operator ♯ and a Kleene star operator
∗ are added. In this paper, we add these two operators to TCP (Strictly speaking, we use an unary variant
Kleene star operator). We give the operational semantics of these two operators in Figure 4.

P∗ ↓
P

a−→ P′

P∗
a−→ P′ ·P∗

P1
a−→ P′1

P1
♯P2

a−→ P′1 · (P1
♯P2) ·P1

P2
a−→ P′2

P1
♯P2

a−→ P′2

P2 ↓
P1
♯P2 ↓

.

Figure 4: The operational semantics of nesting and iteration

To get some intuition for the operational interpretation of these operators, note that the processes P∗

and P1
♯P2 respectively satisfy the following equations modulo strong bisimilarity:

P∗ = P ·P∗+1 P1
♯P2 = P1 · (P1

♯P2) ·P1+P2

Bergstra et al. show how one can specify a half counter using iteration and nesting, which then allows
them to conclude that the behaviour of a Turing machine can be simulated in the calculus with iteration
and nesting (not including recursion) [11, 12].

The half counter is specified as follows:

CCn = a.CCn+1+b.BBn (n ∈ N)

BBn = a.BBn−1 (n ≥ 1)

BB0 = c.CC0 .

The behaviour of a half counter is illustrated in Figure 5. The initial state is CC0. From CC0 an
arbitrary number of a transitions is possible. After a b-labelled transition, the process performs the same
number of a-labelled transitions as before the b-labelled transition, to the state BB0. In state BB0, a zero
testing transition, labelled by c is enabled, leading back to the state CC0.

An implementation in a calculus with iteration and nesting is provided in [12] as follows:

HCC = ((a♯b) · c)∗ .

CC0start CC1 CC2 CCn−1 CCn

BBnBBn−1BB2BB1BB0

a

b

a

b b

a

b b

aaa

c

Figure 5: The transition system of a half counter
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It is straightforward to establish that ((a♯b) · an · c) ·HCC is equivalent to CCn for all n ≥ 1 modulo
strong bisimilarity, and (an · c) ·HCC is equivalent to BBn for all n ∈ N modulo strong bisimilarity.

In a context with intermediate termination, one may wonder if it is possible to generalize their result.
It is, however, not clear how to specify an always terminating half counter. At least, a naive generalisation
of the specification of Bergstra et al. does not do the job. The culprit is forgetfulness. We define a half
counter that terminates in every state as follows:

Cn = a.Cn+1+b.Bn+1 (n ∈ N)

Bn = a.Bn−1+1 (n ≥ 1)

B0 = c.C0+1 .

Now consider the process HC defined by:

HC = ((a+1)♯(b+1) · (c+1))∗ .

Note that due to transparency, ((a + 1)n · (c + 1)) ·HC is not equivalent to Bn modulo any reasonable
behavioural equivalence for n > 1 since Bn only has an a-labelled transition to Bn−1 whereas the other
process has at least n+ 1 transitions leading to HC, (c+ 1) ·HC, (a+ 1) · (c+ 1) ·HC, . . . , (a+ 1)n−1 · (c+
1) ·HC, respectively. This process may choose to “forget” the transparent process expressions that have
been stacked using the sequential composition operator. We conjecture that, due to forgetfulness, the
always terminating half counter cannot be specified in TCP♯.

In Section 6, we show that with the revised semantics, it is possible to specify an always terminating
half counter and we shall prove that TCP extended with ∗ and ♯ (but without recursion) is reactively
Turing powerful.

4 A Revised Semantics of the Sequential Composition Operator

Inspired by the work in [1] and [13], we revise the operational semantics for sequential composition and
propose a calculus TCP;. Its syntax is obtained by replacing the sequential composition operator · by ; in
the syntax of TCP. Note that we also use the abbreviation of Pn as we did for the standard version of the
sequential composition operator.

The operational rules for ; are givem in Figure 6. Note that the third rule has a negative premise

P1 ↓ P2 ↓
P1; P2 ↓

P1
a−→ P′1

P1; P2
a−→ P′1; P2

P1 ↓ P2
a−→ P′2 P1 6−→

P1; P2
a−→ P′2

.

Figure 6: The revised semantics of sequential composition

P1 6−→. Intuitively, this rule is only applicable if there does not exist a closed term P′1 and an action

a ∈ Aτ such that the transition P1
a−→ P′1 is derivable. For a sound formalisation of this intuition, using

the notions of irredundant and well-supported proof, see [17]. As a consequence, the branching degree of
a context-free process is bounded and sequential compositions may have the option to terminate, without
being forgetful.
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Xstart X;Y X;Y2 X;Yn−1 X;Yn

YnYn−1Y2Y1

a

b

a

b b

a

b b

ccc

Figure 7: The transition system in the revised semantics

Let us revisit the first example in Section 3. We rewrite it with the revised sequential composition
operator:

X = a.X;Y +b.1 Y = c.1+1 .

Its transition system is illustrated in Figure 7. Every state in the transition system now has a bounded
branching degree. For instance, a transition from Y5 to Y2 is abandoned because Y has a transition and
only the transition from the first Y in the sequential composition is allowed.

Congruence is an important property to fit a behavioural equivalence into an axiomatic framework.
We have that in the revised semantics,↔∆rb is a congruence. Note that the congruence property can also
be inferred from a recent result of Fokkink, van Glabbeek and Luttik [14].

Theorem 1. ↔∆rb is a congruence with respect to TCP;.

As a remark, unlike the divergence-preserving variant of rooted branching bisimilarity, the more stan-
dard variant that does not require divergence-preservation (↔rb) is not a congruence for TCP;. Consider

P1 = τ.1 P2 = (τ.1)∗ Q = a.1 .

We have P1↔rb P2 but not P1; Q↔rb P2; Q, for P1; Q can do a a-transition after the τ-transition, whereas
P2; Q can only do τ transitions.

We also define a version of TCP with iteration and nesting (TCP♯) in the revised semantics. By
removing the facility of recursive specification and the operations ∗ and ♯, we get TCP♯. The operational
rules for ∗ and ♯ are obtained by replacing, in the rules in Figure 4, all occurrences of · by ;.

5 Context-free Processes and Pushdown Processes

The relationship between context-free processes and pushdown processes has been studied in the litera-
ture [4]. We consider the process calculus Theory of Sequential Processes (TSP;). We define context-free
processes as follows:

Definition 5. A context-free process is the strong bisimulation equivalence class of the transition system
generated by a finite guarded recursive specification over TSP;.

Note that there is a method to rewrite every context-free process into Greibach normal form [3],
which is also valid in the revised semantics. In this paper, we only consider context-free processes in
Greibach normal form ,i.e., defined by guarded recursive specifications of the form

X =
∑

i∈IX

αi.ξi(+1) .
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In this form, every right-hand side of every equation consists of a number of summands, indexed by a
finite set IX (the empty sum denotes 0), each of which is 1, or of the form αi.ξi, where ξi is the sequential
composition of names (the empty sequence denotes 1).

We shall show that every context-free process is equivalent to a pushdown process modulo strong
bisimilarity. The notion of pushdown automaton is defined as follows:
Definition 6. A pushdown automaton (PDA) is a 7-tuple (S,Σ,D,−→,↑,Z,↓), where

1. S is a finite set of states,

2. Σ is a finite set of input symbols,

3. D is a finite set of stack symbols,

4. −→ ⊆ S×D×Σ×D∗×S is a finite transition relation, (we write s
a[d/δ]−→ t for (s,d,a, δ, t) ∈ −→),

5. ↑ ∈ S is the initial state,

6. Z ∈ D is the initial stack symbol, and

7. ↓ ⊆ S is a set of accepting states.
We use a sequence of stack symbols δ ∈ D∗ to represent the contents of a stack. We associate

with every pushdown automaton a labelled transition system. The bisimulation equivalence classes of
transition systems associated with pushdown automata are referred to as pushdown processes.
Definition 7. LetM= (S,Σ,D,−→,↑,Z,↓) be a PDA. The transition system T (M)= (ST ,−→T ,↑T ,↓T )
associated withM is defined as follows:

1. its set of states is the set ST = {(s, δ) | s ∈ S, δ ∈ D∗} of all configurations ofM,

2. its transition relation −→T⊆ST ×Aτ×ST is the relation satisfying, for all a ∈ Σ, d ∈D, δ,δ′ ∈D∗:
(s,dδ)

a−→T (t, δ′δ) iff s
a[d/δ′]−→ t,

3. its initial state is the configuration ↑T= (↑,Z), and

4. its set of terminating states is the set ↓T= {(s, δ) | s ∈ S, s ↓, δ ∈ D∗}.
Recall that a context-free process is defined by a recursive specification in Greibach normal form;

all states of the context-free process are denoted by sequences of names defined in this recursive speci-
fication. Note that a sequence of names denotes a terminating state only if all names have the option to
terminate. Hence, to be able to determine whether a configuration of the pushdown automaton should
have the option to terminate, we need to know whether all names currently on the stack have the option
to terminate. We annotate the states of the pushdown automaton with the subset of names currently on
the stack. We shall use the stack to record the sequence of names corresponding to the current state.
The deepest occurrence of a name on the stack is marked and we shall include special transitions in the
automaton for the treatment of marked names. If a marked name is removed from the stack, then , intu-
itively, it should be removed from the set annotating the state from the set. On the other hand, if a name
not in the set is added to the stack, then we shall mark that name and add that name to the set annotating
the state. As an example, we introduce a PDA as in Figure 8 to simulate the process in Figure 7 modulo
↔.

To obtain a general result, we consider a context-free process defined by a set of names V =
{X0,X1, . . . ,Xm} with X0 as the initial state, where

X j =
∑

i∈IX j

αi j.ξi j(+1) .

We introduce the following auxiliary functions:
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{X}start {X,Y} {Y} ∅a[X†/X†Y†]

b[X†/ǫ]

a[X†/X†Y]

b[X†/ǫ]

c[Y/ǫ]

c[Y†/ǫ]

Figure 8: A PDA to simulate the process in Figure 7

1. length :V∗→N, length(ξ) is the length of ξ;

2. get :V∗ ×N→V, get(ξ, i) is the i-th name of ξ;

3. suffset :V∗×N→ 2|V|, suffset(ξ, i)= {get(ξ, j) | j= i+1, . . . length(ξ)} computes the set that contains
all the names in the suffix which starts from the i-th name of ξ.

We define a PDAM = (S,Σ,D,−→,↑,Z,↓) to simulate the transition system associated with X0 as fol-
lows: S = {D | D ⊆ V}; Σ =Aτ; D =V∪{X† | X ∈ V}; ↑= {X0}; Z = X†0 ; ↓= {D | if for all X ∈ D,X ↓};
and the transition relation −→ is defined as follows:

−→ = {(D,X†j ,αi j, δ(D,X
†
j , ξi j),merge(D,X†j , ξi j)) | i ∈ IX j , j = 1, . . . ,n, D⊆V}

∪ {(D,X j,αi j, δ(D,X j, ξi j),merge(D,X j, ξi j)) | i ∈ IX j , j = 1, . . . ,n, D⊆V} ,

where δ(D,X†j , ξi j) is the string of length length(ξi j) defined as follows: for k = 1, . . . , length(ξi j), we let
Xk = get(ξi j,k),

1. if Xk < (D/{X j})∪ suffset(ξi j,k), then the k-th symbol of δ(D,X†j , ξi j) is X†k ,

2. otherwise, the k-th symbol of δ(D,X†j , ξi j) is Xk,

δ(D,X j, ξi j) is a string of length length(ξi j) defined as follows: for k = 1, . . . , length(ξi j), we let Xk =

get(ξi j,k),

1. if Xk < D∪ suffset(ξi j,k), then the k-th symbol of δ(D,X j, ξi j) is X†k ,

2. otherwise, the k-th symbol of δ(D,X j, ξi j) is Xk, and

we also define merge(D,X†j , ξi j) = (D/{X j})∪ suffset(ξi j,0) and merge(D,X j, ξi j) = D∪ suffset(ξi j,0);
We have the following result:

Lemma 1. T (X0)↔T (M).

We have the following theorem.

Theorem 2. For every name X defined in a guarded recursive specification in Greibach normal form
there exists a PDAM, such that T (X)↔T (M).

Note that the converse of this theorem does not hold in general, a counterexample was established by
F. Moller in [22], and we conjecture that it is also valid modulo↔b in the revised semantics.
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6 Executability in the Context of Termination

The notion of reactive Turing machine (RTM) [5] was introduced as an extension of Turing machines to
define which behaviour is executable by a computing system. The definition of RTM is parameterised
with the set Aτ, which we now assume to be finite, and with another finite set D of data symbols. We
extend D with a special symbol � <D to denote a blank tape cell, and denote the set D∪{�} of tape
symbols by D�.

Definition 8 (Reactive Turing Machine). A reactive Turing machine (RTM) is a quadruple (S,−→,↑,↓),
where

1. S is a finite set of states,

2. −→ ⊆ S×D� ×Aτ ×D� × {L,R} × S is a finite collection of (D� ×Aτ ×D� × {L,R})-labelled

transitions (we write s
a[d/e]M−→ t for (s,d,a,e,M, t) ∈ −→),

3. ↑ ∈ S is a distinguished initial state, and

4. ↓ ⊆ S is a finite set of final states.

Intuitively, the meaning of a transition s
a[d/e]M−→ t is that whenever the RTM is in state s, and d is the

symbol currently read by the tape head, then it may execute the action a, write symbol e on the tape
(replacing d), move the read/write head one position to the left or the right on the tape (depending on
whether M = L or M = R), and then end up in state t.

To formalise the intuitive understanding of the operational behaviour of RTMs, we associate with
every RTMM anAτ-labelled transition system T (M). The states of T (M) are the configurations ofM,
which consist of a state from S, its tape contents, and the position of the read/write head. We denote by
Ď� = {ď | d ∈ D�} the set of marked symbols; a tape instance is a sequence δ ∈ (D� ∪Ď�)∗ such that δ
contains exactly one element of the set of marked symbols Ď�, indicating the position of the read/write
head. We adopt a convention to concisely denote an update of the placement of the tape head marker.
Let δ be an element of D∗�. Then by δ< we denote the element of (D� ∪Ď�)∗ obtained by placing the
tape head marker on the right-most symbol of δ (if that exists; otherwise δ< denotes �̌). Similarly, >δ is
obtained by placing the tape head marker on the left-most symbol of δ (if that exists; otherwise >δ denotes
�̌).

Definition 9. Let M = (S,−→,↑,↓) be an RTM. The transition system T (M) associated with M is
defined as follows:

1. its set of states is the set CM = {(s, δ) | s ∈ S, δ a tape instance} of all configurations ofM;

2. its transition relation −→ ⊆ CM×Aτ×CM is the relation satisfying, for all a ∈ Aτ, d,e ∈ D� and

δL, δR ∈ D∗�: (s, δLďδR)
a−→ (t, δL

<eδR) iff s
a[d/e]L−→ t, and (s, δLďδR)

a−→ (t, δLe >δR) iff s
a[d/e]R−→ t;

3. its initial state is the configuration (↑, �̌); and

4. its set of final states is the set {(s, δ) | δ a tape instance, s ↓}.
Turing introduced his machines to define the notion of effectively computable function in [24]. By

analogy, the notion of RTM can be used to define a notion of effectively executable behaviour.

Definition 10 (Executability). A transition system is executable if it is the transition system associated
with some RTM.
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Executability can be used to characterise the absolute expressiveness of process calculi in two ways.
On the one hand, if every transition system associated with a process expression specified in a process
calculus is executable modulo some behavioural equivalence, then we say that the process calculus is
executable modulo that behavioural equivalence. On the other hand, if every executable transition system
is behaviourally equivalent to some transition system associated with a process expression specified
in a process calculus modulo some behavioural equivalence, then we say that the process calculus is
reactively Turing powerful modulo that behavioural equivalence.

Our aim in this section is to prove that all executable processes can be specified, up to divergence-
preserving branching bisimilarity in TCP♯. TCP♯ is obtained from TCP by removing recursive definitions
and adding the iteration and nesting operators.

To see that TCP♯ is executable modulo branching bisimilarity, it suffices to observe that their transi-
tion systems are effective. Thus we can apply the result from [5] and conclude that they are executable
modulo↔b.

Now we show that TCP♯ is reactively Turing powerful modulo↔∆b .
We first introduce the notion of bisimulation up to↔b, which is a useful tool to establish the proofs

in this section. Note that we adopt a non-symmetric bisimulation up to relation.

Definition 11. Let T = (S,−→,↑,↓) a transition system. A relation R ⊆ S×S is a bisimulation up to↔b
if, whenever s1Rs2, then for all a ∈ Aτ:

1. if s1 −→∗ s′′1
a−→ s′1, with s1↔b s′′1 and a , τ∨ s′′1 6↔b s′1, then there exists s′2 such that s2

a−→ s′2,
s′′1 ↔b◦R s2 and s′1↔b◦R s′2;

2. if s2
a−→ s′2, then there exist s′1, s

′′
1 such that s1 −→∗ s′′1

a−→ s′1, s′′1 ↔b s1 and s′1↔b◦R s′2;

3. if s1 ↓, then there exists s′2 such that s2 −→∗ s′2, s′2 ↓ and s1Rs′2; and

4. if s2 ↓, then there exists s′1 such that s1 −→∗ s′1, s′1 ↓ and s′1Rs2.

Lemma 2. If R is a bisimulation up to↔b, then R ⊆↔b.

Next we show that TCP♯ is reactively Turing powerful by writing a specification of the transition
system associated with a reactive Turing machine in TCP♯ modulo↔∆b . The proof proceeds in five steps:

1. We first specify an always terminating half counter.

2. Then we show that every regular process can be specified in TCP♯.

3. Next we use two half counters and a regular process to encode a terminating stack.

4. With two stacks and a regular process we can specify a tape.

5. Finally we use a tape and a regular control process to specify an RTM.

We first recall the infinite specification in TSP; of a terminating half counter from Section 3. We
provide a specification of a counter in TCP♯ as follows:

HC = ((a+1)♯(b+1); (c+1))∗

We have the following lemma:

Lemma 3. C0↔∆b HC.

Next we show that every regular process can be specified in TCP♯ modulo ↔∆b . A regular process
is given by Pi =

∑n
j=1αi j; P j + βi (i = 1, . . . ,n) where αi j and βi are finite sums of actions from Aτ and

possibly with a 1-summand. We have the following lemma.
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Lemma 4. Every regular process can be specified in TCP♯ modulo↔∆b .
Now we show that a stack can be specified by a regular process and two half counters. We first give

an infinite specification in TSP; of a stack as follows:

S ǫ = Σd∈D�push?d.S d +pop!�.S ǫ +1
S dδ = pop!d.S δ+Σe∈D�push?e.S edδ+1 .

Note that D� is a finite set of symbols. We suppose that D� contains N symbols (including �). We
use ǫ to denote the empty sequence. We inductively define an encoding from a sequence of symbols to a
natural number ⌈ ⌉ :D�∗→N as follows:

⌈ǫ⌉ = 0 ⌈dk⌉ = k (k = 1,2, . . . ,N) ⌈dkσ⌉ = k+N ×⌈σ⌉ .
Hence we are able to encode the contents of a stack in terms of natural numbers recorded by half counters.
We define a stack in TCP♯ as follows:

S = [X∅ ‖ P1 ‖ P2]{a1,a2,b1,b2,c1 ,c2}
P j = ((a j!a+1)♯(b j!b+1); (c j!c+1))∗ ( j = 1,2)

X∅ = (ΣN
j=1((push?d j +1); (a1?a+1) j; (b1 +1); X j)+pop!�)∗

Xk = ΣN
j=1((push?d j +1);Pushj)+ (pop!dk +1);Popk (k = 1,2, . . . ,N)

Pushk = Shift1to2; (a1?a+1)k;NShift2to1; Xk (k = 1,2, . . . ,N)

Popk = (a1?a+1)k;1/NShift1to2;Test∅
Shift1to2 = ((a1?a+1); (a2?a+1))∗; (c1?c+1); (b2?b+1)

NShift2to1 = ((a2?a+1); (a1?a+1)N)∗; (c2?c+1); (b1?b+1)

1/NShift1to2 = ((a1?a+1)N ; (a2?a+1))∗; (c1?c+1); (b2?b+1)

Test∅ = (a2?a+1); (a1?a+1);Test1 + (c2?c+1); X∅
Test1 = (a2?a+1); (a1?a+1);Test2 + (c2?c+1); X1

Test2 = (a2?a+1); (a1?a+1);Test3 + (c2?c+1); X2

· · ·
TestN = (a2?a+1); (a1?a+1);Test1 + (c2?c+1); XN .

We have the following result.
Lemma 5. S ǫ ↔∆b S .

Next we proceed to define the tape by means of two stacks. We consider the following infinite
specification in TSP; of a tape:

TδLďδR = r!d.TδL ďδR +Σe∈D�w?e.TδL ěδR + L?m.TδL<dδR +R?m.TδLd>δR +1 .

We define the tape process in TCP♯ as follows:

T = [T� ‖ S 1 ‖ S 2]{push1 ,pop1,push2,pop2}
Td = r!d.Td +Σe∈D�w?e.Te+ L?m.Leftd +R?m.Rightd +1 (d ∈ D�)

Leftd = Σe∈D�((pop1?e+1); (push2!d+1);Te)

Rightd = Σe∈D�((pop2?e+1); (push1!d+1);Te) ,

where S 1 and S 2 are two stacks obtained by renaming push and pop in S to push1,pop1,push2 and pop2,
respectively. We establish the following result.
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Lemma 6. T�̌↔∆b T.
Finally, we construct a finite control process for an RTMM = (SM,−→M,↑M,↓M) as follows:

Cs,d = Σ(s,d,a,e,M,t)∈−→M(a.w!e.M!m.Σ f∈D�r? f .Ct, f )[+1]s↓M (s ∈ SM,d ∈ D�) .

We prove the following lemma.
Lemma 7. T (M)↔∆b [C↑M,� ‖ T ]{r,w,L,R}.

We have the following theorem.
Theorem 3. TCP♯ is reactively Turing powerful modulo↔∆b .

7 Conclusion

The results established in this paper show that a revision of the operational semantics of sequential com-
position leads to a smoother integration of process theory and the classical theory of automata and formal
languages. In particular, the correspondence between context-free processes and pushdown processes can
be established up to strong bisimilarity, which does not hold with the more standard operational seman-
tics of sequential composition in a setting with intermediate termination [2]. Furthermore, the revised
operational semantics of sequential composition also seems to work better in combination with the re-
cursive operations of [12]. We conjecture that it is not possible to specify an always terminating counter
or stack in a process calculus with iteration and nesting if the original operational semantics of sequential
composition is used.

There are also some disadvantages to the revised operational semantics.
First of all, the negative premise in the operational semantics gives well-known formal complications

in determining whether some process does, or does not, admit a transition. For instance, consider the
following unguarded recursive specification:

X = X;Y +1 Y = a.1 .

It is not a priori clear whether an a-transition is possible from X: if X only has the option to terminate, then
X;Y can do the a-transition from Y , but then also X can do the a-transition, contradicting the assumption
that X only has the option to terminate.

Second, as we have illustrated in Section 4, rooted branching bisimilarity is not compatible with
respect to the new sequential composition operation. The divergence-preserving condition is required
for the congruence property.

Finally, note that (a+ 1);b is not strongly bisimilar to (a;b)+ (1;b), and hence ; does not distribute
from the right over +. It is to be expected that there is no finite sound and ground-complete set of
equational axioms for the process calculus TCP; with respect to strong bisimilarity. We leave for future
work to further investigate the equational theory of sequential composition.

Another interesting future work is to establish the reactive Turing powerfulness on other process cal-
culi with non-regular iterators based on the revised semantics of the sequential composition operator. For
instance, we could consider the pushdown operator “$” and the back-and-forth operator “⇆” introduced
by Bergstra and Ponse in [12]. They are given by the following equations:

P1
$P2 = P1; (P1

$P2); (P1
$P2)+P2 P1

⇆P2 = P1; (P1
⇆P2); P2 +P2 .

By analogy to the nesting operator, we shall also give them some proper rules of operational seman-
tics, and then use the calculus obtained by the revised semantics to define other versions of terminating
counters. In a way, we should be able to establish their reactive Turing powerfulness.
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In contrast to common belief, the Calculus of Communicating Systems (CCS) and similar process al-
gebras lack the expressive power to accurately capture mutual exclusion protocols without enriching
the language with fairness assumptions. Adding a fairness assumption to implement a mutual ex-
clusion protocol seems counter-intuitive. We employ a signalling operator, which can be combined
with CCS, or other process calculi, and show that this minimal extension is expressive enough to
model mutual exclusion: we confirm the correctness of Peterson’s mutual exclusion algorithm for
two processes, as well as Lamport’s bakery algorithm, under reasonable assumptions on the under-
lying memory model. The correctness of Peterson’s algorithm for more than two processes requires
stronger, less realistic assumptions on the underlying memory model.

1 Introduction

In the process algebra community it is common belief that, on some level of abstraction, any distributed
system can be modelled in standard process-algebraic specification formalisms like the Calculus of Com-
municating Systems (CCS) [26].

However, this sentiment has been proven incorrect [20]: two of the authors presented a simple fair
scheduler—one that in suitable variations occurs in many distributed systems—of which no implemen-
tation can be expressed in CCS, unless CCS is enriched with a fairness assumption. Instances of our
fair scheduler, that hence cannot be rendered correctly, are the First in First out1, Round Robin, and
Fair Queueing scheduling algorithms2 as used in network routers [28, 29] and operating systems [23], or
the Completely Fair Scheduler3, which is the default scheduler of the Linux kernel since version 2.6.23.
Since fair schedulers can be implemented in terms of mutual exclusion, this result implies that mutual
exclusion protocols, such as the ones by Dekker [13, 15], Peterson [31] and Lamport [25], cannot be
rendered correctly in CCS without imposing a fairness assumption.

Close approximations of Dekker’s and Peterson’s protocols rendered in CCS or similar formalisms
abound in the literature [34, 5, 32, 16, 2]. Unless one makes a fairness assumption these renderings do
not possess the liveness property that when a process leaves its non-critical section, and thus wants to
enter the critical section, it will eventually succeed in doing so. When assuming fairness, this problem
disappears [9]. However, since mutual exclusion protocols are often employed to ensure that each of
several tasks gets allocated a fair amount of a shared resource, assuming fairness to implement mutual
exclusion appears counter-intuitive.

Informally speaking, the reason why the CCS rendering of algorithms such as Peterson’s does not
work, is that it is possible that a process never gets a chance to write to a shared variable to indicate
interest in entering the critical section. This is because other processes running in parallel and competing

1Also known as First Come First Served (FCFS)
2http://en.wikipedia.org/wiki/Scheduling_(computing)
3http://en.wikipedia.org/wiki/Completely_Fair_Scheduler
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α.P
α−−→ P

P j
α−−→ P′

∑
i∈I Pi

α−−→ P′
( j ∈ I )

P
α−−→ P′

P |Q α−−→ P′ |Q
P

a−−→ P′, Q ā−−→Q′

P |Q τ−−→ P′ |Q′
Q

α−−→Q′

P |Q α−−→ P |Q′

P
α−−→ P′

P\L α−−→ P′\L (α, ᾱ < L)
P

α−−→ P′

P[ f ] f (α)−−−→ P′[ f ]

P
α−−→ P′

A
α−−→ P′

(A
def
= P)

Table 1: Structural operational semantics of CCS

for the critical section are ‘too busy’ reading the shared variable all the time.
In this paper we extend CCS with signals. This extension is able to express mutual exclusion pro-

tocols without the use of fairness assumptions. To prove correctness, one only needs basic assumptions
such as progress and justness.

We will use this extension to analyse the correctness of some of the most famous protocols for mutual
exclusion, namely Peterson’s algorithm, the filter lock algorithm—Peterson’s algorithm for more than
two processes—and Lamport’s bakery algorithm. With regards to the filter lock algorithm our analysis
reveals some surprising protocol behaviour.

2 Preliminaries: The Calculus of Communicating Systems

The Calculus of Communicating Systems (CCS) [26] is a process algebra, which is used to describe
concurrent processes.

It is parametrised with sets A and K of names and agent identifiers. We define the set of handshake
actions as H :=A ∪· ¯A , where ¯A := {ā | a ∈ A } is the set of co-names. Complementation is extended
to H by setting ¯̄a = a. Finally, Act :=H ∪· {τ} is the set of actions, where τ is a special internal action.
In this paper a,b,c , . . . range over H , α, β over Act , and A, B range over K . A relabelling is a function
f : H →H satisfying f (ā) = f (a); it extends to Act by f (τ) := τ. Each A ∈K comes with a defining
equation A

def
= P with P being a CCS expression as defined below.

The class TCCS of CCS expressions is defined as the smallest class that includes

• agent identifiers A ∈K ;
• prefixes α.P ;
• (infinite) choices

∑
i∈I Pi ;

• parallel compositions P |Q ;
• restrictions P\L ;
• relabellings P[ f ] ;

where P,Pi ,Q ∈ TCCS are CCS expressions, I an index set, L ⊆ A a set of names, and f an arbitrary
relabelling function. In case I = {1,2}, we write P1 +P2 for

∑
i∈I Pi . The inactive process 0 is defined

by
∑

i∈ Pi ; it is not capable to perform any action.
The semantics of CCS is given by the labelled transition relation → ⊆ TCCS × Act × TCCS, where

transitions P α−−→Q are derived from the rules of Table 1. The process α.P performs the action α first and
subsequently acts as P. The choice operator

∑
i∈I Pi may act as any of the Pi , depending on which of the

processes is able to act at all. The parallel composition P |Q executes an action from P, an action from
Q, or in the case where P and Q can perform complementary actions a and ā, the process can perform a
synchronisation, resulting in an internal action τ. The restriction operator P\L inhibits execution of the
actions from L and their complements. The only way for a subprocess of P\L to perform an action a ∈ L
is through synchronisation with another subprocess of P\L, which performs ā. The relabelling P[ f ] acts
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like process P with all labels a replaced by f (a). Last, the rule for agent identifiers says that an agent A
has the same transitions as the body P of its defining equation.

As usual, to avoid parentheses, we assume that the operators have decreasing binding strength in the
following order: restriction and relabelling, prefixing, parallel composition, choice.

The pair 〈TCCS ,→〉 is called the labelled transition system (LTS) of CCS.

Example 1 We describe a simple shared memory system in CCS, using the name asgnv
x for the assign-

ment of value v to the variable x, and nv
x for noticing or notifying that the variable x has the value v. The

action asgnv
x communicates the assignment x := v to the shared memory, whereas asgnv

x is the action
of the shared memory of accepting this communication. Likewise, nv

x is a notification by the shared
memory that x equals v; it synchronises with the complementary action nv

x of noticing that x = v.
We consider the process (x true | R |W )\{asgn true

x ,asgn false
x ,n true

x ,n false
x }, where

x true def
= asgn true

x . x true + asgn false
x . x false + n true

x . x true ,

x false def
= asgn true

x . x true + asgn false
x . x false + n false

x . x false ,

R
def
= n true

x . R and W
def
= asgn false

x . 0 .

The processes x true and x false model the two states of a shared Boolean variable x (true and false, respec-
tively). Both accept assignment actions, changing their state accordingly. They also provide their respec-
tive value to a potential reader. The process R (reader) is an infinite loop which permanently tries to read

xtrue |R|W xfalse |R|0

τ

τvalue true from variable x, and the process W (writer) tries once to set
variable x to false. Since the overall process uses the restriction operator,
its transition system, depicted on the right, has only two transitions, a
τ-loop of R reading the value, and a transition to x false |R |0 ofW assigning
x to false—after that no further transition is possible. The justness assumption, to be described in Sects. 4
and 5, is not sufficient to ensure that the writer eventually performs its transition, and this fact is one of
the motivations why we introduce signals in Sect. 6.

3 Peterson’s Mutual Exclusion Protocol—Part I

In [20] it is shown that Peterson’s mutual exclusion protocol [31] cannot be expressed in CCS with-
out assuming fairness. In this section we briefly recapitulate the protocol itself and present an optimal
rendering in CCS. In the next section we discuss what the problems are with such a rendering.

The ‘classical’ Peterson’s mutual exclusion protocol deals with two concurrent processes A and B
that want to alternate critical and noncritical sections.

Each of the processes will stay only a finite amount of time in the critical section, although it is
allowed to stay forever in its noncritical section. The purpose of the algorithm is to ensure that the
processes are never simultaneously in the critical section, and to guarantee that both processes keep
making progress; in particular the latter means that if a process wants to access the critical section it will
eventually do so.

A pseudocode rendering of Peterson’s protocol is depicted in Fig. 1. The processes use three shared
variables: readyA, readyB and turn. The Boolean variable readyA can be written by Process A and read
by Process B, whereas readyB can be written by B and read by A. By setting readyA to true, Process A
signals to Process B that it wants to enter the critical section. The variable turn can be written and read
by both processes. Its carefully designed functionality guarantees mutual exclusion as well as deadlock-
freedom. Both readyA and readyB are initialised with false and turn with A.
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Process A
repeat forever

`1 noncritical section
`2 readyA := true
`3 turn := B
`4 await (readyB = false∨ turn = A)
`5 critical section
`6 readyA := false

Process B
repeat forever

m1 noncritical section
m2 readyB := true
m3 turn := A
m4 await (readyA = false∨ turn = B)
m5 critical section
m6 readyB := false

Figure 1: Peterson’s algorithm (pseudocode)

In order to model this protocol in CCS, we use the names noncritA, critA, noncritB, and critB, for
Processes A and B executing their (non)critical section. The names asgnv

x and nv
x for the interactions of

A and B with a shared memory have been defined in Ex. 1. The Processes A and B can be modelled as

A
def
= noncritA . asgn true

readyA . asgnB
turn . (n

false
readyB + nA

turn) . critA . asgn false
readyA .A ,

B
def
= noncritB . asgn true

readyB . asgnA
turn . (n

false
readyA + nB

turn) . critB . asgn false
readyB .B ,

where (a+b).P is a shorthand for a.P+b.P. This CCS rendering naturally captures the await statement,
requiring Process A to wait at instruction `4 until it can read that readyB = false or turn = A. We use
two agent identifiers for each Boolean variable, one for each value, similar to Ex. 1. For example,
we have TurnA def

= asgnA
turn .TurnA + asgnB

turn .TurnB + nA
turn .TurnA. Peterson’s algorithm is the parallel

composition of all these processes, restricting all the communications

(A |B |ReadyA false |ReadyB false |TurnA)\L ,
where L is the set of all names except noncritA, critA, noncritB, and critB.

It is well known that Peterson’s protocol satisfies the safety property that both processes are never in
the critical section at the same time. In terms of Fig. 1, there is no reachable state where A and B have
already executed lines `4 and m4 but have not yet executed `6 or m6 [31, 34]. The validity of the liveness
property, that any process leaving its noncritical section will eventually enter the critical section, depends
on its precise formalisation, as discussed in Sects. 4 and 5.

4 Why the CCS Rendering of Peterson’s Algorithm is Unsatisfactory

Liveness properties generally only hold under some assumptions. The intended liveness property for
Peterson’s algorithm may already be violated if both processes come to a permanent halt for no apparent
reason. This behaviour should be considered unrealistic. To rule it out one usually makes a progress
assumption, formalised in Sect. 5, which can be formulated as follows [17, 21]:

Any process in a state that admits a non-blocking action will eventually perform an action.
Another example is an execution path ρ in which first Process A completes instruction `1; leaving

its noncritical section it implicitly wishes to enter the critical section. Subsequently, Process B cycles
through its complete list of instructions in perpetuity without A making any further progress. This is
possible because readyA is never updated and always evaluates to false. This execution path, if admitted,
would be another counterexample to the intended liveness property. However, progress is not sufficient
to rule out such a path; after all the whole system is making progress. To rule it out as a valid system run,
we need the stronger assumption of justness [21], or an even stronger fairness assumption [18].

We formalise justness in the next section. Here we sketch the general idea, and the difference with
fairness, by an example.
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Suppose we have a vending machine with a single slot for inserting coins, and there are two cus-
tomers: one intends to insert an infinite supply of quarters, and the other an infinite supply of dimes. No
customer intends to ever extract something from the vending machine. Since a quarter and a dime cannot
be entered simultaneously, the two customers compete for a shared resource. Should it be allowed for
one customer to enter an unending sequence of quarters, while the other does not even get in a single
dime? The assumption of (strong or weak) fairness rules out this realistic behaviour, while weaker as-
sumptions like progress and justness allow this as one of the valid ways such interactions between the
customers and the vending machine may play out.

Alternatively, assume that the same two customers have access to a vending machine each, and that
each of these vending machines serves that customer only. In that case the assumption of progress is
not strong enough to rule out that one customer enters an unending sequence of quarters, while the other
does not even get in a single dime; after all the whole system keeps making progress at all times. The
assumption of justness guarantees that the customer will get a chance to enter his dimes by applying the
idea of progress to isolated components of a system; it entails that the perpetual insertion of quarters by
one customer in one machine in no way prevents the other customer to insert dimes in the other machine.

In [34] Walker shows that once Process A executes instruction `2, it will in fact enter the critical sec-
tion, i.e. execute `4. This proof assumes progress, but not justness, let alone fairness. The only question
left is whether we can guarantee that execution of `1 is always followed by `2. Thus, when assuming
progress, the only possible counterexample to the intended liveness property of Peterson’s algorithm is
the execution path ρ sketched above, and its symmetric counterpart. This execution represents a battle
for the shared variable readyA. Process A tries to assign a value to this variable, whereas Process B
engages in an unending sequence of read actions of this variable (as part of infinitely many instructions
m4). If we assume that the central memory in which variable readyA is stored implements its own mutual
exclusion protocol, which prevents two processes from reading and writing the same variable at the same
time (but guarantees no liveness property), we may have the situation that Process A has to wait before
setting readyA to true until Process B is done reading this variable. However, Process B may be so quick
that each time it is done reading readyA it executes m5–m3 in the blink of an eye and grabs hold of the
same variable for reading it again before Process A gets a chance to write to it. Under this assumption
we would conclude that Peterson’s algorithm does not have the required liveness property, since Process
A may never get a chance to write to readyA because Process B is too busy reading it, and hence never
ever enters the critical section.

However, it is reasonable to assume that in the intended setting where Peterson’s algorithm would
be employed, the central memory does not employ its own mutual exclusion protocol that prevents one
process from writing a variable while another is reading it.4 With this view of the central memory in
mind, instruction `2 cannot be blocked by Process B, and hence the assumption of justness is sufficient
to ensure that Peterson’s protocol does have the required liveness property.

The same conclusion cannot be drawn for the rendering of Peterson’s algorithm in CCS. Here the
write action `2 = asgn true

readyA needs to synchronise with the action asgn true
readyA of the shared memory storing

variable readyA. That process has to make a choice between executing asgn true
readyA and executing n false

readyA,

the latter in synchronisation with Process B . When it chooses n false
readyA it has to wait until this instruction

is terminated before the same choice arises again. Hence the write action can be blocked by the read
action, and justness is not strong enough an assumption to ensure that eventually the assignment will

4Without such a protocol, it could be argued that the reading process may read anything when reading overlaps with writing
the same variable. However, the variable readyA has only two possible values that can be read, and depending on which of
these is returned, the overlapping read action may just as well be thought to occur before or after the write action.
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take place. Assuming fairness is of course enough to achieve this, but risky since it has the potential to
rule out realistic behaviour (see above).

The above reasoning merely shows that the given implementation of Peterson’s mutual exclusion
protocol in CCS requires fairness to be correct. In [20] we show that the same holds for any implementa-
tion of any mutual exclusion protocol in CCS, and the same argument applies to a wider class of process
algebras. Peterson expressed his protocol in pseudocode without resorting to a fairness assumption. We
understand that he assumes progress and justness implicitly, and accordingly his protocol and liveness
claim are correct. It follows that Peterson’s pseudocode does not admit an accurate translation into CCS.

5 Formalising Progress and Justness

Liveness properties are naturally expressed as properties of execution paths. A path of a process P is an
alternating sequence P

α1−−→ P1
α2−−→ ...

αn−−→ Pn
αn+1−−−→ ... of states and transitions. A path can be finite or

infinite. A possible formulation of the liveness property of Peterson’s algorithm, applied to paths π, is
that each occurrence of a transition labelled with noncritA in π is followed by an occurrence of critA,
and similarly for B. To express when a liveness property holds for a system P, we need the notion of
a complete path: one that describes a complete execution of P, rather than a partial one. The property
holds for P iff it holds for all its complete paths. Progress, justness and fairness assumptions rule out
certain paths from being considered complete—those that are in disagreement with the assumption. The
stronger the assumption, the more paths are ruled out, and the more likely it is that a given liveness
property holds.

A complete path ending in a state Pn models a system run in which no further activity takes place
after Pn has been reached. A complete path ending in a transition models a system run where transitions
are considered to have a duration, and the final transition commenced, but never finishes.

One assumption we adopt in this paper is that “atomic actions always terminate” [30]. It rules out all
paths ending in a transition. To check whether Peterson’s algorithm is compatible with this assumption,
we note that processes are not allowed to stay forever in their critical sections, so the actions critA and
critB can be assumed to terminate. Read and write actions of variables terminate as well. However, a
process is allowed to stay forever in its noncritical section, so the actions noncritA and noncritB need
not terminate. To make our formalisation of Peterson’s algorithm compatible with the assumption that
actions terminate, we could split the action noncritA into start(noncritA) and end(noncritA). Both
these actions terminate, and an execution in which Process A stays in its noncritical section corresponds
with a complete path that ends in the state between these transitions. To save the effort of rewriting the
protocol from Sect. 3, we shall identify instruction `6 with entering the noncritical section, and interpret
`1 as leaving the noncritical section. Thus, the processes start out being in their noncritical sections.

To formalise the assumptions of progress and justness, we need the concept of a non-blocking action.
A process of the form τ.P should surely execute the internal action τ, and not stay forever in its initial
state. However, a process a.P running in the environment (_ |E)\{a}may very well stay in its initial state,
namely when the environment E never provides a signal ā that the process can read. With this in mind
we assume a classification of the set of actions into blocking and non-blocking actions [21]. The internal
action τ is always non-blocking, and any action a classified as non-blocking shall never be put in the
scope of a restriction operator \L with a ∈ L, and never be renamed into a blocking action [20]. The
transition system of Peterson’s algorithm features actions critA, critB, noncritA, noncritB and τ—
other names are forbidden by the restriction operator. We classify critA, critB and τ as non-blocking,
but the actions noncritA and noncritB of leaving the noncritical sections may block. Our progress
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assumption rules out as complete any path ending in a state in which a non-blocking action is enabled,
i.e. any system state except for the ones where both Processes A and B are (back) in their initial state.

The (stronger) justness assumption from [21] is:
If a combination of components in a parallel composition is in a state that admits a non-
blocking action, then one (or more) of them will eventually partake in an action.

Its formalisation uses decomposition: a transition P |Q α−−→ R derives, through the rules of Table 1, from
• a transition P

α−−→ P′ and a state Q, where R = P′ |Q ,
• two transitions P a−−→ P′ and Q

ā−−→Q′, where R = P′ |Q′ and α = τ ,
• or from a state P and a transition Q

α−−→Q′, where R = P |Q′.
This transition/state, transition/transition or state/transition pair is called a decomposition of P |Q α−−→ R;
it need not be unique. A decomposition of a path π of P |Q into paths π1 and π2 of P and Q, respectively,
is obtained by decomposing each transition in the path, and concatenating all left-projections into a path
of P—the decomposition of π along P—and all right-projections into a path of Q. It could be that a path
π is infinite, yet either π1 or π2 (but not both) are finite. Decomposition of paths need not be unique.

Similarly, any transition P[ f ] α−−→ R stems from a transition P
β−−→ P′, where R = P′[ f ] and α = f (β).

This transition is called a decomposition of P[ f ] α−−→ R. A decomposition of a path π of P[ f ] is obtained
by decomposing each transition in the path, and concatenating all transitions so obtained into a path of P.
A decomposition of a path of P\L is defined likewise.

Definition 1 The class of Y-just paths, for Y ⊆H , is the largest class of paths in TCCS such that
• a finite Y-just path ends in a state that admits actions from Y only;
• a Y-just path of a process P |Q can be decomposed into an X-just path of P and a Z-just path of Q

such that Y ⊇ X∪Z and X∩Z̄ =∅—here Z̄ := {c̄ | c ∈ Z };
• a Y-just path of P\L can be decomposed into a Y∪L∪ L̄-just path of P;
• a Y-just path of P[ f ] can be decomposed into an f −1(Y )-just path of P;
• and each suffix of a Y-just path is Y-just.

A path π is just if it is Y -just for some set of blocking actions Y ⊆H . A just path π is a-enabled for an
action a ∈H if a ∈ Y for all Y such that π is Y-just.

Intuitively, a Y-just path models a run in which Y is an upper bound of the set of labels of abstract
transitions5 that from some point onwards are continuously enabled but never taken. Here an abstract
transition with a label from H is deemed to be continuously enabled but never taken iff it is enabled in a
parallel component that performs no further actions. Such a run can occur in the modelled system if the
environment from some point onwards blocks the actions in Y .

Now consider the path ρ violating the intended liveness property. The decompositions of ρ along
Processes A and B were mentioned in Sect. 4. These paths are {asgn true

readyA }-just and ∅-just, respectively.
The decomposition along TurnA is an infinite path taking action asgn A

turn only (∅-just). The decompo-
sition along ReadyB false is an infinite path alternatingly taking actions asgn true

readyB and asgn false
readyB (also

∅-just) and the decomposition along ReadyA false is an infinite path taking action n false
readyA only (again ∅-

just). It follows that the composition ρ of these five paths is ∅-just. Intuitively this is the case because no
communication is permanently enabled and never taken. In particular, the communication asgn true

readyA is

disabled each time the component ReadyA false does the action n false
readyA instead.

5The CCS process a.0|b.0 has two transitions labelled a, namely a.0|b.0 a−−→ 0|b.0 and a.0|0 a−−→ 0|0. The only difference
between these two transitions is that one occurs before the action b is performed by the parallel component and the other
afterwards. In [21] we formalise a notion of an abstract transition that identifies these two concrete transitions.
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(Pˆs)ys P
α−−→ P′

Pˆs α−−→ P′
Pys

(P t̂)ys

P j
ys

(
∑

i∈I Pi)ys
( j ∈ I )

Pys

(P |Q)ys

Pys , Q
s−−→Q′

P |Q τ−−→ P |Q′
P

s−−→ P′, Qys

P |Q τ−−→ P′ |Q
Qys

(P |Q)ys

Pys

(P\L)ys
(s < L)

Pys

P[ f ]y f (s)

Pys

Ays
(A

def
= P)

Table 2: Structural operational semantics for signals of CCSS

6 CCS with Signals

We would like to prevent such a path to be complete in a CCS model of Peterson’s algorithm. In order

to achieve this, we propose to replace an action such as n false
readyB, which makes the variable busy even if it

is only read, by a state predicate providing its value. This mode of communication is called signalling.
CCS with signals (CCSS) is CCS extended with a signalling operator. Informally, the signalling

operator P ˆs emits the signal s to be read by another process. Signal emission cannot block other
actions. Formally, CCS is extended with a set S of signals, ranged over by s, t , . . . . In CCSS the set
of actions is defined as Act := S ∪· H ∪· {τ}. A relabelling is a function f : (S → S )∪ (H →H )
satisfying f (ā) = f (a). As before it extends to Act by f (τ) = τ.

The class TCCSS of CCSS expressions is defined as the smallest class that includes
• agent identifiers A ∈K ;
• prefixes α.P ;
• (infinite) choices

∑
i∈I Pi ;

• parallel compositions P |Q ;
• restrictions P\L ;
• relabellings P[ f ] ;

• signallings Pˆs

where P,Pi ,Q ∈ TCCSS are CCSS expressions, I an index set, L ⊆A ∪S a set of handshake names and
signals, f an arbitrary relabelling function, and s ∈ S a signal. The new operator ˆ binds as strong as
relabelling and restriction.

The semantics of CCSS is given by the labelled transition relation→ ⊆ TCCSS × Act ×TCCSS and a
predicate y ⊆ TCCSS ×S that are derived from the rules of CCS (Table 1, where α can also be a signal)
and the new rules of Table 2. The predicate Pys indicates that process P emits the signal s, whereas
a transition P

s−−→ P′ indicates that P reads the signal s and thereby turns into P′. The first rule is the
base case showing that a process Pˆs emits the signal s. The second rule models the fact that signalling
cannot prevent a process from making progress. After having taken an action, the signalling process
loses its ability to emit the signal. It is essentially this rule which fixes the read/write problem presented
in the previous section. The two rules in the middle of Table 2 state that the action of reading a signal
by one component in (parallel) composition together with the emission of the same signal by another
component, results in an internal transition τ; similar to the case of handshake communication. Note that
the component emitting the signal does not change through this interaction. All the other rules of Table 2
lift the emission of s by a subprocess P to the overall process. Table 2 can easily be adapted to other
process calculi, hence our extension is not limited to CCS.

We give an example similar to the one at the end of Sect. 2 to illustrate the use of signals.

Example 2 We describe once again a one-variable shared memory system with an infinite reader R and
a single writerW . But this time communication actions nv

x and nv
x are replaced with signals nv

x . The vari-
able x now emits a signal notifying its value, so we have: x true def

= (asgn true
x . x true + asgn false

x . x false)ˆn true
x
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and x false def
= (asgn true

x . x true + asgn false
x . x false)ˆn false

x ; the rest of the example remains unchanged. The
transition system is exactly the same, but now justness guarantees that the variable x will eventually
be set to false. This is in contrast to Ex. 1, where it is not guaranteed that x will eventually be false,
even when assuming justness. More precisely, if only the reader takes actions, x true is now not pro-
gressing because it is emitting a signal only, and then, assuming justness, it must eventually enter into
communication with the writer.

As we have extended CCS with a novel operator, we have to make sure that our extension behaves
‘naturally’, in the way one would expect.

Theorem 1 Strong bisimilarity [19] is a congruence for all operators of CCSS.

Proof. We get the result directly from the existing theory on structural operational semantics, as a result
of carefully designing our language. All rules of Tables 1 and 2 are in the path format of Baeten and
Verhoef [3], and hence the theorem holds [3]. ut
Theorem 2 The operator | is associative and commutative, and the operator ˆ is pseudo-commutative,
i.e. Pˆs t̂ = P t̂ ˆs, all up to bisimilarity.

Proof. Our process algebra with predicates can easily be encoded in a process algebra without, by writing

P
s̄−−→ P for Pys .

On the level of the structural operational semantics, this amounts to letting α range over Act∪{s̄ | s ∈S }
in the rules of Table 1, and changing the first rule of Table 2 into Pˆs s̄−−→ Pˆs. The third rule of Table 2
becomes an instance of the second (with α ∈ Act ∪ {s̄ | s ∈ S }), and the remaining rules of Table 2
become special cases of the rules of Table 1.

Clearly, two processes are bisimilar in the original CCSS iff they are bisimilar in this encoding. Since
the parallel composition of the encoded CCSS is the same as the one of CCS, it is known to be associative
and commutative up to bisimilarity [26].

To prove pseudo-commutativity of ˆ, we note that P ˆs ˆt and P ˆt ˆs have exactly the same outgoing
transitions and signals, thereby being trivially equal up to bisimilarity. ut

Since we extended CCS, we also have to extend our definition of justness. The decomposition of
paths remains unchanged, except that a transition P |Q τ−−→ R can now derive, through the rules of Table 2,
from signal communication. In that case we consider the decomposition along the signalling process
empty, just as if it was an application of the left- or right-parallel composition rule. Because processes
can communicate through signalling, we first introduce the definition of signalling paths. Informally, a
path emits signal s if one component in the parallel composition ends in a state where signal s is activated.
A Y-signalling path is a path where Y is an upper bound on the signals emitted by the path.

Definition 2 The class of Y-signalling paths, for Y ⊆S , is the largest class of paths in TCCS such that
• a finite Y-signalling path ends in a state that admits signals from Y only;
• a Y-signalling path of a process P |Q can be decomposed into an X-signalling path of P and a Z-

signalling path of Q such that Y ⊇ X∪Z ;
• aY-signalling path of P\L can be decomposed into aY∪LS -signalling path of P—here LS :=L∩S

restricts the set L to signals;
• a Y-signalling path of P[ f ] can be decomposed into an f −1(Y )-signalling path of P;
• and each suffix of a Y-signalling path is Y-signalling.

Using this definition, we can adapt the definition of justness of Sect. 5.
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Definition 3 The class of Y-just paths, for Y ⊆H ∪S, is the largest class of paths in TCCSS such that
• a finite Y-just path ends in a state that admits actions from Y only;
• a Y-just path of a process P |Q can be decomposed into a path of P that is X-just and X ′-signalling,

and a path of Q that is Z-just and Z ′-signalling, such that Y ⊇ X∪Z , X ∩ Z̄H = ∅, X ∩ Z ′ = ∅ and
X ′∩ Z = ∅—here Z̄H := {ā | a ∈ Z ∩H };

• a Y -just path of P\L can be decomposed into a Y ∪ L∪ L̄H -just path of P;
• a Y-just path of P[ f ] can be decomposed into an f −1(Y )-just path of P;
• and each suffix of a Y-just path is Y-just.

As before, a path π is just if it is Y -just for some set of blocking actions and signals Y ⊆H ∪S . A just
path π is a-enabled for a ∈H ∪S if a ∈ Y for all Y such that π is Y-just.

The condition on signals in the second item guarantees that a process (0ˆs | s.0)\{s} makes progress.
The encoding in the proof of Theorem 2 does not preserve justness. In Ex. 2, for instance, applying

the operational semantics of Table 2, the path ρR involving infinitely many read actions but no write
action is not just, because its decomposition along x true is finite and asgn false

x -enabled, whereas its de-

composition along W is asgn false
x -enabled; so by the second clause of Def. 3 ρR is not just: there are no

Y , X and Z such that the condition X ∩ Z̄H = ∅ is satisfied. Yet, after applying the encoding in the proof
of Theorem 2, the decomposition along x true becomes infinite and ∅-just, and ρR becomes just. This is
the main reason we did not present the semantics of CCSS in this form from the onset.

7 Peterson’s Mutual Exclusion Protocol—Part II

We now present an implementation of Peterson’s mutual exclusion algorithm in CCSS. We use the same
notation as in Sect. 3, except that actions nv

x and nv
x are replaced with signals nv

x , just as in Ex. 2. Only
the variable processes change, such as TurnA def

= (asgnA
turn .TurnA + asgnB

turn .TurnB)ˆnA
turn; Processes A

and B are unchanged. The protocol rendering is still (A |B |ReadyA false |ReadyB false |TurnA)\L, where
L is the set of all names and signals except noncritA, critA, noncritB, and critB, as before.

In the remainder of this section we prove Peterson’s protocol correct, i.e. safe and live. We include
the proof of safety for completeness, but concentrate on liveness.

Theorem 3 Peterson’s protocol is safe. In terms of Fig. 1, there is no reachable state where A and B
have already executed lines `4 and m4 but have not yet executed `6 or m6.

Proof. We follow the proof by contradiction of Peterson [31]. Suppose both processes succeed the test
at `4 and m4. Let A be the first to pass this test. At that time either readyB was false (meaning that
Process B was between m6 and m2) or turn was set to A. In the first case, readyA will not be set to false
before Process A leaves the critical section and turn is bound to be set to A by Process B before m4 is
executed. So the test at m4 will fail. In the second case, since A is about to enter the critical section, turn
cannot be set to B anymore and readyA is true, so again the test m4 will fail for Process B. ut
Peterson’s protocol satisfies also the liveness property. As mentioned before, this result could not be
proven for the formalisation of the protocol in CCS, assuming justness only.

Theorem 4 Assuming justness, Peterson’s protocol satisfies the liveness property: on each just path,
each occurrence of noncritA is followed by critA (and similarly for B).

Proof. Let π be a just path of the protocol. Since noncritA and noncritB are the only possible blocking
actions, π must be {noncritA,noncritB}-just. If we get rid of all the restrictions we obtain a Y -just path
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of (A | B | ReadyA false | ReadyB false | TurnA) where Y = {noncritA, noncritB} ∪ L ∪ L̄H . Suppose its
decomposition πA along Process A ends somewhere between instructions `1 and `4. Then the decom-
position πReadyA along ReadyA false is also finite since only A can communicate with this process. Using
the CCS rendering from Sect. 3 this statement would be incorrect, since there Process B can constantly
interact with ReadyA false, by reading its value; resulting in an infinite path ReadyA false n false

readyA .
By Def. 3, the path πA must be X-just, and the path πReadyA Z-just, for sets X , Z ⊆Y with X∩ Z̄H = ∅.

Furthermore, asgn true
readyA ∈ Z , since this action is enabled in the last state of πReadyA . Hence asgn true

readyA < X .
Therefore πA cannot end right before instruction `2. As a result, Process A is stuck either right before `3,
or right before `4. In both cases Process B would not be able to pass the test before the critical section
more than once. Indeed, in either case readyA is already set to true, thus Process B must use turn = B

to enter its critical section. But, if trying to enter a second time, it would be forced to set turn to A and
will be stuck. When Processes A and B are both stuck, the path π is finite and an action τ or noncritA
stemming from instruction `3 or `4 is enabled at the end, contradicting, through the first clause of Def. 3,
the {noncritA,noncritB}-justness of π. ut

8 Peterson’s Algorithm for N Processes

In the previous section we presented an implementation in CCSS of Peterson’s algorithm of mutual
exclusion for two processes. In [31], Peterson also presents a generalisation of his mutual exclusion
protocol to N processes. In this section we describe the algorithm and explain which assumptions should
be made on the memory model in order for this protocol to be correct, for N>2. We claim that these
assumptions are somewhat unrealistic.

A pseudocode rendering of Peterson’s protocol is depicted in Fig. 2. In order to proceed to the critical
section, each process must go through N−1 locks (rooms). The shared variable room[i] = j indicates that
process number i is currently in Room j. The shared variable last[j] = i indicates that the last process to
‘enter’ Room j is Process i. A process can go to the next room if and only if it is not the last one to have
entered the room, or if all other processes are strictly behind it. This algorithm is also called the filter
lock because it ensures that for all j, no more than N+1− j processes are in rooms greater or equal than j.
The critical section can be thought of as Room N .

A natural memory model, used in [25], stipulates that memory accesses from different components
can overlap in time, and that a read action that overlaps with a write action of the same variable may
yield any value. Extending this idea, we assume that when two concurrent write actions overlap, any
possible value could end up in the memory. We argue that the algorithm fails to satisfy mutual exclusion
when assuming such a model.

Process i (i ∈ {1, . . . ,N })
repeat forever

`1 noncritical section
`2 for j in 1 . . .N − 1
`3 room[i] := j
`4 last[j] := i
`5 await (last[j] , i∨ (∀k , i, room[k] < j))
`6 critical section
`7 room[i] := 0

Figure 2: Peterson’s algorithm for N processes (pseudocode)
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Suppose there are three processes, A, B and C, and Processes A and B execute `1–`4 more or less
simultaneously. When their instructions `4 overlap, the value C ends up in the variable last[1]—or any
other value different from A and B. Hence they both perform `5, as well as `3–`4 for j=2. Again, the
value C ends up in last[2]. Subsequently, they both enter their critical section, and disaster strikes.

It follows that Peterson’s algorithm for N>2 only works when running on a memory where write
actions cannot overlap in time, or—if they do—their effect is the same as when one occurred before the
other. Such a memory can be implemented by having a small hardware lock around a write action to the
same variable. This entails that one write action would have to wait until the other one is completed. A
memory model of this kind is implicitly assumed in process algebras like CCS(S).

We show that, under such a memory model, Peterson’s algorithm for N>2 does not satisfy liveness,
unless we enrich it with an additional fairness assumption.

To prove this statement, let N = 3 and call the processes A, B and C. We show that (without the
additional assumption) Process A can be stuck at `4 for j=1. Suppose Process A is at this line. Then A
is about to set last[1] to A, but has not written yet. We can imagine the following scenario: Process B
enters Room 1, and sets last[1] to B; then Process C enters Room 1, and sets last[1] to C. This allows B
to proceed to Room 2, then to go in the critical section (because all other processes are still in room 1),
and then to go back to Room 1, setting last[1] to B. This allows C to go to Room 2, to the critical section,
and back to room 1, setting last[1] to C. Next B can enter the critical section again, etc. Hence Processes
B and C can go alternately in the critical section without giving A a chance to set variable last[1]. (The
variable is too busy being written by B and C.) This scenario cannot happen for N = 2 because after B
sets last[1] to B, B is blocked until A sets it to A; so `4 will eventually happen (with progress as a basic
assumption).

As a consequence, in order for Peterson’s algorithm to be live for more than two processes, we must
adopt the additional fairness assumption that if a process permanently tries to write to a variable, it will
eventually do so, even if other processes are competing for writing to the same variable. This property
appears to be at odds with having a hardware lock around the shared variable. Moreover, it cannot be
implemented in CCSS assuming only justness: when two competitive processes try to write the same
variable, nothing guarantees that both will eventually succeed.6 As a result any CCSS-rendering of
Peterson’s algorithm for N processes does not possess the liveness property, unless one makes a fairness
assumption. The problem comes from the fact that the variables last[·] are written by several parallel
processes. Signals only allow a writer to set a variable while it is being read but do not allow multiple
writers at the same time.

We believe that the problem does not come from a lack of expressiveness of CCSS but from the
protocol, which, while not being incorrect in itself, requires a memory model that assumes write actions
to happen eventually, even though simultaneous interfering write actions are excluded; whether this is a
realistic assumption on modern hardware requires further investigation.

9 Lamport’s Bakery Algorithm

In this section we analyse Lamport’s bakery algorithm [25], another mutual exclusion protocol for N

processes. It has the property that processes write to separate variables; only the read actions are shared.
We give a model for this algorithm in CCSS and prove its liveness property, assuming justness only.

6Let us consider a CCSS process (x true |W1 |W2)\L where processes W1 and W2 are infinite writers (Wi
def
= asgn false

x .Wi ) and
L is the set of communication names. A path where W1 always succeeds, meaning that the decomposition along W2 is empty,
is just because the latter decomposition is {asgn false

x }-just and all the other decompositions ∅-just.
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Process i (i ∈ {1, . . . ,N })
repeat forever

`1 noncritical section
`2 choosing[i] := true
`3 number[i] := 1 + max(number[1], . . . ,number[N]);
`4 choosing[i] := false
`5 for j in 1 . . .N
`6 await (choosing[j] = false)
`7 await (number[j] = 0∨ (number[i], i) ≤ (number[j], j))
`8 critical section
`9 number[i] := 0

Figure 3: Lamport’s bakery algorithm for N processes (pseudocode)

A pseudocode rendering of Lamport’s bakery algorithm is depicted in Fig. 3. Lines 2–4 are called
the doorway and lines 5–7 are called the bakery. In the doorway each process ‘takes a ticket’ that has
a number strictly greater than all the numbers from the other processes (at the time the process reads
them). The variable choosing[i] is a lock that makes line 3, which is usually implemented by a simple
loop, more or less ‘atomic’. To ensure that the holder of the lowest number is next in the critical section,
each process goes through a number of locks in the bakery (Lines 5–7). When process i enters the critical
section, the value it has read for number[j], if not 0, is greater or equal than its own number[i], for all j.

We now model this algorithm in CCSS. As usual, we define one agent for every pair (variable,value).
The variables choosing can take values true or false, and number any non-negative value. The modelling
of a Boolean variable is addressed in Ex. 1, and for the integer variables we define:

number[i]k def
=

(∑

l∈N
asgn l

number[i] . number[i]l
)
ˆnk

number[i] .

Each process i begins with a non-critical section before entering the doorway.

Pi
def
= noncrit[i] . asgn true

choosing[i] . doorway[i]1
0

Line 3 encodes several read actions, an arithmetic operation, and an assignment in a single step.
In CCS(S) (and most programming languages) this command is modelled by several atomic steps, e.g.
by the simple loop m := 0; for j in 1 . . .N {m := max(m,number[ j])}; number[i] := 1 +m. We define
processes doorway[i]j

m that represent the state of being in the doorway for-loop for a process i with loop
index j and local variable m storing the current maximum.

doorway[i]j
m

def
=

(∑

k>m

nk
number[j] . doorway[i]j+1

k

)
+

(∑

k≤m

nk
number[j] . doorway[i]j+1

m

)
, j ∈ {1, . . . ,N}

We then define doorway[i]N+1
m , which represents the termination of the for-loop by

doorway[i]N+1
m

def
= asgnm+1

number[i] . asgn false
choosing[i] . bakery[i]1

m+1 .

The process bakery[i]j
m represents the state of being in the bakery for-loop for process i with loop index

j and number[i] = m. For j ∈ {1, . . . ,N }:

bakery[i]j
m

def
= n false

choosing[j] .
(
n0

number[j] +
∑

k>m∨(k=m∧j≥i)

nk
number[j]

)
. bakery[i]j+1

m .
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Finally, bakery[i]N+1
m is the exit of the bakery for-loop, granting access to the critical section:

bakery[i]N+1
m = crit[i] . asgn0

number[i] .Pi

Our bakery algorithm is the parallel composition of all processes Pi , in combination with the shared
variables choosing[i] and number[i], restricting the communication actions:

( ∣∣∣∣
i∈{1, ... ,N }

(Pi | choosing[i]false | number[i]0)
)
\L ,

where L is the set of all names and signals except noncrit[i] and crit[i].
We now prove the liveness of (our rendering of) the algorithm, given that it is straightforward to

adapt Lamport’s proof of safety of the pseudocode [25] to CCSS. Since every process writes in its own
variables, no process can be stuck because of concurrent writing. Therefore, the only possibility for a
process (call it A) to be stuck is when trying to read a variable, so at `3, `6 or `7.

If Process A is stuck at `3, trying to read number[B] for some process B, B will get stuck at `6 for
j=A, because choosing[A] remains false. So, Process B cannot be perpetually busy writing number[B],
and A cannot be stuck at `3.

If A is stuck at `6, then from the point of view of A, some process B is all the time in the doorway.
It follows from the argument above that B cannot be stuck in one visit to its doorway, so it must be a
repeating series of visits. This is impossible because when A tries to read choosing[B] for the first time,
the value of number[A] is set and will not change anymore, so if B goes back to the doorway, it is bound
to set number[B] > number[A] and will not be able to enter the critical section anymore.

Suppose that Process A is stuck at `7. Any process B that enters the doorway will receive a number[B]
strictly larger than number[A] and be stuck in the bakery. So if A is stuck, eventually all processes are
stuck at `7, which is impossible since every finite lexicographically ordered set has a minimal element.

10 Conclusion, Related Work and Outlook

This paper presents a minimal extension of CCS in which Peterson’s mutual exclusion protocol can be
modelled correctly, using a justness assumption only. The signalling operator allows processes to emit
signals that can be received by other processes. The signalling process is not blocked by the emission of
the signal, which means that its actions are in no way postponed or affected by other processes reading
the signal. This property is crucial to correctly model mutual exclusion.

Our process algebra, CCS with signals, is strongly inspired by, and can be regarded as a simplification
of, Bergstra’s ACP with signals [4]. The idea of a signal as a predicate on states, rather than a transition
between states, stems from that paper. However, the non-blocking nature of signals was not explored by
Bergstra, who writes “The relevance of signals is not so much that process algebra without signals lacks
expressive power”. This point is disputed in the current paper.

CCS with signals is not the first process algebra with explicitly non-blocking read actions. In [10]
Corradini, Di Berardini & Vogler add a similar operator to PAFAS [12], a process algebra for modelling
timed concurrent systems. The semantics of this extension is justified in [11]. They show [10] that this
enables the liveness property of Dekker’s mutual exclusion algorithm [13, 15], modelled in PAFAS, when
assuming fairness of actions, and in [8] they establish the same for Peterson’s algorithm, while showing
that earlier mutual exclusion algorithms by Dijkstra [14] and Knuth [24] lack the liveness property under
fairness of actions. Fairness of actions is similar to our notion of justness—although formalised in a
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quite different way—except that all actions are treated as being non-blocking. The notion of time plays
an important role in the formalisation of the results in [10, 8], even if it is not used quantitatively. Our
process algebra can be regarded as a conceptual simplification of this approach, as it completely abstracts
from the concept of time, and hence is closer to traditional process algebras like CCS and CSP.

The accuracy of our extension depends highly on which memory model is considered as realistic. It
is well known that in weak or relaxed memory models, mutual exclusion protocols like Peterson’s or the
bakery algorithm do not behave correctly; when employing a weak memory model, mutual exclusion is
handled on the hardware layer only—this is not covered here. An extremely plausible memory model
allows parallel non-blocking writing, but admits any value being written when two parallel write actions
overlap. This memory model is compatible with the bakery algorithm, and with Peterson’s algorithm for
two processes, but—as we show—not for Peterson’s algorithm with N≥3 processes. Instead one needs
a form of sequential consistency, assuming that parallel write actions, or a parallel read/write, behave as
if they are executed in either order.

When postulating sequential consistency, it is plausible to assume some kind of mutual exclusion
between write actions being implemented in hardware. This in turn allows the possibility of a write
action being delayed in perpetuity because other processes are writing to the same variable. Similarly,
read actions could be blocked by a consistent flow of write actions. A third type of blocking is that write
actions can be obstructed by read actions. However, this kind of blocking is questionable; it could be
that during a parallel read/write the write action wins, and only the read action gets postponed.

When assuming all three kinds of blocking, the CCS rendering of mutual exclusion protocols—
illustrated in Sect. 3—is fully accurate, and by [20] we conclude that no such protocol can have the
intended liveness property. When disallowing write actions being blocked by read actions, but allow-
ing write/write blocking, we get the modelling in CCSS. Using CCSS, we verified the correctness of
the bakery algorithm, and Peterson’s algorithm for two processes, whereas Peterson’s for N > 2 fails
liveness. The latter protocol becomes correct if we assume sequential consistency without any kind of
blocking. Whether this is a realistic memory model on modern hardware needs further investigation.
Regardless, we conjecture that such a memory can be modelled in an extension of CCSS with broadcast
communication, i.e. the combination of the process algebras presented here and in [21].

The liveness property of Dekker’s algorithm, when assuming merely justness, or fairness of ac-
tions, requires not only non-blocking reading, but also that repeated assignments to a variable x of the
same value cannot block the reading of x [10]. This assumption can be modelled in CCSS, by defining
readyA of Ex. 1 by x true def

= (asgn false
x . x false)ˆn true

x and x false def
= (asgn true

x . x true)ˆn false
x , and replacing write

actions asgnv
x by (asgnv

x + nv
x ). Alternatively, a pseudocode assignment x := v could be interpreted as

if x , v then x := v fi.
Although mutual exclusion protocols cannot be modelled in standard Petri nets—when not assuming

fairness—[22, 33, 20], it is possible in nets extended with read arcs [33]. This opens the possibility of
interpreting CCSS in terms of nets with read arcs, whereas an accurate semantics of CCSS in terms of
standard nets is impossible. A read arc from a place to a transition requires the place to be marked for the
transition be enabled, but the token is not consumed when the transition is fired. This behaviour really
looks like signalling, so we conjecture that a read-arc net semantics of CCSS is fairly straightforward.

Finally, the definition of justness appears complicated because it includes the decomposition of paths.
In order to compute if a path (an object from the semantics) is just or not just, we investigate the syntactic
shape of the states on that path. It could be that the semantic object—the labelled transition system—is
not well adapted to the problem of justness. Giving a semantics to CCSS that inherently includes the
decomposition of paths—inspired by [6, 7, 1, 27]—could be an interesting idea for future research.
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In this work, we develop a generalization of Hennessy-Milner Logic (HML) for Generalized Syn-
chronization Trees (GSTs) that we call Generalized Hennessy Milner Logic (GHML). Importantly,
this logic suggests a strong relationship between (weak) bisimulation for GSTs and ordinary bisim-
ulation for Synchronization Trees (STs). We demonstrate that this relationship can be used to define
the GST analog for image-finiteness of STs. Furthermore, we demonstrate that certain maximal
Hennessy-Milner classes of STs have counterparts in maximal Hennessy-Milner classes of GSTs
with respect to GST weak bisimulation. We also exhibit some interesting characteristics of these
maximal Hennessy-Milner classes of GSTs.

1 Introduction

In the context of discrete systems modeled as Synchronization Trees (STs), Hennessy and Milner first
noticed a relationship between bisimulation and a simple modal logic, subsequently to be known as
Hennessy-Milner logic (HML) [13]. In particular, they observed that HML characterizes bisimulation
within the class of image-finite STs in the following sense: two image-finite STs are bisimilar if and only
if they satisfy exactly the same HML formulas. Subsequent to Hennessy and Milner’s original work,
HML has likewise been shown to characterize bisimulation within other classes of STs (though not the
class of all STs [16]). Indeed, any class of STs for which modal equivalence implies bisimulation is
known as a Hennessy-Milner class (HM class), and a number of maximal ones have been exhibited [14].

Such characterizations of bisimulation have significant ramifications for the verification of system
properties: if two systems belong to the same HM class, then they can be checked for bisimulation
equivalence by checking HML formulas instead. In addition, if two such systems are not bisimilar, then
an HML formula can bear witness to this lack of bisimilarity [2]. For a simple logic such as HML, this is
a considerable advantage. Moreover, the existence of maximal HM classes is particularly important in the
study of STs and process algebra, given the inherent compositionality of those objects. In particular, it is
useful to know which operations preserve membership in a maximal HM class; this has been considered
for some cases in [14].

Recently, the authors have proposed Generalized Synchronization Trees (GSTs) [9] as a flexible mod-
eling framework for non-discrete systems such as continuous or hybrid systems. Despite their broader
applicability, GSTs have many similarities to STs: elegant composition operators between GSTs are
plentiful, and there are well defined notions of bisimulation (see [9]). Thus, GSTs are natural candidates
for the treatment of both HML-like logics and HM classes, especially with a view to studying the com-
position of continuous and hybrid systems. This paper launches such a study and makes three crucial

∗This work was supported by NSF grant CNS-1446665.
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Sys1 →X Sys2 : Sys2 simulates Sys1 (w.r.t. simulation notion X)
Sys1 ↔X Sys2 : Sys1 and Sys2 are bisimilar (w.r.t. simulation notion X)

s ↔X t : States (or worlds, nodes) s and t are bisimilar (w.r.t. simulation notion X)
Sys1 ≈Y Sys2 : Sys1 and Sys2 satisfy the same formulas of logic Y

s ≈Y t : States (or worlds, nodes) s and t satisfy the same formulas of logic Y

Table 1: Notation for simulation, bisimulation and modal equivalence.

contributions on the topic of modal logic for non-discrete systems: first, we define a novel generalization
of HML that has semantic parity with trajectories in GSTs; second, we use this logic to define a notion
of image finiteness for GSTs; and third, we exhibit a partial characterization of maximal HM classes
in the context of our generalized HML. The third contribution is particularly novel, since there seem to
be no results at all about maximal HM classes for generic hybrid system models, much less results in a
framework as flexible and compositional as GSTs. Since GSTs can exhibit infinite – and even continuous
– non-determinism, they offer a particularly rich setting in which to explore the structure of HM classes.

There are other results in the hybrid systems literature that relate bisimulation to modal logics (see
e.g. [4]), but these results typically focus on establishing that bisimulation preserves the satisfaction of
formulas from some modal logic. Almost none consider the problem of specifying when modal equiv-
alence implies bisimilarity, i.e. the identification of Hennessy-Milner classes. The few papers that do
consider the problem of identifying HM classes seem to be concerned with probabilistic systems: see
[5, 6, 7, 17, 8, 3, 1] for example. However, in most of these papers, the following quote is emblematic of
the source of these results: “... the probabilistic systems we are considering, without explicit nondeter-
minism, resemble deterministic systems quite closely, rather than nondeterministic systems” [5]. In other
words, these papers typically end up with something like an image-finite assumption, and that forms the
basis of their HM classes. On the other hand, the papers that do not have an image-finiteness assumption
([17, 8]) always consider more complicated logics than HML, and do not address questions of maximal
HM classes.

2 Background

This section describes several foundational results that will be used subsequently. The first subsection
contains background material on GSTs, including a review of the relevant notions of bisimulation for the
same. The second subsection contains background material on HML and Hennessy and Milner’s result
for image-finite processes. The third subsection describes some maximal Hennessy-Milner classes over
Kripke structures [14] and some necessary preliminaries on the canonical model [10]. Table 1 describes
some common notation that will be used throughout this section and the rest of the paper.

2.1 Generalized Synchronization Trees

This section summarizes the theory of GSTs as presented in [9]; the interested reader is referred to that
reference for more details.

GSTs extend Milner’s Synchronization Trees (STs) via a generalized notion of tree. In particular, the
essential element of a GST is the tree partial order, a well known structure in the mathematical literature
(see [15], for example).
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Definition 1 (Tree [15, 9]). A tree is a triple 〈P,�, p0〉, where 〈P,�〉 is a partial order, p0 ∈ P, and the
following hold.

1. p0 � p for all p ∈ P (p0 is called the root of the tree)

2. For any p ∈ P the set [p0, p], {p′ ∈ P : p0 � p′ � p} is totally ordered by �.

In this definition of a tree, there is no inherent notion of edge, or “discrete” transition, so unlike STs
external interactivity cannot be captured by labeling edges; such action labels need a different encoding.
The definition of GSTs below suggests just such a scheme.

Definition 2 (Generalized Synchronization Tree [9]). Let L be a set of labels. Then a Generalized
Synchronization Tree (GST) is a tuple 〈P,�, p0,L 〉, where:

1. 〈P,�, p0〉 is a tree in the sense of Definition 1; and

2. L ∈ P\{p0}→ L is the labeling function (may be partial).

Intuitively, labels in a GST are affixed to nodes in the tree. If the tree is discrete, it can be converted
into an ST by moving the node labels onto the incoming edge from the nodes parent (note that roots are
not labeled in GSTs, so this operation is well-defined).

Another consequence of a lack of discrete transitions is that bisimulation must be defined differently
than for STs. Specifically, bisimulation between GSTs is defined in trajectories, which are totally ordered
sets of nodes in a GST that play roughly the same role as transitions (or sequences of transitions) in
discrete bisimulation.

Definition 3 (Trajectory [9]). Let 〈P,�, p0,L 〉 be a GST, and let p ∈ P. Then a trajectory from p is
either:

1. the set (p, p′], {p′′ ∈ P : p≺ p′′ � p′} for some p′ � p, or

2. a (set-theoretic) maximal linear subset P′ ⊆ P with the property that for all p′ ∈ P′, p′ � p.

Trajectories of the first type are called bounded, while those of the second type are called (potentially)
unbounded.

To account for the labels on the nodes of a trajectory, we define a notion of order equivalence to
parallel the notion of identically labeled transitions in a ST:

Definition 4 (Order Equivalence [9]). Let 〈P,�P, p0,LP〉 and 〈Q,�Q,q0,LQ〉 be GSTs, let Tp,Tq be
trajectories from p ∈ P and q ∈ Q respectively. Then Tp and Tq are order-equivalent if there exists a
bijection λ ∈ TP→ TQ such that:

1. p1 �P p2 if and only if λ (p1)�Q λ (p2) for all p1, p2 ∈ TP, and

2. LP(p) = LQ(λ (p)) for all p ∈ TP

When λ has this property, we say that λ is an order equivalence from TP to TQ.

We now recall the two notions of simulation from [9]; corresponding notions of bisimulation can be
defined in the obvious way [9].

Definition 5 (Weak Simulation for GSTs1 [9]). Let G1 = 〈P,�P, p0,LP〉 and G2 = 〈Q,�Q,q0,LQ〉 be
GSTs. Then R ⊆ P×Q is a weak simulation from G1 to G2 if, whenever 〈p,q〉 ∈ R and p′ � p, then
there is a q′ � q such that:

1. 〈p′,q′〉 ∈ R, and

1“Weak” is used here only as a relative term; it does not refer to the inclusion of τ transitions.
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2. Trajectories (p, p′] and (q,q′] are order-equivalent.
We say G1→wG2 if there is a weak simulation R from G1 to G2 with 〈p0,q0〉 ∈ R.
Definition 6 (Strong Simulation for GSTs [9]). Let G1 = 〈P,�P, p0,LP〉 and G2 = 〈Q,�Q,q0,LQ〉 be
GSTs. Then R⊆P×Q is a strong simulation from G1 to G2 if, whenever 〈p,q〉 ∈R and Tp is a trajectory
from p, there is a trajectory Tq from q and bijection λ ∈ Tp→ Tq such that:

1. λ is an order equivalence from Tp to Tq, and

2. 〈p′,λ (p′)〉 ∈ R for all p′ ∈ Tp.
We write G1→sG2 if there is a strong simulation R from G1 to G2 with 〈p0,q0〉 ∈ R.

2.2 Hennessy-Milner Logic and a Hennessy-Milner Class

2.2.1 Hennessy-Milner Logic

Hennessy-Milner Logic is defined as follows; note the lack of atomic propositions.
Definition 7 (Hennessy-Milner Logic (HML) [13]). Given a set of labels, L, Hennessy-Milner Logic
(HML) is the set of formulas ΦHML(L) specified as follows, where ` ∈ L:

ϕ :=> | ¬ϕ | ϕ1∧ϕ2 | 〈`〉ϕ. (1)

In [13], the semantics of this logic are defined in following familiar way over STs.
Definition 8 (Semantics of HML [13]). A satisfaction relation of HML for a set of STs P is a set
|=⊆P×ΦHML(L) such that:

1. p |=> for all p ∈P;

2. p |= ¬ϕ if and only if p ��|= ϕ;

3. p |= ϕ1∧ϕ2 if and only if p |= ϕ1 and p |= ϕ2; and

4. p |= 〈l〉ϕ if and only if there exists a p′ such that p l→ p′ and p′ |= ϕ .

Here p l→ p′ means p′ is a subtree of p whose root is a child of the root of p, with the edge connecting
the roots labeled by l.
Remark 1. We will freely avail ourselves of usual derived operators such as ⊥, ∨,→ and [`].

2.2.2 Bisimulation and a Hennessy-Milner Class

Hennessy and Milner noticed that STs satisfying the same HML formulas need not be bisimilar; i.e.
p≈HML q ��⇒ p ↔ q in general [13]. Nevertheless, they exhibited a class of STs for which HML modal
equivalence does imply bisimilarity: that is the class of image-finite STs.
Definition 9 (Image-Finite Process [13]). A ST p ∈P is said to be image-finite if for each subtree q of
p (including p itself) and each label ` ∈L , the set {q′ : q `→ q′} is finite.

Hennessy and Milner proved the following theorem.
Theorem 1 (Image-Finite Hennessy-Milner Theorem [13]). Let p and q be any two image-finite STs.
Then

p ↔ q⇐⇒ p≈HML q. (2)

Remark 2. Any theorem with a conclusion of the form (2) is called a Hennessy-Milner Theorem. Like-
wise, any class of STs (or systems, Kripke structures, etc.) for which a Hennessy-Milner Theorem can be
exhibited is called a Hennessy-Milner class.
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2.3 The Canonical Model and (Maximal) Hennessy-Milner Classes

Since Hennessy and Milner’s work [13], other Hennessy-Milner classes have been exhibited. In particu-
lar, Visser, via Hollenberg [14], has generalized the idea of a Hennessy-Milner class to Kripke structures,
and exhibited certain maximal Hennessy-Milner classes of Kripke structures. This section describes the
characterization of these classes.

As a prelude, we introduce the following familiar definitions of modal logic, Kripke structure and
bisimulation between Kripke structures.

Definition 10 (Modal Logic [10]). By a modal logic, we mean formulas constructed as in Definition 7
but with the addition of propositional variables (atomic propositions). The set of formulas with a set of
propositional variables Θ and a set of labels L is denoted by ΦΘ(L).

Definition 11 (Kripke structure [10, 14]). A Kripke structure of a set of labels L and a set of propositional
variables Θ is a tuple S = (S,{R` ⊆ S×S : ` ∈ L},V ) where

• S is the set of states (or worlds);

• for each ` ∈ L, R` ⊆ S×S is a transition relation for label `; and

• V : Θ→ 2S is a function that maps propositional variables to sets of states.

Definition 12 (Satisfaction relation for a Kripke structure). Given a Kripke structure S= (S,{R`⊆ S×S :
` ∈ L},V ), a satisfaction relation |=⊆ S×ΦΘ(L) is defined as in Definition 7 with the addition that for
any θ ∈Θ, s |= θ if and only if s ∈V (θ).
Definition 13 (Bisimulation between Kripke structures). Given two Kripke structures S and T, we say
that s ∈ S and t ∈ T are bisimilar or s ↔K t if there is a bisimulation relation ∼ such that s ∼ t, and for
all s′ ∈ S, t ′ ∈ T , and θ ∈ Θ, s′ ∼ t ′ implies s′ |= θ ⇔ t ′ |= θ . Bisimulation between Kripke structures is
defined in the obvious way.

2.3.1 The Canonical Model for a Modal Logic

The so-called canonical model – called the Henkin model in [14] – is a special Kripke structure that
is one of the most important tools in the study of (normal) modal logic(s). In the canonical model
states (or worlds) are defined in terms of the modal formulas that they satisfy. In our context it has an
important connection to the maximal Hennessy-Milner classes we will consider; see Subsection 2.3.2.
This subsection is meant to be a summary of the relevant material in [10]; the full details can be found
therein.

In order to define the canonical model, we must first establish certain consistency criteria that we
will enforce on any “reasonable” set of formulas. Any such “reasonable” set of formulas will (somewhat
confusingly) be called a logic.

Definition 14 (Logic [10]). A set of modal formulas Λ⊆ΦΘ(L) is called a logic if it satisfies:

1. Λ contains all of the tautologies: that is all of the formulas which are true irrespective of how we
assign truth values to modal sub-formulas and propositional variables; and

2. Λ is closed under modus ponens: if ϕ1 ∈ Λ and ϕ1→ ϕ2 ∈ Λ2, then ϕ2 ∈ Λ.

Definition 15 (Λ-Consistent Set of Modal Formulas [10]). Given a logic Λ ⊆ ΦΘ(L), a set of modal
formulas Γ ⊆ ΦΘ(L) is said to be Λ-consistent if there is no formula of the form ϕ0 → (ϕ1 → (· · · →
(ϕn→⊥) . . .) in Λ, where ϕ0, . . . ,ϕn ∈ Γ.

2In terms of HML, ϕ1→ ϕ2 is shorthand for ¬(ϕ1∧¬ϕ2).
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Definition 16 (Λ-maximal set of formulas [10]). Given a logic Λ, a set of formulas Γ⊆ΦΘ(L) is said to
be Λ-maximal if it satisfies the following two properties:

1. Γ is Λ-consistent; and

2. for all ϕ ∈ΦΘ(L), either ϕ ∈ Γ or ¬ϕ ∈ Γ.

Lemma 1 (Lindenbaum’s Lemma [10]). Given a logic Λ and a Λ-consistent set of formulas Γ, there
exists a Λ-maximal set of formulas Γ0 ⊆ΦΘ(L) such that Γ⊆ Γ0.

Corollary 1 (The set of maximal Λ-consistent sets of formulas is non-empty [10]). Given a logic Λ, let
SΛ denote the set of Λ-maximal sets of formulas. Then SΛ is non-empty.

For our purposes, Corollary 1 tells us that the set of maximally consistent sets of formulas is non-
empty, and hence, can be used as the set of worlds for the canonical model. The next step in the con-
struction of the canonical model is to define the transitions between these states; these must ensure that
a state – a Λ-maximal set of formulas – satisfies a modal formula if an only if that formula is an element
of the set. This desirable property – called the “Henkin property” in [14] – is the essence of the value of
the canonical model. It turns out that some additional conditions must be imposed on a logic Λ before
transitions can be defined between Λ-maximal sets of formulas in such a way that the Henkin property
holds.

Definition 17 (Normal Logic [10]). A logic Λ is normal if it satisfies:

1. for all ϕ1,ϕ2 ∈ΦΘ(L) and ` ∈ L, the formula [`](ϕ1→ ϕ2)→ ([`]ϕ1→ [`]ϕ2) is in Λ;3

2. for all ϕ ∈ Λ and ` ∈ L, [`]ϕ ∈ Λ.

With this definition in hand, we can define the canonical model.

Definition 18 (Canonical (Henkin) Model [10, 14]). Let Λ⊆ΦΘ(L) be a normal logic. Then the canon-
ical model is the Kripke structure CΛ = (SΛ,{RΛ

` : ` ∈ L},V Λ) defined as follows:

• SΛ is the set of states (worlds);

• for each ` ∈ L, the transition relation RΛ
` ⊆ SΛ× SΛ is defined such that sR`t if and only if ϕ ∈ t

implies that 〈`〉ϕ ∈ s.

• the valuation V Λ : Θ→ SΛ is defined such that V (p) = {s ∈ SΛ : p ∈ s}.
Theorem 2 (The Canonical Model Satisfies the Henkin Property [10, 14]). For any state s in the canon-
ical model CΛ and any formula ϕ ∈ΦΘ(L): s |= ϕ ⇐⇒ ϕ ∈ s (the aforementioned Henkin property).

2.3.2 Hennessy-Milner Classes for Kripke Structures

It is important to note that in Hennessy and Milner’s definition of image-finite STs, all subtrees must be
image-finite: in other words, the set of image-finite STs is closed under subtrees. Thus, one could think
about generalizing Theorem 1 by examining when modal equivalence implies bisimulation for a larger
class of STs that is closed under subtrees. The following definition captures that spirit in the context of
Kripke structures, but it does so without insisting on image-finiteness.

Definition 19 (Visser/Hollenberg Hennessy-Milner Property [14]). Let H be a set of Kripke structures.
H is said to satisfy the Visser/Hollenberg Hennessy-Milner Property (VHHM property) with respect to
ΦΘ(L) if for any two Kripke structures S,T ∈ H and any two states s′ ∈ S and t ′ ∈ T

s′ ↔ t ′ ⇔ s′ ≈ΦΘ(L) t ′. (3)

3Recall that [`]ϕ = ¬〈`〉¬ϕ .
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Remark 3. We use the terminology VHHM property to distinguish this property from another definition
of Hennessy-Milner Property in the literature, which considers only modal equivalence and bisimulation
between initial states (the points of pointed Kripke structures). For example, this definition is used in
[12]. However, we note that a number of other sources use what we call the VHHM property; see [11]
for example.
Definition 20 (Visser-Hollenberg Hennessy-Milner Class). We say that any set of Kripke structures that
satisfies the Visser/Hollenberg Hennessy-Milner Property is a Visser-Hollenberg Hennessy-Milner class
(VHHM class).

Definition 19 seems innocuous, but in fact the VHHM property is a nontrivial strengthening of the
HM property described in Remark 3. To the best of our knowledge, there are no results in the literature
that compare VHHM classes with this alternate definition of HM classes. We will revisit this in Section
5.2 where we exhibit a Kripke structure that fails to be a member of any VHHM class because it fails to
satisfy the conditions of Definition 19.

Importantly, though, there is an elegant characterization of maximal VHHM classes due to Visser
and reported in [14]. We first define the notion of a “Henkin-like” model [14].
Definition 21 (Henkin-like model [14]). Let CK be the canonical model associated with the smallest
normal logic K. Then a Henkin-like model is any Kripke structure HCK = (SK ,{RHK

` ⊆ RK
` : `∈ L},V K)

that satisfies the Henkin property (see Theorem 2 and the discussion preceding it).
Thus, a Henkin-like model is simply the canonical model with transitions removed in such a way that

a state satisfies a formula if and only that formula is an element of the state (recall that the states in CK

are sets of formulas). Henkin-like models form the basis for maximal VHHM classes in the following
sense.
Theorem 3 (Maximal VHHM Classes [14]). Let HCK be any Henkin-like model, and let S(HCK) be the
set of generated sub-models of HCK . Then

1. The set of all Kripke structures that are bisimilar to a model in S(HCK) is a maximal VHHM class;
that is it is maximal in a set-theoretic sense. We denote such a class by BS(HCK) .

2. Let H be any set of Kripke structures that satisfies the VHHM property. Then H ⊆ BS(HCK) for
at least one Henkin-like model HCK .

The basic idea behind Theorem 3 is this: a set of models BS(HCK) is necessarily a VHHM class
because modal equivalence is a bisimulation relation over a single Henkin-like model (each maximal set
of formulas is satisfied only by its own unique state in the model). Thus, Henkin-like models effectively
“canonicalize” different VHHM classes because a given Henkin-like model associates a particular transi-
tion structure with each and every (maximal) set of formulas that can be satisfied in any Kripke structure
(K is sound and complete with respect to Kripke structures).

Maximal VHHM classes are related to the VHHM class of image finite models in the following way.
Theorem 4 (Image Finite Kripke structures [14]). Each maximal VHHM class of Theorem 3 contains
every Kripke structure that is bisimilar to an image finite Kripke structure. Hence, each maximal VHHM
class contains all image finite Kripke structures, and the class of image finite Kripke structures is itself a
VHHM class.

3 Generalized Hennessy-Milner Logic

In this section, our aim is to define a logic akin to HML but with GSTs as the intended models. We
proceed by first defining the syntax and then the semantics of our logic.
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3.1 HML for GSTs: Syntax

Our generalization of HML will be mostly recognizable, but the 〈 〉 modality requires some significant
modifications. In particular, recall that in weak bisimulation for GSTs, transitions are replaced by trajec-
tories (see Definition 3) and labels by functions over trajectories. To capture this notion, we generalize
the way we label the 〈 〉 modality.

Definition 22 (Domain of modalities). A domain of modalities is a totally ordered set, (I ,�I ), together
with a set of labels L.

Intuitively, a domain of modalities will be used to define the trajectory-like structures appearing in
our modalities. However, we eventually need such a domain of modalities to satisfy some additional
properties to ensure certain formulas exist. Hence, we provide the following definitions.

Definition 23 (Spanned by an interval). Given a totally ordered set I , we say a subset I ⊆I is spanned
by an interval, if there exists an interval [i0, i1] = {i ∈ I : i0 �I i �I i1} such that I ⊆ [i0, i1] and
{i0, i1} ⊂ I; this is equivalent to saying that I contains its least upper bound (LUB) and greatest lower
bound (GLB). We say that i0 and i1 are the left and right endpoints of I, respectively, and they will be
denoted by ↼I and ⇀I , respectively.

Definition 24 (Left-open subset). A subset I of a totally ordered set I is left open if there exists a set
I′ ⊆I spanned by an interval such that I = I′\{↼I′ }
Definition 25 (Closed under left-open concatenation). We say that a totally ordered set I is closed
under left-open concatenation if for any two left-open subsets I1, I2 ⊆ I , there exists another left-
open set I3 such that there is an order preserving bijection from I3 to the totally ordered set I1; I2 =
({1}× I1)∪ ({2}× I2) under the lexicographic ordering. A totally ordered set I that is closed under
left-open concatenation will be denoted Ī .

Example 1. Any totally ordered set that can be embedded in an order-preserving additive group structure
is closed under left-open concatenation. N, R and R×N are examples.

Remark 4. Henceforth, we will work exclusively with total orders that are closed under left-open con-
catenation when we construct a domain of modalities.

Definition 26 (Modal execution). Let (Ī ,L) be a domain of modalities. A modal execution is a map
from a left-open subset of Ī to the set of labels, L. The set of modal executions over (Ī ,L) will be
denoted M (Ī ,L).

The notion of a modal execution is almost usable as a label for our generalized diamond modalities,
but it is too tied to the specific domain of the function in question. This will prove cumbersome in the
future, so we restrict ourselves to equivalence classes of such modalities.

Definition 27 (Order Equivalent Modal Executions). Let E1 : I1 → L and E2 : I2 → L be two modal
executions from a domain of modalities (Ī ,L). We say that E1 is order equivalent to E2 if there exists an
order preserving bijection λ : I1→ I2 such that E1(i) = E2(λ (i)) for all i ∈ I1. If E1 is order equivalent
to E2, then we write E1

o.e∼ E2. This definition parallels Definition 4 for GST trajectories.

Theorem 5 (Order Equivalence is an equivalence relation). o.e.∼ is an equivalence relation between modal
executions. We denote by the equivalence class {E ′ ∈M (Ī ,L) : E o.e.∼ E ′} by |E|, and the set of such
equivalence classes by |M (Ī ,L)|.
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Definition 28 (Set of Generalized HML (GHML) formulas). Given a domain of modalities (Ī ,L), the
set of Generalized HML (GHML) formulas is the set of formulas, ΦGHML(Ī ,L), inductively defined
according to the following rules:

ϕ := > | ¬ϕ | ϕ1∧ϕ2 | 〈〈|E|〉〉ϕ (4)

where |E| is an equivalence class of modal executions over the domain of modalities (Ī ,L).

The formal semantics of this logic will be presented in next subsection within Definition 31.
We have chosen to define our logic without propositional variables in order to mirror Hennessy and

Milner’s original work. However, in Section 5 we will consider a modal logic with a syntax based on
Definition 28, and so we describe here such a modal logic.

Definition 29 (GHML Modal Logic). A GHML modal logic is a modal logic with all of the connectives
from Definition 28 plus propositional variables. If Θ is the set of propositional variables, then we denote
the set of these formulas by ΦGHML-Θ(Ī ,L).

A number of the proof theoretic results from Section 2.3.1 apply equally well to a GHML modal
logic: the definition of a logic (Definition 14), the definition of Λ-consistency and the definition of Λ-
maximality all apply directly to a GHML modal logic. On the other hand, Lindenbaum’s lemma (Lemma
1) requires a different proof because of the multiplicity of modalities. Nevertheless, it is still true, as the
following theorem asserts.

Theorem 6 (Λ-maximal sets of GHML formulas). Let Λ ⊆ ΦGHML-Θ(Ī ,L) be a logic, and let Γ ⊆
ΦGHML-Θ(Ī ,L) be a Λ-consistent set of formulas. Then there exists a Λ-maximal set Γ0⊆ΦGHML-Θ(Ī ,L)
such that Γ⊆ Γ0.

Proof. Because the collection of GHML modal logic formulas is a set, this is a straightforward applica-
tion of Zorn’s lemma.

3.2 HML for GSTs: Semantics

We define the semantics of GHML for a GST model G in terms of the set of the sub-GSTs of G; because
each GST is itself defined in terms of sets, we may soundly define the following notion of a sub-GST
rooted at a node.

Definition 30 (Sub-GST rooted at a node). Let G = (P,�, p0,L ) be a GST. We let G|p denote the sub-
GST of G rooted at p, i.e. G|p , ({p′ ∈ P|p′ � p},�, p,L ).

Now we can formally define the semantics of the generalized HML formulas defined above.

Definition 31 (Satisfaction relation over GHML formulas). Let G = (P,�, p0,L ) be a GST, and let
Gsub := {G|p : p ∈ P}. A satisfaction relation, |=, is a relation |=⊆ Gsub×ΦGHML(Ī ,L) that is defined
inductively over GHML formulas. Satisfaction of the formula 〈〈|E|〉〉ϕ is defined in the following way:
G |= 〈〈|E|〉〉ϕ if and only if there exists an interval (p0, p]; a left-open set I ⊂ Ī ; and an order preserving
bijection λ : I→ (p0, p] such that

1. L ◦λ ∈ |E|
2. G|p |= ϕ .

The satisfaction relation is defined for other formulas in the usual way.
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Intuitively, a GST satisfies the formula 〈〈|E|〉〉> when it has a trajectory emanating from its root that
is order equivalent to every E ∈ |E| (recall that all elements of |E| are order equivalent to each other).
Importantly, this logic also yields formulas that are analogous to HML formulas on discrete GSTs when
there are at least two points in Ī . In particular, if i0 � i1, then {i0, i1} is spanned by the interval [i0, i1],
and the singleton point {i1} is a left-open set. Thus, M (Ī ,L) contains modal executions that are order-
equivalent to discrete transitions in a GST. Of course, discrete transitions are the essence of the semantics
for the labeled modalities in HML.

4 A First Hennessy-Milner Theorem: “Image-finite” GSTs

In this section, our objective is to define something like a class of image-finite GSTs with the ultimate
intention of defining a Hennessy-Milner class of GSTs. We introduce this section with an example to
show that the most straightforward definition of image-finiteness is too exclusive to be of much interest.

Example 2. Consider the following GST defined on the unit interval [0,1] ⊂ R: G[0,1] := ([0,1],≤R
,0,(0,1]→{α}).

The point of Example 2 is that G[0,1] has uncountably many nodes that are accessible from the root,
0, with a single trajectory: that is for any x,y ∈ (0,1] there is an order preserving bijection between (0,x]
and (0,y]. Since these trajectories’ nodes are labeled by a single label, α , they are thus order equivalent
in the sense of Definition 4. Nevertheless, this GST appears to be about as simple as one could wish for
in terms of nondeterminism: there is essentially no branching behavior at all.

4.1 GSTs as Discrete Structures

The discussion following Example 2 suggests a way of looking at GSTs that will be profitable, especially
when it comes to examining GHML formulas and constructing Hennessy-Milner classes. In particular,
we use equivalence classes of modal executions to label discrete transitions on a Kripke structure; we
show that such a construction captures the relevant structure of a given class of GSTs with respect to
bisimulation and GHML satisfaction.

Definition 32 (Captured by a Domain of modalities). Let U be a set of GSTs. We say that U is captured
by a domain of modalities (Ī ,L) if every trajectory from every GST in U is order equivalent to some
modal execution over (Ī ,L).

Definition 33 (Surrogate Kripke Structure). Let U be a set of GSTs that is captured by a domain of
modalities (Ī ,L). For any GST G = (P,�P, p0,L ) in U , we define a surrogate Kripke structure,
G = (P,{RG

|E| ⊆ P×P : |E| ∈M (Ī ,L)},V ), as follows:

• the set of states is P; and

• p1
|E|→ p2 – i.e. p1RG

|E|p2 – if and only if p1 �P p2 and (p1, p2] is order equivalent to an element of
|E|; and

• V : Θ→{P} indicates all propositional variables are true in all states in P.

Remark 5. We will not consider valuations in this section, but they will be used in the next section. Thus,
for the purposes of this section, we may regard surrogate Kripke structures as labeled transition systems.

Example 3 (Surrogate Kripke Structure for G[0,1]). If we let Ī = (R,≤R) and L = {α}, then Figure
1 shows some of the transitions that appear in the surrogate Kripke structure for the GST G[0,1] from
Example 2.
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0 x y 1
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G[0;1]

G[0;1]

Figure 1: GST and surrogate Kripke structure from Example 3; we define E : (0,1]→{α}.

The idea of a surrogate Kripke structure seems simple enough, but its importance is indicated by the
following two theorems: one relates GHML formulas to HML formulas, and the other relates ordinary
bisimulation to weak bisimulation for GSTs.

Theorem 7 (Relating GHML formulas on G to HML formulas on G). Let (Ī ,L) be a domain of modal-
ities, and let U be a set of GSTs captured by (Ī ,L). Furthermore, consider HML over the set of labels
given by |M (Ī ,L)|. Then for every G = (P,�P, p0,L ) ∈U ,

1. for all ϕ ∈ΦGHML(Ī ,L), G |= ϕ ⇒ p0 |= ϕ〈〉 and

2. for all φ ∈ΦHML(|M (Ī ,L)|), p0 |= φ ⇒ G |= φ〈〈 〉〉.

The notation ϕ〈〉 indicates that the GHML formula ϕ is converted to an HML formula by replacing each
〈〈|E|〉〉 modality with the corresponding HML modality 〈|E|〉. φ〈〈 〉〉 indicates an analogous conversion
from an HML formula to a GHML formula.

Proof. This is a straightforward proof by induction on formula structure (the base case is>, which has an
identical meaning in HML and GHML). The ability to match HML modalities to GHML modalities (and
conversely) is assured by the way we have constructed the surrogate Kripke structure, and in particular,
the fact that we have labeled trajectories by equivalence classes of modal executions.

Theorem 8 (Weak bisimulation between GSTs and bisimulation between surrogates). Let U and (Ī ,L)
be as in Theorem 7. Furthermore, let G1 = (P,�P, p0,LP) and G2 = (Q,�Q,q0,LQ) be two GSTs in
U . Then

G1 ↔w G2 ⇐⇒ p0 ↔ q0. (5)

where the bisimulation p0 ↔ q0 is taken in the context of the surrogate Kripke structures G1 and G2.

Proof. This theorem, like Theorem 7, is a consequence of the way that we defined the surrogate Kripke
structure: in particular, any weak bisimulation relation between G1 and G2 is a bisimulation relation
between G1 and G2 and conversely.

Theorems 7 and 8 together reinforce that weak bisimulation is very much a discrete notion. In the
context of GHML formulas and the construction of Hennessy-Milner classes, though, this will prove to
be an advantage.
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jEjjEj

M
m0 m1

Figure 2: A Kripke structure M that is bisimilar to G[0,1]; again, we define E : (0,1]→{α}.

4.2 “Image-Finite” GSTs

If we reconsider Example 2 in the context of Theorems 7 and 8, then a natural means of defining “image-
finite” GSTs emerges. In particular, it is evident that the surrogate Kripke structure G[0,1] (see Figure 1)
is bisimilar to the two state Kripke structure M depicted in Figure 2. Of course M is image-finite, and so
we have just exemplified a serviceable means by which we can define image-finiteness for GSTs.

Definition 34 (Image-finite GST). Let U and (Ī ,L) be as before. Then a GST G ∈U is image finite if
its surrogate Kripke structure is ↔K to an image-finite Kripke structure.

In Definition 34, we really mean bisimulation according to ↔K of Definition 13, so that the surro-
gate Kripke structure ends up being bisimilar to a Kripke structure that also has a “universal” valuation.
Hence, the surrogate Kripke structure and its image-finite pair can be regarded simply as labeled transi-
tion systems with the usual notion of bisimulation ↔. We introduce this requirement in preparation for
the treatment of maximal classes to come.

Of course because of Theorem 7 and 8, this definition of image-finiteness implies a Hennessy-Milner
class of GSTs through the use of Hennessy and Milner’s original theorem.

Theorem 9 (Image-finite GSTs form a Hennessy-Milner class). Let U and (Ī ,L) be as before. Then
the set of image-finite GSTs in U forms a Hennessy-Milner class according to weak bisimulation. That
is any two image finite GSTs from U are weakly bisimilar if and only if they satisfy the same GHML
formulas.

5 Maximal Hennessy-Milner Classes for GSTs

The construction of surrogate Kripke structures in Definition 33 combined with Theorems 7 and 8 sug-
gests that the maximal VHHM classes of Section 2.3.2 have analogs as maximal HM classes of GSTs
with respect to weak bisimulation. In this section we demonstrate that this is indeed the case, although
the translation is not exact. We also exhibit some interesting GST-specific properties that these classes
possess.

5.1 Characterizing Maximal VHHM Classes of GSTs

The essential assumption required for the proof of Theorem 3 is the VHHM property: that is a VHHM
class of Kripke structures cannot contain two states that satisfy the same formulas yet are not bisimilar.
Since we are interested in weak bisimulation and GHML formulas, we can straightforwardly define a
VHHM property for GSTs as follows.

Definition 35 (VHHM class for GSTs). Let U be a set of GSTs, and let (Ī ,L) be a domain of modalities
that captures U , so that≈GHML is interpreted with respect to ΦGHML−Θ(Ī ,L). Then we say that a subset
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h ⊆ U satisfies the VHHM property for GSTs if for any two sub-GSTs G1|p and G2|q from the set h
(possibly with G1 = G2),

G1|p ↔w G2|q ⇐⇒ G1|p ≈GHML G2|q. (6)

Of course this definition will help us define maximal VHHM classes of GSTs because of Theorem 7
and 8, which relate GHML formulas and weak bisimulation for GSTs to HML formulas and bisimulation
for Kripke structures. Hence, we have the following theorem.

Theorem 10 (Maximal VHHM classes for GSTs are restrained by maximal VHHM classes for their
surrogates). Let U and (Ī ,L) be as in Definition 35. If h ⊆U is a VHHM class of GSTs, then the set
of surrogate Kripke structures {G : G ∈ h} satisfies the VHHM property of Definition 20 with respect to
ΦHML(|M (Ī ,L)|).

Proof. This is a direct consequence of Theorems 7 and 8. First, check that for any node p in a surrogate
Kripke structure G1 and node q in surrogate Kripke structure G2, p ≈HML q implies p↔K q. Because of
Theorem 7, we know that p ≈HML q implies G1|p ≈GHML G2|q. But h is a VHMM class of GSTs, so the
preceding implies that G1|p ↔w G2|q, and Theorem 8 then implies that p ↔K q as required. The converse
follows by using first Theorem 8 and then Theorem 7.

The essential intuition here is that any set of GSTs that satisfies the VHHM property will yield a
set of surrogate Kripke structures that satisfies the VHHM property; then by part 2 of Theorem 3, these
surrogate Kripke structures will be contained in a maximal VHHM class of Kripke structures. Thus, a
VHHM class of GSTs can only be enlarged so long as its surrogate Kripke structures do not escape a
maximal VHHM class of Kripke structures, so every maximal VHHM class of GSTs can be matched to
at least one maximal VHHM class of Kripke structures. This is expressed in the following corollary.

Corollary 2. Let U and (Ī ,L) be as in Definition 35. If h ⊆U is a VHHM class of GSTs, then there
exists a Henkin-like model HCK such that {G : G∈ h}⊆BS(HCK). Furthermore, if there is a set h′⊆U
such that h⊆ h′ and {G : G ∈ h′} ⊆ BS(HCK), then h′ is a VHHM class of GSTs.

However, we have not yet established that every maximal VHHM class of Kripke structures corre-
sponds to a maximal VHHM class of GSTs. Indeed, the fact that Theorem 3 makes no assumptions
about valuations immediately suggests that several maximal VHHM classes of the form BS(HCK) will
correspond to the same maximal VHHM class of GSTs. As it turns out, there are other yet more pro-
found redundancies in the Henkin-like models derived from the canonical model over the smallest normal
logic, K. These differences are described in the following theorem, though it too falls short of an absolute
characterization of maximal VHHM classes for GSTs.

Theorem 11 (Maximal VHHM classes for GSTs and refined Henkin-like models). Let U and (Ī ,L) be
as in Definition 35, and let h⊆U be a VHHM class of GSTs. Furthermore, let ∆ be the smallest normal
logic that contains all of the following:

• the propositional variables Θ;

• ∀|E1|, |E2| ∈ |M (Ī ,L)|, the schema 〈|E1|〉〈|E2|〉ϕ → 〈|E1;2|〉ϕ ; and

• ∀|E|, |E1|, |E2| ∈ |M (Ī ,L)| such that there is an order equivalence λ : I1; I2 → dom(E) with
E ◦λ (1, ·) ∈ |E1| and E ◦λ (2, ·) ∈ |E2|, the schema 〈|E|〉ϕ → 〈|E1|〉〈|E2|〉ϕ .

Then {G : G∈ h} ⊆BS(HC∆) for some Henkin-like model HC∆ that preserves the first-order transition-
relation properties imposed on C∆ by the schemata above. Furthermore, if there is a set h′ ⊆ U such
that h⊆ h′ and {G : G ∈ h′} ⊆ BS(HC∆), then h′ is a VHHM class of GSTs.
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Proof. (Theorem 11.) All of the additions to the logic ∆ reflect structure in surrogate Kripke structures
(including in the valuations used), and Theorem 3 remains applicable when confined to such restricted
Kripke structures.

The reader will recognize in the formulas 〈|E1|〉〈|E2|〉ϕ→ 〈|E1;2|〉ϕ and 〈|E|〉ϕ→ 〈|E1|〉〈|E2|〉ϕ the
schemata for something like transitivity and weak density, respectively [10]. That the surrogate Kripke
structures satisfy these conditions is a reflection of the unique semantics we have specified for GHML:
in particular, following one trajectory in a GST followed by another implies the existence of a third,
“longer” trajectory (transitivity), and following a non-trivial trajectory implies the existence of “smaller”
trajectories ending and beginning from some intermediary point (weak density). On the other hand,
the additional constraint on the Henkin-like model in Theorem 11 is necessary because just satisfying
the relevant schemata under one valuation is not enough to impose the first-order transition relation
properties that surrogate Kripke structures possess (see [10]).

It is also worth noting that our choice of equivalence classes of modal executions is relevant here.
Had we not chosen to label transitions in the surrogate Kripke structure with such equivalence classes,
there would be multiple order-equivalent transitions between any two nodes. This would lead to addi-
tional Henkin-like models that fail to respect the semantics of weak bisimulation: i.e. among a collection
of order-equivalent transitions, some could be present in the Henkin-like model while some could be
absent.

Finally, it is important to note that neither Corollary 2 nor Theorem 11 imply that every maximal
VHHM class of Kripke structures corresponds to a maximal VHHM class of GSTs in U . For one, the
set U may be deficient. For another, it remains as future work to show that every Henkin-like model
over the canonical model for logic ∆ reflects the surrogate Kripke structure of some GST.

5.2 Properties of Maximal VHHM Classes of GSTs

In this subsection we make two small remarks that identify some properties of interest with regard to
maximal VHHM classes of GSTs.

First, we note that maximal VHHM classes are not so small that modal equivalence within such a
class implies strongly bisimulation (Definition 6). That is to say there is a maximal VHHM class which
contains two GSTs that satisfy the same formulas yet are not strongly bisimilar. Such a situation is
illustrated in the following example.

Example 4. Consider the domain of modalities given by the set Ī = (R,≤R) and the set L = {α,β}.
Furthermore, for a subset A of [0,1] ⊂ R, define the GST GA as GA = ([0,1]∪ ({1}×A) ,�A,0,LA)
where �A= ∪a∈A{(x,(1,a)) : x ≤ a} ∪ ≤R∩[0,1] and LA : x 7→ α ;(1,a) 7→ β . We claim that the GSTs
GQ∩(0,1) and G(0,1)\Q together satisfy the VHHM property: in fact their surrogate Kripke structures are
both bisimilar to the same image-finite Kripke structure. Nevertheless, they are clearly not strongly
bisimilar, since there is no order preserving way of matching Q∩ (0,1) with (0,1)\Q.

Second, we note that there are GSTs that don’t belong to any VHHM class. This is ultimately because
there are Kripke structures that don’t belong to any VHHM class of Kripke structures: the following
example describes just such a Kripke structure.

Example 5. Consider the Kripke structure depicted in Figure 3 with a valuation that assigns all propo-
sitional variables to be true in all states. We claim that the shaded states satisfy the same formulas, yet
they are clearly not bisimilar. Hence, this Kripke structure doesn’t belong to any VHHM class of Kripke
structures.
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Figure 3: Kripke structure for Theorem 5. L= {α,β ,α.β}; all black arrows have label α; α.β transitions
are not shown but span each concatenated α transition and β transition.

The proof of the claim in Example 5 is nontrivial, and as far as we know, there are no results even
suggesting that such Kripke structures exist. Importantly, Example 5 implies a similar example for GSTs
because it contains a Kripke structure that also satisfies the schemata in Theorem 11. The following
example makes this explicit.

Example 6. Recall the definition of GA from Example 4, and consider the GST GX for X = {1/2+
1/(n+2) : n ∈ N} ⊂ (0,1). Then GX doesn’t belong to any VHHM class of GSTs because its surrogate
Kripke structure is bisimilar to the Kripke structure in Example 5 (when it is suitably relabeled).

6 Conclusions and Future Work

In this paper we have proposed a generalization of Hennessy-Milner logic that is suitable for GSTs,
and we have used this logic to exhibit some results regarding Hennessy-Milner classes with respect to
weak bisimulation. Nevertheless, there is a great deal of work still to be done. One key avenue of
future research lies in deciding whether the characterization in Theorem 11 really describes all maximal
VHHM classes of GSTs (given a sufficiently large set of GSTs to begin with). Another important avenue
of future work is to investigate what implications these VHHM classes have for common hybrid system
models, such as the behavioral modeling framework of [18].
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We propose an approach and a subsequent extension for reversing imperative programs. Firstly, we
produce both an augmented version and a corresponding inverted version of the original program.
Augmentation saves reversal information into an auxiliary data store, maintaining segregation be-
tween this and the program state, while never altering the data store in any other way than that of
the original program. Inversion uses this information to revert the final program state to the state
as it was before execution. We prove that augmentation and inversion work as intended, and illus-
trate our approach with several examples. We also suggest a modification to our first approach to
support non-communicating parallelism. Execution interleaving introduces a number of challenges,
each of which our extended approach considers. We define annotation and redefine inversion to use
a sequence of statement identifiers, making the interleaving order deterministic in reverse.

1 Introduction

Reverse computation has been an active research area for a number of years. The ability to reverse exe-
cute, or invert, a program is desirable due to its potential applications. The relationship with the Landauer
principle shows reverse computation to be a feasible solution for producing low power, energy efficient
computation [10]. In this paper, we consider reverse computation within the setting of imperative pro-
grams. We first propose a state-saving approach for reversing such programs consisting of assignments,
conditional statements and while loops. We display an example of this approach showing the execution
can now be reversed, and we verify that this reversal is correct. Secondly, we discuss the challenges
faced when introducing parallelism, as well as the required modifications to our first approach in order
to support it. The formal definition and accompanying example demonstrate the reversal of a parallel
program. Finally, we present correctness results for this modified approach.

The most obvious approach to implementing program reversal is to record the entire program state
before executing the program. Recording all of the initial variable values does allow immediate reversal
to the original state, however suffers several setbacks, including not re-creating the intermediate program
states, and the production of garbage data. We propose an approach that records the necessary informa-
tion to reverse an execution step-by-step, re-creating intermediate steps faithfully allowing movement
in both directions at any point. Any information we save as a result of this is used during inversion,
meaning no garbage data is produced.

Inspired by the Reverse C Compiler (RCC) [12, 3], our initial approach takes an original program
and produces two versions. The first is the augmented version, which becomes the program used for
forward execution, and has the capability to save all information necessary for inversion, termed reversal
information. This is implemented via the function aug that analyses the original program statement by
statement, producing the augmented version. The execution of this version populates a collection of
initially empty stacks, termed an auxiliary store δ , with this reversal information. Consider the program
shown in Figure 1, producing the Nth element of a Fibonacci-like sequence beginning with the values



52 Reversing Imperative Parallel Programs

1 if X > Y then
2 Z = Y ;
3 Y = X ;
4 X = Z ;
5 else
6 skip

7 end
8
9 while N−2 > 0 do

10 Z = X ;
11 X = Y ;
12 Y += Z ;
13 N −= 1 ;
14 end

Figure 1: Original program

1 while pop ( δ (W ) ) do

2 N +=1;
3 Y −= Z ;
4 X = pop ( δ (X ) ) ;
5 Z = pop ( δ ( Z ) ) ;
6 end

7
8 if pop ( δ (B ) ) then
9 X = pop ( δ (X ) ) ;

10 Y = pop ( δ (Y ) ) ;
11 Z = pop ( δ (Z ) ) ;
12 else
13 skip

14 end

Figure 2: Inverted program

of X and Y. Let the initial state σ consist of X=4, Y=3, Z=0, N=5 and the initial auxiliary store δ consist
of empty stacks. The execution of the augmented version (displayed later in Section 4, Figure 3) under
these stores results in the state σ ′ where X=11, Y=18, Z=7, N=2 and auxiliary store δ ′ containing reversal
information detailed in Section 4. With this version now being used for forwards execution, it is crucial
that the behaviour with respect to the program state is unchanged. Our first result ensures that if the state
σ ′ is produced via the original execution, then it must also be produced via the augmented execution.

The second version, termed the inverted version, is generated via the function inv. This version
follows the inverted execution order of the original, containing a statement corresponding to each of
those of the original. Each inverted statement will typically use information from the auxiliary store to
revert all of the effects caused via execution of the original. Consider again the example in Figure 1.
Application of inv to this program produces the inverted version, shown in Figure 2. Execution of this
program under the stores σ ′ and δ ′ produces the state σ ′′ where X=4, Y=3, Z=0, N=5, and the auxiliary
store δ ′′ containing only empty stacks. Our second result validates that σ ′′ = σ and δ ′′ = δ , meaning the
inversion has happened correctly and the initial program state has been restored. Doing so proves that
the augmented program saves the required information, that the inverted program is capable of using this
to restore the program state to exactly as it was before, and that augmentation produces no garbage data.

In the second part of the paper, we define a modified approach, this time capable of supporting non-
communicating parallelism [9]. Issues introduced such as a non-deterministic execution order make our
previous approach insufficient without further state-saving. The interleaving order, or order in which
the statements are executed, now forms part of the reversal information, captured and stored at runtime.
Storing this interleaving order makes the program deterministic in reverse, guaranteeing the execution of
the inverted program always follows exactly the inverse execution order of the original. Modifications
are made to the process of augmentation from our first approach, with all state-saving implemented at
runtime via a set of modified operational semantics for forward execution. A similar reasoning is applied
to the process of inversion, resulting in a modified set of operational semantics for reverse execution.
These semantics are responsible for using the reversal information, including the interleaving order, to
reverse the statements of the original program in exactly the opposite order. Finally the correctness
results of our second approach are presented.

The paper is organised as follows. Section 2 introduces the programming language and its notion
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of program state, with the operational semantics given in Section 3. Section 4 describes the process of
augmentation and the information that must be saved, as well as proving the correctness of this augmen-
tation. Section 5 defines the process of inversion and again proves the correctness of this process. Section
6 introduces an updated approach capable of supporting parallel composition, as well as presenting the
correctness results.

1.1 Related Work

Program inversion has been discussed for many years, including the work by Gries [8] and by Glück and
Kawabe [6, 7]. The Reverse C Compiler as described by Perumalla et al. [12, 3] is one example of a
state-saving approach for the reversal of C programs. We relate very closely to this approach, but with
differences including that we currently support a smaller language, and we record a while loop sequence
in order to avoid modifying the behaviour of the original program (see Section 4). To the best of our
knowledge, there is no formal proof of correctness of RCC, and so this is a major focus of our work.
Our approach proposes the foundation from which a formally proved approach for a more complex
language could emerge. Other work has been produced on reverse computation used within Parallel
Discrete Event Simulation (PDES), a simulation methodology capable of executing events speculatively
[5, 4]. The backstroke framework [17] and subsequent work on it by Schordan et al. [15, 16] relates
slightly less closely to our work as it focuses on this application to PDES. Backstroke is capable of
both a state-saving approach and a more advanced, path regeneration method for reverse computation.
Other applications include to debugging, with examples being [2, 1]. Similarly to program inversion,
the reversible programming language Janus, originally proposed in [11] requires additional information
within the source code. Any program written in Janus is fully reversible, without the requirement for
any control information to be recorded, but with a requirement for additional assertions that make the
program deterministic in both directions [19, 18].

2 Programming Language and Program State

The programming language used for our first approach is similar to any while language, particularly that
of Hüttel [9]. This consists of destructive and constructive assignments, with the expression not contain-
ing the variable in question, or any side effects. Conditional statements and loops are also supported,
implemented using both arithmetic and Boolean expressions. Let the set of variables V be ranged over
by X, Y, Z . . . , the set of integers Z be ranged over by l, m and n and the set of Boolean values B be
{T,F}. Also let Cop be the set of constructive assignment operators {+=,-=} with cop ∈ Cop, and Op

be the set of arithmetic operators {+,-} with op ∈ Op.

P ::= ε | S; P

S ::= skip | X = Exp | X Cop Exp | if B then P else P end |
while B do P end

B ::= T | F | ¬B | (B) | Exp == Exp | Exp > Exp | B ∧ B

Exp ::= X | n | (Exp) | Exp Op Exp

P is the set of programs, ranged over by P, Q and R. S is the set of statements, ranged over by S. Expres-
sions Exp are ranged over by a, a0, a′0, a1, a′1, Boolean expressions B are ranged over by b, b′, b0, b1 and
expressions that can be either are ranged over by ba, ba0, ba′0, ba1, ba′1.
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The program state is represented via a data store σ , responsible for mapping each variable to the
value it currently holds. A data store is represented as a set of pairs, with the first element of the pair
being the variable name, and the second being its current value. A data store is represented formally as
the partial function σ : V→ Z.

Such stores are manipulated using the following notation. Assuming v ∈ Z, σ (X) returns the value
currently associated to the variable X, while σ [X 7→ v] produces a store identical to σ , but with the
variable X now holding the value v.

Consider the store σ , consisting of two variables X and Y, with values 3 and 5 respectively, described
as σ = {(X, 3), (Y,5)}. The statement σ (X) returns 3, and σ [X 7→ 10] results in the store {(X,10), (Y,5)}.

3 Structured Operational Semantics

This section defines the Structured Operational Semantics (SOS) of the programming language described
above. These are defined in the traditional way, following closely with those of Hüttel [9]. The parameter
δ , representing the auxiliary store, is not strictly necessary at this point, but is required later and included
here for consistency.

3.1 Arithmetic Statements
Let v ∈ Z and recall op ∈ Op.

(X,σ ,δ )→ (σ(X),σ ,δ )
v = n op m

(n op m,σ ,δ )→ (v,σ ,δ ) ((v),σ ,δ )→ (v,σ ,δ )
(a0,σ ,δ )→ (a′0,σ

′,δ ′)
((a0),σ ,δ )→ ((a′0),σ ′,δ ′)

(a0,σ ,δ )→ (a′0,σ
′,δ ′)

(a0 op a1,σ ,δ )→ (a′0 op a1,σ ′,δ ′)
(a1,σ ,δ )→ (a′1,σ

′,δ ′)
(a0 op a1,σ ,δ )→ (a0 op a′1,σ ′,δ ′)

3.2 Boolean Expressions
Let bop ∈ {>,==} if used between two arithmetic expressions or bop ∈ {∧,==} if used between two
Boolean expressions.

(¬T,σ ,δ )→ (F,σ ,δ ) (¬F,σ ,δ )→ (T,σ ,δ )
(b,σ ,δ )→ (b′,σ ′,δ ′)

(¬b,σ ,δ )→ (¬b′,σ ′,δ ′)
ba2 = ba0 bop ba1

(ba0 bop ba1,σ ,δ )→ (ba2,σ ,δ )

(ba0,σ ,δ )→ (ba′0,σ
′,δ ′)

(ba0 bop ba1,σ ,δ )→ (ba′0 bop ba1,σ ′,δ ′)
(ba1,σ ,δ )→ (ba′1,σ

′,δ ′)
(ba0 bop ba1,σ ,δ )→ (ba0 bop ba′1,σ ′,δ ′)

3.3 Program Statements
Let v ∈ Z and recall cop ∈ Cop. Let op be + if cop = +=, otherwise let op be -.

[Skip]
(skip;P,σ ,δ )→ (P,σ ,δ )

[Seq]
(S,σ ,δ )→ (S′,σ ′,δ ′)

(S;P,σ ,δ )→ (S′;P,σ ′,δ ′)

[DA1]
(X = v,σ ,δ )→ (skip,σ [X 7→ v],δ )

[DA2]
(a,σ ,δ )→ (a′,σ ′,δ ′)

(X = a,σ ,δ )→ (X = a′,σ ′,δ ′)

[CA1]
(X cop v,σ ,δ )→ (skip,σ [X 7→ σ(X) op v],δ )

[CA2]
(a,σ ,δ )→ (a′,σ ′,δ ′)

(X cop a,σ ,δ )→ (X cop a′,σ ′,δ ′)
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[C1]
(if T then P else Q end,σ ,δ )→ (P,σ ,δ )

[C2]
(if F then P else Q end,σ ,δ )→ (Q,σ ,δ )

[C3]
(b,σ ,δ )→ (b′,σ ′,δ ′)

(if b then P else Q end,σ ,δ )→ (if b′ then P else Q end,σ ′,δ ′)

[Wh]
(P,σ ,δ )→ (if b then Q;P else skip end,σ ,δ )

where P= while b do Q end

4 Augmentation

The first step of our first approach is to generate the augmented version through a process termed aug-
mentation. This process takes each statement of the original program in succession, and returns a se-
mantically equivalent (with respect to the data store) code fragment containing any required state-saving
operations. These fragments are then combined to produce the augmented version.

The information required to be saved depends on the type of statement. Destructive assignments
discard the old value of a variable, meaning it must be saved. Constructive assignments do not suffer
this problem meaning they are reversible without state-saving. Due to no guarantee that a condition is
invariant, conditional statements must save control information indicating which branch was executed.
While loops not having a fixed number of iterations means the number of times the loop should be
inverted is unknown. Therefore a sequence of Booleans representing the while loop is saved.

Saving the result of evaluating conditional statements and while loops removes the burden of re-
evaluating these expressions during inversion, unlike the reversible programming language Janus that
does require this. In an effort to ensure that the state-saving does not affect the behaviour of the program
(w.r.t. the data store), all reversal information is stored separately in an auxiliary data store.

4.1 Auxiliary Data Store

Recall that V is the set of program variable names, and now let both B and W be reserved keywords that
cannot appear within this set. An auxiliary data store δ is a set of stacks, consisting of one self-named
stack for each program variable within V, one stack B for all conditional statements and one stack W for
all while loops. More formally, δ : (V→ X)∪ ({B,W}∪B′), where X is the set of stacks of integers
and B′ is the set of stacks of Booleans. Auxiliary stores will be represented as a set of pairs. Each pair
represents a stack, with the first element being the stack name and the second element being the sequence
of its elements. The order of this sequence reflects that of the stack, with the left-most element being the
head of the stack. Consider a program consisting of one variable X (initially 1) destructively assigned
twice (to 3 and 5), one conditional statement that evaluates to T and a while loop with one iteration. The
final auxiliary store would be {(X,{3,1}), (B,{T}), (W,{T,F})}.

The stacks on δ are manipulated in the traditional manner [9], using push and pop operations intro-
duced via augmentation. The notation δ [v 7→ X] and push(v,X) both represent pushing the value v to
the stack X, while δ [X] and pop(X) represent popping the stack X. Further notation includes δ (S) that
returns the stack named S, v:S that indicates a stack with head v and tail S, and δ [X/X′] that states the
stack X is replaced by X′. The SOS rules are defined, where v ∈ Z∪B.

[Pop]
δ(X) = v:X′

(pop(δ (X)),σ ,δ )→ (v,σ ,δ [X/X′])
[Push1]

(push(v,δ (X)),σ ,δ )→ (skip,σ ,δ [v 7→ X])
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[Push2]
(ba,σ ,δ )→ (ba′,σ ′,δ ′)

(push(ba,δ (X)),σ ,δ )→ (push(ba′,δ (X)),σ ′,δ ′)

We are now ready to introduce the function that performs the augmentation.

4.2 Augmentation Function

Let P̂ be the set of augmented programs. The function aug : P→ P̂ takes the original program and
recursively applies the function a : S→ P̂ to each statement, producing its augmented version.

Destructive assignments are augmented into two statements, one to push the old value of the variable
to its self-named stack on δ , and a second to perform the assignment (see 4). Constructive assignments
are left unchanged due to their reversibility (see 5). Conditional statements have each branch recursively
augmented, as well as extended with an operation that stores a Boolean indicating whether the true or
false branch was executed (see 6). As such, aug and a are now defined, where cop ∈ Cop.

aug(ε) = ε (1)

aug(S;P) = a(S); aug(P) (2)

a(skip) = skip (3)

a(X = a) = push(σ(X),δ (X)); X = a (4)

a(X cop a) = X cop a (5)

a(if b then P else Q end) = if b then aug(P); push(T,δ (B))
else aug(Q); push(F,δ (B)) end

(6)

The traditional approach of handling while loops by initialising a counter and incrementing it for
each iteration is not used here due to its adverse effects on the behaviour of the program w.r.t. the data
store. While loops are instead augmented to save a sequence of Booleans representing its execution.
Generating the sequence in the intuitive way (of a T for each iteration and finally an F) and storing this
onto a traditional stack will require the sequence to be manipulated before being used. Such manipulation
is both difficult, due to ambiguities within such sequences, and avoidable, by storing a usable order to
begin with.

The desired order is that of the intuitive approach, but with any opening T switched with its corre-
sponding closing F, while maintaining any nested T elements. This sequence can be generated provided
we can distinguish between the first iteration of a loop and any other. The first iteration now requires an
F, while any subsequent iteration (including the unsuccessful last iteration) requires a T (see 7).

a(while b do P end) = if b then

push(F,δ (W)); aug(P);

while b do

push(T,δ (W)); aug(P)

end; push(T,δ (W))
else push(F,δ (W)) end

(7)

We now return to our example discussing Figure 1. The augmented version of this program is shown
in Figure 3. The destructive assignment of Z on line 2 of Figure 1 corresponds to line 2 of Figure 3,
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1 if X > Y then
2 push ( σ (Z ) , δ (Z ) ) ; Z = Y ;
3 push ( σ (Y ) , δ (Y ) ) ; Y = X ;
4 push ( σ (X ) , δ (X ) ) ; X = Z ;
5 push (T ,δ (B ) )
6 else
7 skip;push (F ,δ (B ) )
8 end
9 if N−2 > 0 then

10 push (F ,δ (W ) ) ;
11 push ( σ (Z ) , δ (Z ) ) ; Z = X ;
12 push ( σ (X ) , δ (X ) ) ; X = Y ;

13 Y += Z ;
14 N −= 1 ;
15 while N−2 > 0 do
16 push (T ,δ (W ) ) ;
17 push ( σ (Z ) , δ (Z ) ) ; Z = X ;
18 push ( σ (X ) , δ (X ) ) ; X = Y ;
19 Y += Z ;
20 N −= 1
21 end
22 push (T ,δ (W ) )
23 else
24 push (F ,δ (W ) ) ; end

Figure 3: Augmented Version of the Program in Figure 1

where the push statement is used to first save the old value. Lines 5 and 7 of Figure 3 contain inserted
operations to save the result of evaluating the conditional statement, while lines 10, 16, 22 and 24 are
inserted commands to save the sequence of Boolean values representing the execution of the while loop.
Execution of this program under the initial stores σ = {(X,4), (Y,3), (Z,0), (N,5)} and δ = {(X,{}), (Y,{}),
(Z,{}), (N,{}), (B,{}), (W,{})}, produces the final stores σ ′ = {(X,11), (Y,18), (Z,7), (N,2)} and δ ′ =
{(X,{7,4,3,4}), (Y,{3}), (Z,{4,3,3,0}), (N,{}), (B,{T}), (W,{T,T,T,F})}. The two final stores now
contain all of the necessary information for reversal.

We are now ready to state our first result. Firstly, Proposition 1 states that if the execution of an
original program terminates, then the execution of the augmented version of that program also terminates
(where a program terminates if its execution finishes with the configuration (skip,σ∗,δ ∗) for some σ∗
and δ ∗). Secondly, Proposition 1 states that augmentation produces an augmented version that modifies
the data store σ in exactly the same way as that of the original program to σ ′, while also populating the
auxiliary store δ with reversal information producing δ ′.
Proposition 1. Let P be a program that does not interact with the auxiliary store, σ be an arbitrary initial
data store and δ be an arbitrary initial auxiliary data store. Firstly, if (P,σ ,δ )→∗ (skip,σ ′,δ ′′), for
some σ ′ and δ ′′, then (aug(P),σ ,δ )→∗ (skip,σ ′′,δ ′′′) for some σ ′′ and δ ′′′. Secondly, if (P,σ ,δ )→∗
(skip,σ ′,δ ), for some σ ′, then (aug(P),σ ,δ )→∗ (skip,σ ′,δ ′) for some δ ′.

We note that the inverse implication, namely that if (aug(P),σ ,δ )→∗ (skip,σ ′,δ ′), for some σ ′
and δ ′, then (P,σ ,δ )→∗ (skip,σ ′,δ ), would also be valid. However we defer this proof to future work,
and now return to proving the second part of Proposition 1 (with the first following correspondingly).

Proof. By induction on the length of the sequence (P, σ ,δ ) →∗ (skip, σ ′,δ ). Since there are no
transitions of length 0, the proposition holds vacuously. Assume that the proposition holds for pro-
grams R, stores σ∗ and auxiliary stores δ ∗, such that (R,σ∗,δ ∗) →∗ (skip,σ∗1 ,δ ∗) is shorter than
(P,σ ,δ )→∗ (skip,σ ′,δ ). Further assuming P is of the form S;P′ such that S is a statement and P′

is the remaining program, we have that

(S;P′,σ ,δ )→∗ (skip,σ ′,δ )

for some σ ′. Through use of the SOS rules Seq and Skip, we have

(S;P′,σ ,δ )→∗ (skip;P′,σ ′′,δ )→ (P′,σ ′′,δ )→∗ (skip,σ ′,δ )
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for some σ ′′. With this in mind, we need to show that (aug(S;P′),σ ,δ )→∗ (skip,σ ′,δ ′) for some δ ′.
By the definition of aug, clause (2) we have (aug(S;P′),σ ,δ ) = (a(S);aug(P′),σ ,δ ), meaning it is

sufficient to prove

(a(S);aug(P′),σ ,δ )→∗ (skip;aug(P′),σ ′′,δ ′′)→ (aug(P′),σ ′′,δ ′′)→∗ (skip,σ ′,δ ′)

for some σ ′′, δ ′′ and δ ′. Since (S;P′,σ ,δ )→∗ (P′,σ ′′,δ ), then repeated use of the Seq rule (from
conclusion to premises) produces (S,σ ,δ )→∗ (skip,σ ′′,δ ). Now assume a(S) = PS for each type of
statement S. Then by Lemma 1 below, we have that (PS,σ ,δ )→∗ (skip,σ ′′,δ ′′) for some δ ′′. Using the
Seq rule (from premises to conclusion) we obtain

(PS;aug(P′),σ ,δ )→∗ (skip;aug(P′),σ ′′,δ ′′)

Then by the Skip rule, we get (skip;aug(P′),σ ′′,δ ′′)→ (aug(P′),σ ′′,δ ′′). The induction hypothesis on
(P′,σ ′′,δ ′′) gives us

(aug(P′),σ ′′,δ ′′)→∗ (skip,σ ′,δ ′)
for some δ ′. Therefore we have obtained (a(S);aug(P′),σ ,δ )→∗ (aug(P′),σ ′′,δ ′′)→∗ (skip,σ ′,δ ′) ,
meaning (aug(S;P′),σ ,δ )→∗ (skip,σ ′,δ ′) holds as required. Therefore the proposition holds, pro-
vided the following lemma holds.

Lemma 1. Let S be a statement that does not interact with the auxiliary store, σ be an initial data store
and δ be an initial auxiliary data store. If (S,σ ,δ )→∗ (skip,σ ′,δ ) for some σ ′ then (a(S),σ ,δ )→∗
(skip,σ ′,δ ′) for some δ ′.

Proof. We consider each type of statement S in turn. Due to space constraints, we only include one case,
with the other cases following similarly. The notation (Q,σ ,δ ) −→

X
l (Q′,σ†,δ †) denotes l transitions by

the SOS rule X produces the program Q′, store σ† and auxiliary store δ †.

Case 1.1. Consider statement X=a and its execution under the initial stores σ and δ where X is initially
v′ and a evaluates to v in l steps such that

(X=a,σ ,δ )−−→
DA2

l (X=v,σ ,δ )−−→
DA1

(skip,σ [X 7→ v],δ ).

Recall that σ(X) = v′. The execution of the augmented version of X=a is

(push(v′,δ(X));X=a,σ ,δ )−−−−−−→
Push1, Skip

(X=a,σ ,δ [v′ 7→ X])

−−→
DA2

l (X=v,σ ,δ [v′ 7→ X])−−→
DA1

(skip,σ [X 7→ v],δ [v′ 7→ X])

As such, this case holds with σ ′ = σ [X 7→ v] and δ ′ = δ [v′ 7→ X].

With all other cases following in a similar manner, Lemma 1 holds.

5 Inversion

The second step of our initial approach is to generate the inverted version through a process named
inversion. Inversion takes each statement in reverse order, generates the code fragment necessary to
undo its effects, before combining these fragments to generate the inverted version. The majority of the



J. Hoey, I. Ulidowski & S. Yuen 59

returned code fragments will use the reversal information on the auxiliary store, meaning the augmented
version must be executed prior to the execution of this version.

Destructive assignments are replaced with another destructive assignment to the same variable, but
this time assigning the value currently at the top of the self-named stack (see 11). Constructive assign-
ments require no reversal information, and can simply be replaced by their inverse (see 12). Conditional
statements saved a Boolean indicating which branch was executed, meaning the retrieval and evaluation
of this now replaces the original condition, along with the recursive inversion of the branches (see 13).
While loops saved a sequence of Booleans in the desired order, meaning the while loop can continually
iterate until the top of the stack W is no longer true (see 14), along with the recursive inversion of the body.
As mentioned earlier, the reverse execution of conditionals and loops does not require their conditions to
be re-evaluated, increasing efficiency.

Let P−1 be the set of inverted programs. The function inv : P→ P−1 takes the original program and
recursively applies the function i : S→ P−1 to each statement in reverse order, producing its inverted
version. We now define inv and i, where cop ∈ Cop, and icop = += if cop = -=, and -= otherwise.

inv(ε) = ε (8)

inv(S;P) = inv(P); i(S) (9)

i(skip) = skip (10)

i(X = a) = X = pop(δ (X)) (11)

i(X cop a) = X icop a (12)

i(if b then P else Q end) = if pop(δ (B)) then inv(P) else inv(Q) end (13)

i(while b do P end) = while pop(δ (W)) do inv(P) end (14)

We now return to our example code shown in Figure 1. Applying the function inv to this program pro-
duces the inverted program shown in Figure 2. The overall program order has been inverted, with the
while loop now being executed first. An example destructive assignment is on line 2 of Figure 1, and is
inverted via the line 11 of Figure 2. Execution of this version under the final stores σ ′ = {(X,11), (Y,18),
(Z,7), (N,2)} and δ ′ = {(X,{7,4,3,4}), (Y,{3}), (Z,{4,3,3,0}), (N,{}), (B,{T}), (W,{T,T,T,F})}, pro-
duces the initial stores σ ′′ = {(X,4), (Y,3), (Z,0), (N,5)} and δ ′′ = {(X,{}), (Y,{}), (Z,{}), (N,{}), (B,{}),
(W,{})}. As should be clear, σ ′′ = σ and δ ′′ = δ , meaning the reversal has executed successfully.

We will now present our second result for (P,σ ,δ ). Recall that by Proposition 1, the execution
of the augmented version of P produces the modified auxiliary store δ ′, which plays a crucial role in
Proposition 2 below. Firstly, Proposition 2 states that if the original program P terminates on σ and δ ,
producing σ ′, then the execution of the inverted version of P terminates on σ ′ and the modified auxiliary
store δ ′. Secondly, Proposition 2 states that given the final stores σ ′ and δ ′ produced via execution of the
augmented version of P, executing the corresponding inverted version on these stores restores the initial
state, namely σ and δ .

Proposition 2. Let P be a program that does not interact with the auxiliary store, σ be an arbitrary initial
data store and δ be an arbitrary initial auxiliary data store. Firstly, if (P,σ ,δ )→∗ (skip,σ ′,δ ′′), for
some σ ′ and δ ′′, then (inv(P),σ ′,δ ′)→∗ (skip,σ ′′,δ ′′′), for some σ ′′ and δ ′′′. Secondly, if (P,σ ,δ )→∗
(skip,σ ′,δ ), for some σ ′, then (inv(P),σ ′,δ ′)→∗ (skip,σ ,δ ), for some δ ′.

We note that the first result in Proposition 2 would be valid, but postpone the proof to future work
and now return to proving the second part of Proposition 2.
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Proof. By induction on the length of the sequence (P, σ ,δ ) →∗ (skip, σ ′,δ ). Since there are no
transitions of length 0, the proposition holds vacuously. Assume that the proposition holds for pro-
grams R, stores σ∗ and auxiliary stores δ ∗, such that (R,σ∗,δ ∗) →∗ (skip,σ∗1 ,δ ∗) is shorter than
(P,σ ,δ )→∗ (skip,σ ′,δ ). Further assume P is of the form S;P′ such that S is a statement and P′ is
the remaining program. Let (S;P′,σ ,δ )→∗ (skip,σ ′,δ ) for some σ ′. This means that

(S;P′,σ ,δ )→∗ (skip;P′,σ ′′,δ )→ (P′,σ ′′,δ )→∗ (skip,σ ′,δ )
for some σ ′′. By applying the Seq rule (conclusion to premises) to (S;P′,σ ,δ )→∗ (skip;P′,σ ′′,δ ),
we obtain (S,σ ,δ )→∗ (skip,σ ′′,δ ). By the definition of aug, clause (2) we have (aug(S;P′),σ ,δ ) =
(a(S);aug(P′),σ ,δ ) and by Proposition 1 we have

(a(S);aug(P′),σ ,δ )→∗ (skip;aug(P′),σ ′′,δ ′′)→ (aug(P′),σ ′′,δ ′′)→∗ (skip,σ ′,δ ′)
for some δ ′′, δ ′. Using Seq (conclusion to premise) on (a(S);aug(P′),σ ,δ )→∗ (skip;aug(P′),σ ′′,δ ′′)
we obtain (a(S),σ ,δ )→∗ (skip,σ ′′,δ ′′).

We need to show that given σ ′ and δ ′, (inv(S;P′),σ ′,δ ′)→∗ (skip,σ ,δ ). By the definition of inv,
clause 9, we have inv(S;P′) = inv(P′); i(S), meaning we shall show

(inv(P′); i(S),σ ′,δ ′)→∗ (i(S),σ†,δ †)→∗ (skip,σ ,δ )

for some σ† and δ †. The induction hypothesis for (P′,σ ′′,δ ′′)→∗ (skip,σ ′,δ ′′), where δ ′′ is obtained
by augmentation of S on δ , gives us (inv(P′),σ ′,δ ′)→∗ (skip,σ ′′,δ ′′) where δ ′ is obtained by augmen-
tation of P′ on σ ′′ and δ ′′ as shown by (aug(P),σ ′′,δ ′′)→∗ (skip,σ ′,δ ′) above. Using the rule Seq
(premise to conclusion) repeatedly we get

(inv(P′); i(S),σ ′,δ ′)→∗ (skip; i(S),σ ′′,δ ′′)→ (i(S),σ ′′,δ ′′)

Therefore σ† = σ ′′ and δ † = δ ′′. All that remains now is to prove (i(S),σ ′′,δ ′′)→∗ (skip,σ ,δ ), which
is done in Lemma 2 below.

Lemma 2. Let S be a statement that does not interact with the auxiliary store, σ be an arbitrary initial
data store and δ be an arbitrary initial auxiliary data store. Then if (S,σ ,δ )→∗ (skip,σ ′,δ ) for some
σ ′, then (i(S),σ ′,δ ′)→∗ (skip,σ ,δ ) for some δ ′.

Proof. We consider each type of statement S in turn. Due to space constraints, we only include one case,
with the other cases following similarly.

Case 2.1. Consider statement X=a and its execution under the initial stores σ and δ where X is initially
v′ and a evaluates to v in l steps such that

(X=a,σ ,δ )−−→
DA2

l (X=v,σ ,δ )−−→
DA1

(skip,σ [X 7→ v],δ )

Then by Proposition 1 and Lemma 1 Case 1.1, we have that (a(X=a),σ ,δ )→ . . .→ (skip,σ ′,δ ′), such
that σ ′ = σ [X 7→ v] and δ ′ = δ [v′ 7→ X]. Then the execution of the inverted version of X=a is

(i(X=a),σ ′,δ ′)−−→
Pop

(X=v′,σ ′,δ ′[X])−−→
DA1

(skip,σ ′[X 7→ v′]),δ ′[X])

such that σ ′[X 7→ v′] = σ since v′ is equal to the initial value of X retrieved by the pop operation, and
δ ′[X] = δ . Therefore the stores have been restored to their initial states, as required, meaning the case
holds.

With all other cases following in a similar manner, the Lemma is proved to be correct.
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X+=Y+2 par (Y=X+2 ; X=4 )

Figure 4: Original program

X+=Y+2 [ ] par (Y=X+2 [ ] ; X=4 [ ] )

Figure 5: Annotated program

6 Adding Parallelism

We will now modifiy our first approach to support non-communicating parallelism [9], also referred to
as interleaving, where the execution of two (or more) programs are interleaved while each individually
maintains program order. To the best of our knowledge, RCC does not support parallelism in any form.
Due to space constraints, we restrict the language to assignments and parallelism only. Conditionals and
loops can be modified in a similar way and so are omitted. Let us reuse previous notation such that P is
now the set of programs of this restricted language, P̂ is now the set of annotated programs, P−1 is now
the set of inverted programs and S is now the set of statements of this restricted language. The definition
of a statement becomes

S ::= skip | X = Exp | X Cop Exp | P par P

6.1 Challenges

Supporting parallelism introduces three challenges. Execution of parallel programs results in a non-
deterministic execution order. Our first approach works as the programs are sequential, allowing the
inverted program to follow the inverted program order. However there may be different execution orders
of the same parallel program due to interleaving. So, without care, programs can be executed forwards
under one interleaving and reversed under another, which is clearly incorrect. Consider the program
in Figure 4 represented via (P1 par (Q1;Q2)), where the three possible execution interleavings are
(P1;Q1;Q2), (Q1;P1;Q2) or (Q1;Q2;P1). Imagine the program here is executed under the first interleav-
ing with the initial data store σ where X=1 and Y=1, resulting in the final state σ ′ where X=4 and Y=6.
Without further information, inversion may assume the third interleaving was executed and so inverts the
statements in the order (P1;Q2;Q1), clearly producing the incorrect final state where X=4 and Y=1. We
therefore will require both the auxiliary store δ and the inverse program as before, as well as the order in
which the statements were executed forwards, termed interleaving order.

Another challenge is the atomicity of statements. Execution of a statement typically takes several
steps to complete, increasing the possible execution paths and likelihood of races. Consider Figure 4
with no assumption of atomicity and initial state σ as above. Imagine Y is first evaluated in P1, then all
of Q1 and Q2 are executed, before P1 finally completes. This leads to the final state σ ′ where X=7 and
Y=3, values not reachable when assuming statement atomicity.

Finally, push operations inserted in our first approach relate to a specific statement and these must
be executed atomically. Consider the program X+=1 par X=5 augmented via our first approach into
X+=1 par push(σ(X),δ(X)); X=5, with no such atomicity and X initially 1. Assume that the push

statement executes first, storing the value 1 onto δ(X). The constructive assignment is then executed,
incrementing X by one to 2. Finally the destructive assignment is executed, updating X to 5. The inverted
version of this program is X-=1 par X=pop(δ(X). Reversing the same interleaving first inverts the
destructive assignment, assigning the value 1 from δ(X) to the variable X. The constructive assignment
is then inverted, decrementing X by one to 0. Clearly, this reversal has been unsuccessful.
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6.2 Overcoming these Challenges

We update our approach to now capture the interleaving order. An identifier, or element of the set of
natural numbers used in ascending order, is associated with each statement, each time it is executed, and
stored onto a stack within the source code, very much like the communication keys of CCSK [13, 14].
These identifiers index any reversal information stored, and are used to direct the execution of the inverted
version. This makes the execution order deterministic, thus removing the first challenge.

The updated approach will not introduce push statements in order to avoid issues relating to state-
ment atomicity. A combination of this, and the fact that the interleaving order is not determined until
runtime, mean all state-saving will be deferred to the operational semantics. A separate set of operational
semantics are defined for forward execution. As such, inversion will no longer introduce pop statements,
with all interaction with the reversal information being deferred to another separate set of operational
semantics. In future work, we will add support for conditionals and loops, and further extend this with
locks and mutual exclusion to allow this approach to be implemented within the language syntax.

We make the assumption of the atomicity of statements, restricting all interleaving to statement level,
though this will be removed in future work.

6.3 Annotation and Forward Execution

The process of augmentation is replaced with annotation. This takes the original program, appends the
necessary stacks into the program statements’ source code, before returning the annotated version. Each
statement is associated with a stack, necessary for programs containing loops as each statement may be
executed multiple times requiring multiple identifiers. Stacks are not strictly necessary for our restricted
language, however will be vital when we introduce conditionals and loops and so are included here for
continuity. Each of these stacks is initially empty, and named uniquely via the function nextS. Let S′
be the set of annotated statements. The function ann : P→ P̂ takes the original program and recursively
applies the re-defined function a : S→ S′ to each statement, producing the annotated version, where e is
an arithmetic expression.

ann(ε) = ε A ann(S;P) = a(S);ann(P)

a(skip) = skip A a(X = e) = X = e A

a(X cop e) = X cop e A a(P par Q) = ann(P) par ann(Q)

At this point, we have introduced a new syntactic category for annotated programs. Annotated programs
and statements are defined below, with arithmetic and Boolean expressions as in Section 2. The sets P
and S are also extended accordingly.

AP ::= ε A | AS; AP

AS ::= skip A | X = Exp A | X Cop Exp A | AP par AP

Consider Figure 4. Applying the function ann to this program produces the annotated version in
Figure 5, where each statement now has an empty stack.

As mentioned previously, annotation does not handle state-saving with this now implemented within
the operational semantics. Each time a statement execution completes, a unique identifier is added to that
statement’s source code stack. To synchronise the use of these identifiers, the next available identifier
is retrieved through the function next(). To avoid further data races, there is mutual exclusion on the
use of this atomic function between the parallel programs. This function, typically used as m = next(),
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X+=Y+2 [ 1 ] par (Y=X+2 [ 2 ] ; X=4 [ 3 ] )

Figure 6: Final Annotated program

X−=Y+2 [ 1 ] par (X=4 [ 3 ] ; Y=X+2 [ 2 ] )

Figure 7: Inverted program

assigns the value of the next available identifier to m, while incrementing the value it will return next time
by one. Identifiers will index reversal information, meaning the stacks within the auxiliary store now
consist of elements of the form (i,v), where i is an identifier and v is a value. The following operational
semantics defines the forwards execution, where f (A) indicates an update of the source code stack A.

[Skip]
(skip A;P,σ ,δ )→ (P,σ ,δ )

[Seq1]
(S A,σ ,δ )→ (S′ f (A),σ ′,δ ′)

(S A;P,σ ,δ )→ (S′ f (A);P,σ ′,δ ′)

[DA1]
(X = v A,σ ,δ )→ (skip m:A,σ [X 7→ v],δ [(m,σ(X)) 7→ X])

where m= next()

[CA1]
(X cop v A,σ ,δ )→ (skip m:A,σ [X 7→ σ(X) op v],δ )

where m= next()

[DA2]
(e,σ ,δ )→ (e′,σ ′,δ ′)

(X = e A,σ ,δ )→ (X = e′ A,σ ′,δ ′)
[CA2]

(e,σ ,δ )→ (e′,σ ′,δ ′)
(X cop e A,σ ,δ )→ (X cop e′ A,σ ′,δ ′)

[P1]
(P par skip,σ ,δ )→ (P,σ ,δ )

[P2]
(skip par Q,σ ,δ )→ (Q,σ ,δ )

[P3]
(P,σ ,δ )→ (P′,σ ′,δ ′)

(P par Q,σ ,δ )→ (P′ par Q,σ ′,δ ′)
[P4]

(Q,σ ,δ )→ (Q′,σ ′,δ ′)
(P par Q,σ ,δ )→ (P par Q′,σ ′,δ ′)

Sequential composition is handled similarly to our first approach, with the exception that the source
code stacks are present and potentially modified. The expressions within assignments are handled either
by [DA2] or [CA2] respectively, with no identifier association due to our assumption of the atomicity
of statements. When the execution of a destructive assignment completes, the rule [DA1] associates a
new identifier m within the source code stack A, and uses it to index the old value σ (X) stored on δ .
Constructive assignments complete via the rule [CA1], where an identifier is associated but no reversal
information is stored. Parallel composition executes as expected, with either program able to make a step
of execution, until one side is complete meaning the statement becomes sequential.

After the execution of the annotated program under these semantics, the final annotated version with
populated stacks is produced. Linking again to our example with the execution interleaving (P1;Q1;Q2),
initial state σ with values X=1 and Y=1 and initial auxiliary store δ , the final annotated version is shown
in Figure 6. The program state σ ′ after this execution has the values X=4 and Y=6, while δ ′ contains the
necessary reversal information.

6.4 Inversion and Reverse Execution

Inversion now takes the final annotated program and produces a relatively similar inverted version. This
contains all statements of the given program in its inverted program order, with the inverted version of
all constructive assignments. Due to the similarity between annotated and inverted versions, we now let
S′ be the set of both annotated and inverted statements of this approach. The function inv : P̂→ P−1

recursively applies the re-defined function i : S′→ S′ to each statement in reverse order. Both inv and i
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are now given, with icop as defined in Section 5.

inv(ε A) = ε A inv(AS;AP) = inv(AP); i(AS)

i(skip A) = skip A i(X = e A) = X = e A

i(X cop e A) = X icop e A i(P par Q) = (inv(P)) par (inv(Q))

The inverted version does not make use of the reversal information, and instead must be executed
under a separate set of operational semantics for reverse execution. These semantics are responsible
for all interaction with any information saved, as well as using the identifiers to direct inversion along
the correct interleaving order. This is implemented using the mutually exclusive and atomic function
previous(), related to the function next() such that next() = previous() + 1. The statement m
= previous() checks that the current value of m matches the current value of previous(), as well as
decrementing the value the function will return next time by 1. The statement m == previous() again
checks that m is equal to previous(), but does not decrement the value it will return next time. This
forces all steps of the evaluation to happen sequentially, reflecting our assumption of statement atomicity.
The functions previous() and next() are strongly related, meaning the execution of one must update
the value of the other accordingly. Here the rules for sequential and parallel composition are similar to
those in Section 6.3, but with the transition relation replacing→, hence they are omitted to save space.

[RDA]
A = m:A′ δ(X) = (m,v):X′ m = previous()

(X = e A,σ ,δ ) (skip A′,σ [X 7→ v],δ [X/X′])

[RCA1]
A = m:A′ m = previous()

(X cop v A,σ ,δ ) (skip A′,σ [X 7→ σ(X) op v],δ )

[RCA2]
(e,σ ,δ ) (e′,σ ′,δ ′) A = m:A′ m == previous()

(X cop e A,σ ,δ ) (X cop e′ A,σ ′,δ ′)

Destructive assignments are handled via the single rule [RDA] as no evaluation of the expression e is
required. A destructive assignment can be executed provided its most recent identifier matches both
the current value of previous() and the index of the top element of its stack on δ . Provided these
conditions hold, the variable is restored to its previous value retrieved from its stack on δ , before both
of these stacks are popped. Constructive assignments require the two rules [RCA1] and [RCA2] as the
expression must still be evaluated. Each step of the evaluation is executed sequentially by ensuring the
identifiers match without removing them. Only when the assignment has executed will the identifiers be
removed, restricting interleaving until this point.

Applying the function inv to the final annotated program in Figure 6 produces the inverted version
in Figure 7. Execution of this inverted version under the reverse operational semantics starting with the
state σ ′ with values X=4 and Y=6, results in the reverse statement order of Q2;Q1;P1, the state σ with
values X=1 and Y=1 and the auxiliary store δ . Therefore the execution has been successfully reversed
with all variables restored to their initial values.

6.5 Correctness

We now outline our correctness results for the second approach. Annotation of a program P assigns empty
stacks to the statements of the program. During execution, these stacks are populated with identifiers.
Let’s denote such an update of the stacks of ann(P) as ρ(ann(P)). We now give propositions correspond-
ing to those in Sections 4 and 5, however we defer all termination parts to future work. Proposition 3
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shows that the behaviour of the original and annotated programs are semantically equivalent with respect
to the data store σ , and that the annotated program will populate both the stacks within the source code
and the auxiliary store.
Proposition 3. Let P be a program and ann(P) = P′. If (P,σ ,δ )→∗ (skip,σ ′,δ ) for some σ ′, then
(P′,σ ,δ )→∗ (skip C,σ ′,δ ′) for some C and δ ′ and the computation (P′,σ ,δ )→∗ (skip C,σ ′,δ ′)
produces an update ρ(P′) for some ρ .

Proposition 4 shows that executing the inverted program under the two stores and the updated source
code stacks does indeed reverse all components to their initial values, as well as using the identifiers
stored in the code to direct the execution.
Proposition 4. Let P be a program and ann(P) = P′. If (P,σ ,δ )→∗ (skip,σ ′,δ ) for some σ ′, then
(inv(ρ(P′)),σ ′,δ ′) ∗ (skip C,σ ,δ ) for some C, δ ′ and ρ .

At least two additional lemmas are used throughout the proofs of the two propositions above. These
correspond to the lemmas used in Sections 4 and 5, and are listed below.
Lemma 3. Let S be a program statement and ann(S) = S A for some A. If (S,σ ,δ )→∗ (skip,σ ′,δ ) for
some σ ′, then (S A,σ ,δ )→∗ (skip A′,σ ′,δ ′) for some A′ and δ ′.
Lemma 4. Let S be a program statement and ann(S) = S A for some A. If (S,σ ,δ )→∗ (skip,σ ′,δ ) for
some σ ′, then (inv(S A′),σ ′,δ ′) ∗ (skip C,σ ,δ ) for some A′, δ ′ and C.

7 Conclusion

We have presented an approach to reversing an imperative programming language, using the state-saving
notion. We have defined two functions, namely aug and inv, capable of producing the augmented version
and inverted version of an originally irreversible program, respectively. We have proved that our aug-
mentation does not alter the behaviour of the program with respect to the data store, and that it saves the
necessary information to revert the program state after execution to that of before. The auxiliary store
used to save this reversal information is also proved to revert to its initial state, ensuring no extra garbage
data is produced.

We also described a modification to our first approach to include parallelism within a restricted lan-
guage, while avoiding a number of issues parallelism introduces. We defined a function ann and redefined
inv to support the recording of the interleaving order into the source code. Two sets of operational se-
mantics are defined, one performing the state-saving for forwards execution, and another performing the
inversion for reverse execution. Finally, we propose the correctness results for this modified approach.

In the future, we shall relax the language restriction and support both conditional statements and
while loops alongside parallel statements. The assumption of statement atomicity will be removed when
considering a richer language which supports locks and mutual exclusion, allowing the approach de-
scribed here to be implemented within the language itself. We will continue to extend the approach
towards the complexity of C.
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Using Session Types for Reasoning About Boundedness in the
π-Calculus

Hans Hüttel∗

Department of Computer Science, Aalborg University, Denmark

The classes of depth-bounded and name-bounded processes are fragments of the π-calculus for which
some of the decision problems that are undecidable for the full calculus become decidable. P is
depth-bounded at level k if every reduction sequence for P contains successor processes with at most
k active nested restrictions. P is name-bounded at level k if every reduction sequence for P contains
successor processes with at most k active bound names. Membership of these classes of processes is
undecidable. In this paper we use binary session types to decise two type systems that give a sound
characterization of the properties: If a process is well-typed in our first system, it is depth-bounded.
If a process is well-typed in our second, more restrictive type system, it will also be name-bounded.

1 Introduction

In the π-calculus, the notion of name restriction is particularly important. The study of properties of name
binding is a testbed for studying properties of bindable entities and notions of scoping in programming
languages. In a restriction process (νx)P the name x has P as its scope and it is customary to think of x
as a new name, known only to P. It is the interplay between restriction and replication (or recursion) that
leads to the π-calculus being Turing-powerful. Without either of these two constructs, this is no longer
the case [9].

With full Turing power comes undecidability of commonly encountered decision problems such as
the termination problem “Given process P, will P terminate?” and the coverability problem “Given
process P and process Q, is there a computation of P that will eventually reach a process that has Q as
a subprocess?”. Several classes of processes have been identified for which (some of) these problems
remain decidable. Examples are the finitary processes without replication or recursion, the finite-control
processes [3] in which every process has a uniform bound on the number of parallel components in
any computation, the bounded processes [2] for which there are only finitely many successors of any
reduction up to a special notion of structural congruence with permutation over a finite set of names, and
processes with unique receiver and bounded input [1].

More recently, there has been work in this area that studies limitations on the use of restriction that
will ensure decidability. The notion of depth-bounded processes was introduced by Meyer in [11]. A
process P is depth-bounded at level k if there is an upper bound k, such that any reduction sequence for P
will only lead to successor processes that have at most k active nested restrictions – that is, restrictions not
occurring underneath some prefix. Termination and coverability are both decidable for depth-bounded
processes. The class of depth-bounded processes is expressive and contains a variety of other decidable
subsets of the π-calculus. Moreover, for any fixed k it is decidable if a process P is depth-bounded at
level k; however, it is undecidable if there exists a k for which P is depth-bounded [11].

∗E-mail: hans@cs.aau.dk
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In a more recent paper [4], D’Osualdo and Ong have introduced a type system that gives a sound
characterization of depth-boundedness: If P is well-typed, then P is depth-bounded. The underlying idea
of this type system is to analyze properties of the hierarchy of restrictions within a process.

Another class of π-calculus processes is that of name-bounded processes, introduced by Hüchting
et al. [8]. A process P is name-bounded at level k if any reduction sequence for P will only lead to
successor processes with at most k active bound names.

The goal of this paper is to use binary session types [7] to give sound characterizations of depth-
boundedness, respectively name-boundedness in the π-calculus: If a process is well-typed, we know
that it is depth-bounded, respectively name-bounded. The advantages of this approach are the following:
Firstly, unlike the type system proposed by D’Osualdo and Ong [4] we can directly keep track of how
names are used and where they appear in a process, since this is central to session type disciplines.
The linear nature of session names ensures that every name of this kind will always, when used, occur in
precisely two parallel components. Secondly, the session type disciplines are resource-conscious; we can
therefore ensure that new bound names are only introduced whenever existing bound names can no longer
be used. Both type systems use finite session types to achieve this for recursive processes. Informally, a
new recursive call can only occur once all sessions involving the bound names of the current recursive
call have been used up. In the proof of the soundness of the system for characterizing name-boundedness
system, we make use of the fact that it is a more restrictive version of that for depth-boundedness.

The rest of our paper is organized as follows. Section 2 describes the π-calculus that we will consider;
section 3 introduces the notions of boundedness. Section 4 presents a type system for depth-bounded
processes, which is analyzed in sections 5 and 6. Section 7 presents a type system for name-bounded
processes. Section 8 discusses the relationship with other classes of processes.

2 A typed π-calculus with recursion

We follow Meyer [11] and use a π-calculus with recursion instead of replication. The reason behind this
choice of syntax is that we would like infinite behaviours to make use of bound names in a non-trivial
manner that guarantees boundedness properties. In general, the combination of restriction and replication
in !(νx)P will result in a process that fails to be name-bounded.

2.1 Syntax

We assume the existence of a countably infinite set of names, N , and let a,b, . . . and x,y, . . . range over
N . Moreover, we assume a countably infinite set of recursion variables, R, and let X ,Y, . . . range over
R.

2.1.1 Processes

Following [5] we will use a version of the π-calculus with polarized names in order to ensure that the
endpoints of a channel will not end up in the same parallel component. We assume polarities ranged
over by p,q . . .. The polarities + and − are dual; we define + =− and − = +. The empty polarity ε is
self-dual and used for names used as channels that are not session channels and to tag name occurrences
in the binding constructs of input and restriction. We call the set of polarized names Npol.
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The formation rules of processes are given by

P ::= xp(y).P1 | xp〈yq〉.P1 | P1 | P2 | (νx : T )P1 | µ X .P1 | X | 0
p ::= + | − | ε

As usual, xp(y).P1 denotes a process that inputs a name on channel x and continues as P1; the unpolarized
name y is bound in P1. xp〈yq〉.P1 is a process that outputs the polarized name yq on channel x and
continues as P1. P1 | P2 is the parallel execution of P1 and P2. µX .P1 is a recursive process with body P1.
We assume that every such recursive process is guarded; every occurrence of a recursion variable must
be found underneath an input or an output prefix. In µX .P1 the µX is called a binding occurrence of X .
A process P is recursion-closed if every recursion variable X in P has a binding occurrence for some
subprocess µX .P1 and if all recursion variables are distinct. We employ a notion of typed restriction,
which we will now explain.

2.1.2 Typed restrictions

In the restriction (νx : T )P1 the unpolarized name x is bound in P1 and annotated with type T . Our set
of types T is a non-recursive version of the binary session types introduced by Gay and Hole [5] and
defined by the formation rules

T ::= S | Ch(T )

S ::= (S1,S2) |!T.S |?T.S | end

A type T can be a linear endpoint type S or pair of endpoints (S1,S2), or an unlimited channel type
Ch(T ). An endpoint type S of the form !T.S denotes that a channel of this type can output a name of type
T ; afterwards, the channel will have type S. An endpoint type of the form ?T.S denotes that a channel
of this type can input a name of type T ; afterwards, the channel will have type S. The special endpoint
type end is the type of an endpoint that allows no further communication. If T = (!T1.S2,?T ′

1 .S
′
2) we let

T ↓= (S2,S′2); this denotes the successor of a pair of endpoint types. If T = Ch(T1), then T ↓= T .
We use the type annotation of restrictions to keep track of the subject name that led to a reduction

and of how the types of bound names evolve.
The sets of free and bound names of a process, fn(P) and bn(P), are defined as usual. To simplify the

presentation, we assume all free and bound names distinct. We let P{y/x} denote the capture-avoiding
substitution that replaces all free occurrences of x in P by y. A name n ∈ bn(P) is active if it does not
appear underneath a prefix.

2.1.3 Structural congruence

Structural congruence is the least congruence relation for the process constructs that is closed under the
axioms in Table 1.

Following Meyer [11], we sometimes consider processes in restricted form. A process is in inner
normal form, if every restriction (νx : T ) only encloses parallel components that contain x. A process is
in outer normal form if every restriction not underneath a prefix appears at the outermost level.

Definition 1 (Normal forms). Let P be a process.

• P is in inner normal form if for every subprocess (νx : T )(P1 | · · · | Pk) where none of the Pi are
parallel compositions of processes, we have x ∈ fn(Pi) for all 1 ≤ i ≤ k.
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(NEW-1) (νx : T )(νy : T ′)P ≡ (νy : T ′)(νx : T )P (NIL-1) P | 0 ≡ P

(NEW-2) (νx : T )P | Q ≡ (νx : T )(P | Q) if x /∈ fn(Q) (NIL-2) (νx : T )0 ≡ 0

(PAR-1) P | Q ≡ Q | P

(PAR-2) (P | Q) | R ≡ P | (Q | R)

Table 1: Structural congruence: Axioms and rules

(COM-ANNOT) ap(x).P1 | ap〈yq〉.P2
{a}−−→ P1{yq

/x} | P2

(PAR-ANNOT)
P α−→ P′

P | Q α−→ P′ | Q

(NEW-ANNOT)
P α−→ P′

(νx : T )P α−→ (νx : T ′)P′
where

T = T ′ if x /∈ α
T ′ = T ↓ if x ∈ α

(UNFOLD-ANNOT)
P > Q Q α−→ P′

P
{rec}∪α−−−−−→ P′

(STRUCT-ANNOT) P ≡ Q Q α−→ Q′ Q′ ≡ P′

P α−→ P′

Table 2: Annotated reduction rules

• P is in outer normal form if P = (νx1) . . . (νxk)P1 such that xi ∈ fn(P1) for all 1 ≤ i ≤ k and such
that all restrictions in P1 appear underneath prefixes.

Proposition 1. For every process P we can construct a process P1 ≡ P in inner normal form and a
process P2 ≡ P in outer normal form.

2.2 An annotated reduction semantics

We define the behaviour of processes by an annotated reduction semantics that keeps track of when
recursive unfoldings are necessary. Reductions are of the form P α−→ P′ where either α = {a},a ∈ N or
α = {rec,a} for a ∈ N . The latter annotation indicates that recursive unfolding was necessary to obtain
the reduction. We define n({a}) = a and n({rec,a}) = a. The reduction rules are found in Table 2. Note
that in the rule (NEW-ANNOT) the type associated with the bound name x evolves, if x if x is responsible
for the communication and T is a session type.

If P reduces to P′ in zero or more reduction steps, we write P →∗ P′.
Recursion is described by an unfolding relation which we define in Table 3. In the definition, we use

the notion of unfolding contexts. An unfolding context C[ ] is an incomplete process terms whose hole
indicates where a prefix that participates in a reduction step appears as the direct result of unfolding a
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recursive process.
Definition 2 (Unfolding contexts). The set of unfolding contexts is given by the formation rules

C ::= [ ] |P | (νx : T )C

(UNFOLD) µX .P > P[µX .P/X ] (CONTEXT)
P > P′

C[P]>C[P′]

Table 3: The rules for unfolding

Example 1. We can write the process

P def
= (νc : T )µX .a(x).x〈x〉.X | µY.(νb : U)a〈b〉.x(y).Y

as
C1[µX .a(x).x〈x〉.X ] where C1 = [(νc : T )[] | µY.(νb : U)a〈b〉.x(y).Y ]

or
C2[µY.(νb : U)a〈b〉.x(y).Y ] where C2 = (νc : T )µX .a(x).x〈b〉.X | [].

3 Notions of boundedness

Meyer introduces three notions of boundedness [11] for the π-calculus, and we now introduce them.

Depth-bounded processes A process P is depth-bounded if every configuration reachable from it can
be rewritten so as to have no more than k nested restrictions. To define this, we first introduce a function
nest(P) that counts the maximal number of active nested restrictions. A restriction is active if it does not
occur underneath a prefix – this is similar to [4].
Definition 3. The nest function is defined by the clauses

nest(0) = 0 nest(X) = 0

nest((νx : T )P) = 1+nest(P) nest(P1 | P2) = max(nest(P1),nest(P2))

nest(µX .P1) = nest(P1) nest(xp(y).P1) = nest(xp〈yq〉.P1) = 0

The restriction depth of a process is then the minimal nesting depth up to structural congruence.
Definition 4. The depth of a process P is given by

depth(P) = min{nest(Q) | Q ≡ P}.
We define a normalization ordering ≻ on processes that removes bound names not found in a process.

It is generated by the axiom
(νx)P ≻ P if x 6∈ fn(P)

and closed under structural congruence. A process P is normalized if it has no superfluous bound names,
that is, if P 6≻; we write P Q if P ≻∗ Q and Q is normalized. 1

Definition 5 (Depth-bounded process). A process P is depth-bounded if there is a k ∈ N such that for
every P′ where P →∗ P′ we have that for some P′′ with P′′ ≡ P′ we have depth(P′)≤ k.

1Note that (νx : T )P ≡ P if x 6∈ fn(P) is a derived identity if we include the axiom (νx)0 ≡ 0.
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Name-boundedness A process P is name-bounded if there exists a constant k ∈N such that whenever
P →∗ P′ and P′ P′′, then P′′ has at most k restrictions. It is obvious that every name-bounded process
is also depth-bounded.

Example 2. The term
P1 = µX .(νr1)(r+1 〈a〉.X | r−1 (x).X)

is depth-bounded with depth(P1) = 1. The term

P2 = µX .(νr1)(νr2)(r+1 〈r2〉.X | r−1 (x).X | r+2 〈r1〉 | r−2 (x))

is depth-bounded with depth(P2) = 2. Neither P1 nor P2 is name-bounded.

Width-boundedness A third notion of boundedness is that of width-boundedness. A process P is
width-bounded if there exists a constant k ∈ N such that whenever P →∗ P′ we have that every bound
name in P′ occurs in at most k parallel components. This coincides with the notion of fencing recently
used by Lange et al. [10] introduced in their analysis of Go programs.

4 Using session types for depth-boundedness

We now present a session type system that gives a sound characterization of depth-boundedness. Our
account of binary session types similar to that used by Gay and Hole [5].

4.1 Types and type environments

Our type judgements are of the form Γ,∆ ⊢ P, where Γ contains the type bindings of the free polarized
names in P. A type judgment is to be read as stating that P is well-behaved using the type information
found in the type environment Γ and the recursion environment ∆ (explained in Section 4.2).

Definition 6. A type environment Γ is a partial function Γ : Npol ⇀ T with finite support.

• Γ is unlimited if for every x ∈ dom(Γ) we have Γ(x) = Ch(T ) for some T or Γ(x) = end

• Γ is linear if for every x ∈ dom(Γ) we have that Γ(x) 6= Ch(T ) for all T . We let Γlin denote the
largest sub-environment of Γ that is linear.

• If for every x ∈ dom(Γ) we have that Γ(x) = end or Γ(x) = (end,end), we say that Γ is terminal.

We define duality of endpoint types in the usual way (note that duality is not defined for base types).

Definition 7 (Duality of endpoint types). Duality of endpoint types is defined inductively by

!T.S =?T.S ?T.S =!T.S end= end

A type T = (S1,S2) is balanced if S1 = S2. A type environment Γ is balanced if for all x ∈ dom(Γ)
we have that Γ(x) is a balanced type or a base type B.

Definition 8 (Depth of types). The depth of an endpoint type S is denoted d(S) and is defined inductively
by

d(!T.S) = 1+d(S) d(?T.S) = 1+d(S) d(end) = 0

For a type T = (S1,S2) we let d(T ) = max(S1,S2). For all other T , we define d(T ) = 0.
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Definition 9 (Addition of type environments). Let Γ1 and Γ2 be type environments such that dom(Γ1)∩
dom(Γ2) = /0. Then Γ1 +Γ2 is the type environment Γ that satisfies

Γ(x) =

{
Γ1(x) if x ∈ dom(Γ1)\dom(Γ2)

Γ2(x) if x ∈ dom(Γ2)\dom(Γ1)

4.2 Recursion and recursion environments

In our type system, recursion variables are typed with type environments. A recursion environment ∆ is a
function that to each recursion variable X assigns a type environment Γ. The idea is that Γ will represent
the names and associated types needed to type a process µX .P.
Definition 10. A recursion environment ∆ is a partial function ∆ : R ⇀ (Npol ⇀ T ) with finite support.
We let ∆ /0 denote the empty recursion environment.
Definition 11. Let ∆1 and ∆2 be recursion environments where for all X ∈ dom(∆1)∩dom(∆2) we have
∆1(X) = ∆2(X). ∆1 +∆2 is the recursion environment ∆ satisfying

∆(X) =





∆1(X) if X ∈ dom(∆1)\dom(∆2)

∆2(X) if X ∈ dom(∆2)\dom(∆1)

∆1(X) otherwise

4.3 Type rules

The set of valid type judgments is defined by the rules in Table 4. The type rules differ from the rules
from standard session type systems in their treatment of recursion in two ways.

The rule (VAR) ensures that a recursion variable X can only be well-typed for Γ and ∆ if the type
environment Γ1 associated with X mentions all the names in Γ. Moreover, the rule requires that the linear
part of the type environment must be terminal and that the linear names present when a recursion variable
X is reached include the ones found in the type environment used to type the process µX .P. Therefore,
when a recursion variable is reached and a recursive call is made, the restricted names in the unfolding
will be new: the existing sessions have been “used up”.

The rule (CHAN) ensures that channels that are not session channels can only be bound within a
non-recursive process, as the recursion environment present must be ∆ /0. Therefore, names that are not
session names cannot accumulate because of recursive calls and lead to an unbounded restriction depth.

The need for private names to be linear inside a recursive process arises because an unlimited channel
can be exploited by a recursive process to introduce unbounded nesting, as the following example from
[4] illustrates.
Example 3. Consider the following process that cannot be typed; we therefore leave out type annotations
and polarities in its description. Let

P = (νs)(νn)(νv)(νa)(s〈a〉 | µS.(s(x).(νb)((v〈b〉.n〈x〉 | s〈b〉) | S)))

The process can evolve as follows.

P →∗ (νs)(νn)(νv)(νa)(P1 | (νb)(νb′)((v〈b〉.n〈a〉 | v〈b′〉.n〈b〉 | s〈b′〉))
where P1 = µS.(s(x).(νb)((v〈b〉.n〈x〉 | s〈b〉) | S)) can introduce further nesting since the channel s will,
when used together with recursion, be used with an arbitrary number of new names that cannot be
eliminated.
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(IN-1)
Γ,xp : T2,y : T1,∆ ⊢ P

Γ,xp :?T1.T2,∆ ⊢ xp(y).P
(IN-2)

Γ,xp : Ch(T1),y : T1,∆ ⊢ P
Γ,xp : Ch(T1),∆ ⊢ x(y).P

where T1 6= end where T1 6= end

(OUT-1)
Γ,xp : T2,∆ ⊢ P

Γ,xp :!T1.T2,yq : T1,∆ ⊢ xp〈yq〉.P (PAR)
Γ1,∆1 ⊢ P1 Γ2,∆2 ⊢ P2

Γ1 +Γ2,∆1 +∆2 ⊢ P1 | P2

T1 6= end

(OUT-2)
Γ,x : Ch(T2),yq : T2,∆ ⊢ P

Γ,x : Ch(T2),yq : T2,∆ ⊢ x〈yq〉.P (SESSION)
Γ,x+ : S,x− : S,∆ ⊢ P
Γ,∆ ⊢ (νx : (S,S))P

where T2 unlimited

(NIL) Γ,∆ ⊢ 0 Γ unlimited (VAR) Γ,∆ ⊢ X
∆(X) = Γ1
dom(Γ)⊆ dom(Γ1)
Γlin is terminal

(REC)
Γ,∆,X : Γ ⊢ P
Γ,∆ ⊢ µX .P (CHAN)

Γ,x : Ch(T ),∆ /0 ⊢ P
Γ,∆ /0 ⊢ (νx : Ch(T ))P

Table 4: Type rules for depth-boundedness

Note that the (PAR) rule implies that a process P that can be typed in a linear environment must be
width-bounded with bound 2, since every name can then occur in either precisely one or precisely two
parallel components.

Delegation of session names is handled by (OUT-1); session channels are linear, so the name yp

cannot appear in the continuation P. A special feature of our type system is that endpoint channels that
are no longer usable cannot be delegated. Thus, in the rules (IN-1), (IN-2), and (OUT-1), the object type
T1 must be different from end.

5 A subject reduction property

To show our characterization of depth-boundedness, we state a type preservation property: For any well-
typed process P, the type of the channel that gives rise to a reduction of P will evolve according to its
session type.

Since this channel may be a restricted channel, we must also describe how the session types of
restricted channels evolve. Every process in which all bound names are pairwise distinct gives rise
to an internal type environment (Definition 12) that collects the types of the bound names; this is an
overapproximation of the types of the active names in the process. This environment is defined as follows.

Definition 12. Let P be a process whose bound names are pairwise distinct. ΓP denotes the internal type
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environment of P; it is defined by the following clauses (where π denotes a prefix).

ΓP1|P2 = ΓP1 ,ΓP2 Γ(νx:T )P = x : T,ΓP

ΓµX .P = ΓP Γπ.P = ΓP

ΓX = /0

The following substitution lemma for variables tells us about the annotated reductions of open pro-
cess terms.

Lemma 1 (Substitution of variables in reductions). If P[µX .P/X ]
{x}−−→ P′ then P

{x}−−→ P′′, with P′ =
P′′[µX .P/X ].

Proof. Induction in the structure of P.

Lemma 2 (Substitution of variables in typings of recursion). Suppose Γ,∆ ⊢ µX .P and Γ,∆ ⊢ Q. Then
Γ,∆ ⊢ Q[µX .P/X ].

Proof. Induction in the structure of Q.

Q = 0: Trivial.

Q = X : Immediate, since Q[µX .P/X ] = µX .P.

Q = Y (with Y 6= X ): Immediate.

Q = Q1 | Q2: We must then have concluded Γ,∆ ⊢ Q using (PAR) with premises Γ1,∆ ⊢ Q1 and Γ2,∆ ⊢
Q2. By induction hypothesis we then have

Γ1,∆ ⊢ Q1[µX .P/X ]

Γ2,∆ ⊢ Q2[µX .P/X ]

We now use the (PAR) rule and get

Γ,∆ ⊢ Q1[µX .P/X ] | Q2[µX .P/X ]

The result now follows by the distributive property of substitution.

Q = (νx : T )P1: We must have conclude Γ,∆ ⊢ Q using (SESSION) with premise Γ,x : S,∆ ⊢ P1. By
induction hypothesis we have that Γ,x : S,∆ ⊢ P1[µX .P/X ]. But then by the (SESSION) rule we
get that Γ,∆ ⊢ (νx : T )P1[µX .P/X ], and we conclude that Γ,∆ ⊢ Q[µX .P/X ].

Q = µY.Q1: We must have concluded Γ,∆ ⊢ Q using (REC) with premise Γ,∆ ⊢ Q1. By induction
hypothesis we have

Γ,∆ ⊢ Q1[µX .P/X ]

We can now apply (REC) to get the desired result.

Q = a(x).Q1: We must have concluded Γ,∆ ⊢ Q using (IN) with premise Γ1,a : T2,x : T1,∆ ⊢ Q1 and
assuming that Γ = Γ1,a :?T1.T2. By applying the induction hypothesis, we get that

Γ1,a : T2,x : T1,∆ ⊢ Q1[µX .P/X ]

An application of (IN) and the properties of substitution now gives us the result.
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Q = a〈x〉.Q1: Similar to the previous case.

We also need a substitution lemma for names.

Lemma 3 (Substitution of names). If Γ,x : T,∆ ⊢ P and y /∈ n(P) then Γ,y : T,∆ ⊢ P{y/x}.

Proof. Induction in the type rules.

5.1 A fidelity theorem

For a binary session type system, subject reduction takes the form of fidelity: the communications in a
well-typed process proceed according to the protocol specified by the channels involved.

Lemma 4 (Subject congruence and normalization). Suppose Γ,∆ ⊢ P. Then

• If P ≡ Q, then also Γ,∆ ⊢ Q

• If P ≻ Q, then also Γ,∆ ⊢ Q

Proof. Induction in the rules defining ≡ and ≻.

The fidelity theorem is a type preservation result: It states that the endpoint types evolve according
to the reduction performed. If the name x giving rise to the reduction is free, the annotation of x in the
type environment changes. If x is bound, its annotation in the restriction (νx : T ) changes to (νx : T ′),
where T ′ = T ↓.

Theorem 5 (Fidelity). Let Γ be a balanced type environment and let P be recursion-closed. If Γ,∆ /0 ⊢ P
and P α−→ P′ where x = n(α) then

• if x ∈ fn(P) and Γ = Γ′′,x : T , then Γ′,∆ /0 ⊢ P′ where Γ′ is balanced and Γ′ = Γ′′,x : T ↓
• if x /∈ fn(P), then Γ,∆ /0 ⊢ P′ and if ΓP = Γ′′,x : T then ΓP′ = Γ′′,x : T ↓ and ΓP′ is balanced.

Proof. Induction in the reduction rules.

Com-Annot Here, only the first case is relevant. We know that P= ap(x).P1 | ap〈yq〉.P2. Since Γ,∆ /0 ⊢P,
we must have that Γ = Γ1 +Γ2 where

Γ1,∆ /0 ⊢ ap(x).P1 (1)

and
Γ2,∆ /0 ⊢ ap〈yq〉.P2. (2)

We must have used (IN) to conclude (1), so we have Γ1(ap)=?T1.S and, letting Γ1 =Γ′
1+ap :?T1.S,

we have
Γ′

1,a
p : S,x : T1,∆ /0 ⊢ P1. (3)

Similarly, we must have used (OUT) to conclude (2). Since Γ is balanced, we have Γ2(ap) =!T1.S.
By the substitution lemma Lemma 3 and (3), we have Γ′

1,a
p : S,yq : T1,∆ /0 ⊢ P1{y/x}. Similarly,

letting Γ2 = Γ′
2,a

p :!T1.S,yq : T1, we get Γ′
2,a

p : S,∆ /0 ⊢ P2. An application of (PAR) now gives us
that

Γ′
1 +Γ′

2 +ap : S,ap : S,y : T1,∆ /0 ⊢ P1{y/x} | P2

The type environment Γ′
1 +Γ′

2 +ap : S,ap : S,y : T1 is balanced, since Γ′
1 and Γ′

2 are balanced and
since y must appear with polarity q in one of these (because Γ is balanced).
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Par-Annot Since Γ,∆ /0 ⊢ P | Q, we have that Γ1,∆ /0 ⊢ P where Γ = Γ1 +Γ2. The result now follows
easily by an application of the induction hypothesis to the reduction P a−→ P′ and subsequent use of
the (PAR) rule.

New-Annot There are two cases here: whether x = a or x 6= a. In both cases, the result follows imme-
diately by the induction hypothesis and use of the (SESSION) rule.

Unfold-Annot Follows from Lemma 4 and a direct application of the induction hypothesis.

Struct-Annot Follows from Lemma 4 and a direct application of the induction hypothesis.

6 Soundness of the type system for depth-boundedness

In the following we will consider the correctness properties of the type system for depth boundedness.

6.1 Properties of unfolding and nesting

We first establish a collection of properties that hold for arbitrary processes. Next we show that there are
further properties guaranteed by well-typed processes.

The following lemma describes how reductions occur. Reductions can happen directly or may need
unfoldings.

Lemma 6. Let P be an arbitrary recursion-closed process.

1. If P
{x}−−→ P′, then there exists an unfolding context C and a process Q such that P ≡ C[Q] and

P′ ≡C[Q′], and Q
{x}−−→ Q′ is an instance of (COM-ANNOT).

2. If P
{rec,x}−−−−→ P′ then there exists an unfolding context C and either P ≡C[µX .Q1] for some Q1 where

Q1[µX .Q1/X ]
{x}−−→ Q′

1 and P′ ≡ C[Q′
1] or P ≡ C[(µX .Q1) | Q2] where Q1[µX .Q1/X ] | Q2

{rec,x}−−−−→
Q′

1 | Q′
2 is an instance of (COM-ANNOT) and P′ ≡C[Q′

1 | Q′
2].

Proof. By induction in the annotated reduction rules. The proof of Case 2 uses Case 1.

6.2 Nesting properties of well-typed processes

We now restrict our attention to well-typed processes. The only potential source of unbounded restriction
depth is the presence of recursion, and we now show how our type system controls the introduction of
new bound names in the presence of recursion.

The first lemma tells us that bound names introduced by an unfolding do not interfere with names in
its surrounding process that represent terminated channels.

Lemma 7. If Γ,∆ ⊢ (νc : (end,end))P then c 6∈ fn(P).

The following lemma tells us that names that appear in an unfolding context will not reappear free in
the result of unfolding a recursive process.

Definition 13 (Known bound names). The set of known bound names in an unfolding context is defined
by

kn([] | P) = /0 kn((νx : T )C) = {x}∪kn(C)
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Lemma 8. Suppose we have Γ,∆ ⊢ C[X ] where C[X ] is recursion-closed and X occurs in µX .P. Then
we also have Γ,∆ ⊢C[µX .P] and kn(C)∩ fn(µX .P) = /0.

Theorem 9. Let P be recursion-closed. Suppose Γ,∆ /0 ⊢ P. Then P is depth-bounded.

Outline. The session types provide a bound on the nesting depth of a well-typed process. Suppose
Γ,∆ /0 ⊢ P. Let d(Γ,P) denote the sum of the depths of the session types in Γ and in ΓP, i.e.

d(Γ,P) = ∑
x:T∈Γ or x:T∈ΓP

d(T )

In a process P with k bound names, we know from Theorem 5 that there can be at most (d(Γ+ΓP)/2)−k
reduction steps before an unfolding has to take place, since every reduction step will decrease the depth
of one of the session types in ran(Γ)∪ ran(ΓP). Whenever unfoldings occur, the bound names in the
unfolding are distinct from those already known and will all be names of session channels. Moreover,
when the unfolding is reached, the channel used in the reduction will no longer be available. As a
consequence we see that the nesting depth will therefore not increase.

7 A type system for name-boundedness

We now show to modify our previous type system such that every well-typed process will be name-
bounded. The challenge is again one of controlling recursion. As before, the crucial observation is that
if private channels are linear, then all the channels that have been used when a recursion unfolding takes
place, can then be discarded.

In the case of name-boundedness, extra care must be taken, since recursion may now accumulate an
unbounded number of finite components that each contain pairwise distinct bound names.

Example 4. The untyped process

P2 = µX .(νr1)(νr2)(r1〈a〉.X | r1(x).X | r2〈a〉 | r2(x))

shows two problems that must be dealt with. Firstly, unfolding a recursion may introduce more parallel
recursive components that each have their own bound names. In this case, every communication on r1
will introduce two new parallel copies of the recursive process. Secondly, unfolding may introduce finite
(non-recursive) components which contain bound names that persist – in this case, we get new copies of
(νr2)(r2〈a〉 | r2(x)) for every unfolding.

The type language is

Slin ::=?Tlin .Slin |!Tlin .Slin | end Sun ::= Ch(Sun )

Tlin ::= (Slin ,Sun ) | (Slin ,Slin ) T ::= Tlin | Sun

Note that names of unlimited type Sun can only be used to delegate channels of unlimited type.
The type rules are as in the original type system, but we now modify the notions of addition for type

environments and for recursion environments. We add pairs (Γ1,∆1) and (Γ2,∆2) as follows.

Definition 14. Let Γ1,Γ2 be type environments and let ∆1,∆2 be recursion environments where at least
one of ∆1,∆2 is ∆ /0. We define (Γ1,∆1)+ (Γ2,∆2) = (Γ1 +Γ2,∆1 +∆2) where Γ1 is unlimited if ∆1 = ∆ /0
and Γ2 is linear if ∆2 6= ∆ /0.
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The intention is that an empty recursion environment must now go together with an unlimited type
environment. In other words: Non-recursive subprocesses can only contain unlimited names.

We say that a type environment Γ is limited if for every x ∈ dom(Γ) we have that Γ(x) = (Tlin ,Tlin )
for some Tlin . That is, the environment is balanced, and no name has an unlimited type.

A type environment Γ is skew if Γ = Γ1 +Γ2 with dom(Γ1)∩ dom(Γ2) = /0, Γ1 is linear and for all
x ∈ dom(Γ2) we have that Γ(x) = (Tlin ,Tun ) for some Tlin ,Tun .

7.1 Fidelity

As in the case of the previous type system, we need a fidelity result.

Theorem 10 (Fidelity). Let Γ be a type environment. If Γ,∆ /0 ⊢ P and P x−→ P′ then

• if x ∈ fn(P) and Γ = Γ′′,x : T , then Γ′,∆ /0 ⊢ P′ where Γ′ is balanced and Γ′ = Γ′′,x : T ↓
• if x /∈ fn(P), then Γ,∆ /0 ⊢ P′ and if ΓP = Γ′′,x : T then ΓP′ = Γ′′,x : T ↓ and ΓP′ is balanced.

Since the new type system specialized the previous one, this result is easily established.

7.2 Soundness for name-boundedness

We will show that if a process is well-typed in a limited environment, then it is name-bounded.
To show that a well-typed process P is name-bounded, we will show that

• For some k, whenever P →∗ P′, then P′ has at most k recursion instances in P′

• For some m, whenever P→∗ P′, every recursive subprocess of P′ contains at most m distinct bound
names

• There are only free names in the non-recursive part of P

Since every well-typed process is known to be depth-bounded, the result will then follow.
Our first lemma gives a characterization of well-typed recursive processes: They can contain at most

one instance of each recursion variable.

Lemma 11. Let µX .P be a process for which all binding occurrences of recursion variables are distinct.
If Γ,∆ ⊢ µX .P, there is at most one occurrence of X in P.

Proof. Suppose to the contrary that there is more than one occurrence of X in P. We then have that
µX .P = µX .(ν~n)(C1[X ] | C2[X ] | P′) where n is a set of names (possibly empty), and C1 and C2 are
process contexts.

The derivation of the type judgement Γ,∆ ⊢ µX .(ν~n)(C1[X ] |C2[X ] | P′) must have used the (REC)
type rule in its final step, having premise Γ,∆,X : Γ ⊢ (ν~n)(C1[X ] |C2[X ] | P′. But the derivation of this
judgement must have used the (SESSION) rule a number of times, preceded by an application of (PAR)
with premises Γ1,∆,X : Γ ⊢ C1[X ] and Γ2,∆ /0 ⊢ C2[X ] where Γ2 is unlimited. However, there can be
no derivation of the latter, since this would require the rule (VAR) in which it is assumed that the type
environment is linear.

We therefore conclude that our initial assumption was wrong; there can be at most one occurrence of
X in P.

This lemma tells us that there can be no finite, non-recursive subprocesses of a recursive process
with their own bound names; any bound name found in a non-recursive subprocess will also appear in
the recursive part of the process.
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Lemma 12. If Γ,∆ ⊢ µX .(C[X ] | P) where µX .(C[X ] | P) is in inner normal form and C[X ] is a process
context, then for every n ∈ bn(P) we have that n ∈ bn(C[X ]).

Proof. Consider a name n ∈ bn(P). Suppose n /∈ bn(C[X ]). Since µX .(C[X ] | P) is in inner normal form,
we would then have a subprocess (νn : T )P′ of P that would be typed using the (SESSION) rule. But for
this rule to be applicable, a recursion variable must be present in the type environment. This cannot be
the case, as P is non-recursive.

We now show that the number of recursive subprocesses that will appear in any reduction sequence
for a well-typed process is bounded. Let recs(P) denote the number of simultaneous recursion instances
in P and let recv(P) denote the multiset of recursion variable occurrences in P.

Together, the following two lemmas give an upper bound on the number of recursion instances in
any reduction sequence of a well-typed process.

Lemma 13. Suppose Γ,∆ ⊢ P and P α−→ P′ was proved without using instances of (UNFOLD-ANNOT) .
Then recs(P)≥ recs(P′).

Lemma 14. Suppose Γ,∆ ⊢ P where dom(∆)∩ recv(P) = /0 and P > P1. Then recs(P)≥ recs(P1).

The following normal form theorem is crucial.

Theorem 15. If Γ,∆ ⊢ P, then there exists a k ≥ 0 such that whenever P →∗ P′, we have P ≡ P1 | P2
where recs(P1)≤ k, recs(P2) = 0 and P2 contains no restrictions.

Proof. We show that for all n ≥ 0, if P →n P′, then we have P ≡ P1 | P2 where recs(P1)≤ k, recs(P2) = 0
and P2 contains no restrictions. The proof of this proceeds by induction in n.

n = 0: Here we let k = recs(P) and proceed by induction in the type derivation of Γ,∆ ⊢ P. We consider
each rule in turn.

(IN-1), (IN-2), (OUT-1) and (OUT-2): None of these rules could have been used, since P would
then have no reductions.

(PAR): Here we can use the commutativity and associativity axioms for structural congruence to
rewrite P in the desired form.

(VAR): Cannot apply, since we assume that Γ,∆ ⊢ P.
(REC), (NIL), (SESSION): These are immediate.

Assume for n, prove for n+1: This is a straightforward induction in the type rules.

Theorem 16. If Γ,∆ ⊢ P, then P is name-bounded.

Proof. There is a k ≥ 0 such that if Γ,∆⊢P, whenever P→∗ P′, there are at most k recursive subprocesses
of P′. Since the new type system is a subsystem of the type system for depth-boundedness, there exists a
d such that the recursion depth of P′ is at most d for any such P′.

Every bound name in a non-recursive subterm of a recursive subprocess occurs in the recursion part
as well. Now consider an outer normal form P′′ of P′. We have P′′ = (νx1) . . . (νxd)P(3) for some P(3)

that does not contain restrictions at the outermost level. Moreover, for some k′ ≤ k we have P(3) ≡
P(3)

1 | · · ·P(3)
k′ | P(3)

k′+1 where P(3)
1 , . . . ,P(3)

k′ contain recursion instances and P(3)
k′+1 is a process not containing

recursion instances. We know that for some d there are at most d · k bound names in P′.
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8 The relation to other classes of processes

Because of the use of binary session types, typable process in our systems will be width-bounded with
name width 2. On the other hand, both type systems allow us to type processes that are not finitary. The
classes of typable processes differ from those already studied. The process P1

def
= (µX .(νa)a(x).X | a〈b〉 |

b〈c〉) is not a finite-control process, since the reduction sequence P →k P1 | b〈c〉 | · · · | b〈b〉 that results
in k−1 parallel components, each being a simple output, shows that the number of parallel components
along a computation can be unbounded for a well-typed process. This means that P1 is neither a finite-
control process [3] nor a bounded process in the sense of [2]. On the other hand, P1 is depth-bounded, and
in fact also width-bounded as every bound name occurs in precisely two parallel components. Moreover,
the typable processes are incomparable with the processes studied in [1] since these do not allow for
delegation of input capabilities.

9 Conclusions and ideas for further work

In this paper we have presented two session type systems for a π-calculus with recursion. One guarantees
depth-boundedness, and the other system, which is a subsystem of it, guarantees name-boundedness.
Both systems assume that names are always used in finite-length sessions before a recursive call is
initiated.

In the paper by D’Osualdo and Ong [4] a type inference algorithm is proposed that makes it pos-
sible to provide a safe bound on the restriction depth for depth-bounded processes. A further topic of
investigation is to adapt the type inference algorithm proposed in [6] to the setting of the type systems
of the present paper. We conjecture that this is straightforward. The type systems presented in this paper
are simpler than many other session type systems, in that they do not involve recursive types; the sole
difference is that of the presence of recursion instead of replication in the π-calculus.

In both systems, the number of parallel components in a well-typed system can be unbounded, and
well-typed processes need not be finite-control. Conversely, finite-control processes need not be well-
typed in the present systems, since finite-control processes are not necessarily width-bounded with width
2.

Another important question to be answered is that of the exact relationshop between our type system
for depth-boundedness and the type system due to D’Osualdo and Ong [4].
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Turi and Plotkin introduced an elegant approach to structural operational semantics based on univer-
sal coalgebra, parametric in the type of syntax and the type of behaviour. Their framework includes
abstract GSOS, a categorical generalisation of the classical GSOS rule format, as well as its categor-
ical dual, coGSOS. Both formats are well behaved, in the sense that each specification has a unique
model on which behavioural equivalence is a congruence. Unfortunately, the combination of the
two formats does not feature these desirable properties. We show that monotone specifications—that
disallow negative premises—do induce a canonical distributive law of a monad over a comonad, and
therefore a unique, compositional interpretation.

1 Introduction

Structural operational semantics (SOS) is an expressive and popular framework for defining the opera-
tional semantics of programming languages and calculi. There is a wide variety of specification formats
that syntactically restrict the full power of SOS, but guarantee certain desirable properties to hold [1]. A
famous example is the so-called GSOS format [5]. Any GSOS specification induces a unique interpreta-
tion which is compositional with respect to (strong) bisimilarity.

In their seminal paper [22], Turi and Plotkin introduced an elegant mathematical approach to struc-
tural operational semantics, where the type of syntax is modeled by an endofunctor Σ and the type of
behaviour is modeled by an endofunctor B. Operational semantics is then given by a distributive law
of Σ over B. In this context, models are bialgebras, which consist of a Σ-algebra and a B-coalgebra
over a common carrier. One major advantage of this framework over traditional approaches is that it is
parametric in the type of behaviour. Indeed, by instantiating the theory to a particular functor B, one can
obtain well behaved specification formats for probabilistic and stochastic systems, weighted transition
systems, streams, and many more [14, 15, 4].

Turi and Plotkin introduced several kinds of natural transformations involving Σ and B, the most
basic one being of the form ΣB ⇒ BΣ. If B is a functor representing labelled transition systems, then a
typical rule that can be represented in this format is the following:

x a−→ x′ y a−→ y′

x⊗ y a−→ x′⊗ y′
(1)

This rule should be read as follows: if x can make an a-transition to x′, and y an a-transition to y′, then
x⊗ y can make an a-transition to x′⊗ y′. Any specification of the above kind induces a unique supported

∗The research leading to these results has received funding from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 320571, and the Netherlands Organisation for
Scientific Research (NWO), CoRE project, dossier number: 612.063.920. Part of this research was carried out during a visit of
the author to the University of Warsaw, supported by the Warsaw Center of Mathematics and Computer Science (WCMCS).
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model, which is a B-coalgebra over the initial algebra of Σ. If Σ represents a signature and B represents
labelled transition systems, then this model is a transition system of which the state space is the set of
closed terms in the signature, and, informally, a term makes a transition to another term if and only if
there is a rule in the specification justifying this transition.

A more interesting kind is an abstract GSOS specification, which is a natural transformation of
the form Σ(B× Id) ⇒ BΣ∗, where Σ∗ is the free monad for Σ (assuming it exists). If B is the functor
that models (image-finite) transition systems, and Σ is a functor representing a signature, then such
specifications correspond to classical GSOS specifications [22, 4]. As opposed to the basic format,
GSOS rules allow complex terms in conclusions, as in the following rule specifying a constant c:

c a−→ σ(c)
(2)

where σ is some other operator in the signature (represented by Σ), which can itself be defined by some
GSOS rules. The term σ(c) is constructed from a constant and a unary operator from the signature,
as opposed to the conclusion x′⊗ y′ of the rule in (1), which consists of a single operator and variables.
Indeed, the free monad Σ∗ occurring in an abstract GSOS specification is precisely what allows a complex
term such as σ(c) in the conclusion.

Dually, one can consider coGSOS specifications, which are of the form ΣB∞ ⇒ B(Σ+ Id), where B∞

is the cofree comonad for B (assuming it exists). In the case of image-finite labelled transition systems,
this format corresponds to the safe ntree format [22]. A typical coGSOS rule is the following:

x a−→ x′ x′ 6 a−→
σ(x) a−→ x′

(3)

This rule uses two steps of lookahead in the premise; this is supported by the cofree comonad B∞ in the
natural transformation. The symbol x′ 6 a−→ represents a negative premise, which is satisfied whenever x′

does not make an a-transition.
Both GSOS and coGSOS specifications induce distributive laws, and as a consequence they induce

unique supported models on which behavioural equivalence is a congruence. The two formats are in-
comparable in terms of expressive power: GSOS specifications allow rules that involve complex terms
in the conclusion, whereas coGSOS allows arbitrary lookahead in the arguments. It is straightforward to
combine GSOS and coGSOS as a natural transformation of the form ΣB∞ ⇒ BΣ∗, called a biGSOS speci-
fication, generalising both formats. However, such specifications are, in some sense, too expressive: they
do not induce unique supported models, as already observed in [22]. For example, the rules (2) and (3)
above (which are GSOS and coGSOS respectively) can be combined into a single biGSOS specification.
Suppose this combined specification has a model. By the axiom for c, there is a transition c a−→ σ(c) in
this model. However, is there a transition σ(c) a−→ σ(c)? If there is not, then by the rule for σ , there is;
but if there is such a transition, then it is not derivable, so it is not in the model! Thus, a supported model
does not exist. In fact, it was recently shown that, for biGSOS, it is undecidable whether a (unique)
supported model exists [17].

The use of negative premises in the above example (and in [17]) is crucial. In the present paper, we in-
troduce the notion of monotonicity of biGSOS specifications, generalising monotone abstract GSOS [8].
In the case that B is a functor representing labelled transition systems, this corresponds to the absence of
negative premises, but the format does allow lookahead in premises as well as complex terms in conclu-
sions. Monotonicity requires an order on the functor B—technically, our definition of monotonicity is
based on the similarity order [10] induced on the final coalgebra.
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We show that if there is a pointed DCPO structure on the functor B, then any monotone biGSOS
specification yields a least model as its operational interpretation. Indeed, monotone specifications do
not necessarily have a unique model, but it is the least model which makes sense operationally, since this
corresponds to the natural notion that every transition has a finite proof. Our main result is that if the
functor B has a DCPO structure, then every monotone specification yields a canonical distributive law of
the free monad for Σ over the cofree comonad for B. Its unique model coincides with the least supported
model of the specification. As a consequence, behavioural equivalence on this model is a congruence.

However, the conditions of these results are a bit too restrictive: they rule out labelled transition
systems, the main example. The problem is that the functors typically used to model transition systems
either fail to have a cofree comonad (the powerset functor) or to have a DCPO structure (the finite or
countable powerset functor). In the final section, we mitigate this problem using the theory of (countably)
presentable categories and accessible functors. This allows us to relax the requirement of DCPO structure
only to countable sets, given that the functor B is countably accessible (this is weaker than being finitary, a
standard condition in the theory of coalgebras) and the syntax consists only of countably many operations
each with finite arity. In particular, this applies to labelled transition systems (with countable branching)
and certain kinds of weighted transition systems.

Related work The idea of studying distributive laws of monads over comonads that are not induced
by GSOS or coGSOS specifications has been around for some time (e.g., [4]), but, according to a recent
overview paper [15], general bialgebraic formats (other than GSOS or coGSOS) which induce such dis-
tributive laws have not been proposed so far. In fact, it is shown by Klin and Nachyła that the general
problem of extending biGSOS specifications to distributive laws is undecidable [16, 17]. The current
paper shows that one does obtain distributive laws from biGSOS specifications when monotonicity is as-
sumed (negative premises are disallowed). A fundamentally different approach to positive formats with
lookahead, not based on the framework of bialgebraic semantics but on labelled transition systems mod-
eled very generally in a topos, was introduced in [21]. It is deeply rooted in labelled transition systems,
and hence seems incomparable to our approach based on generic coalgebras for ordered functors. An
abstract study of distributive laws of monads over comonads and possible morphisms between them is
in [18], but it does not include characterisations in terms of simpler natural transformations.

Structure of the paper Section 2 contains the necessary preliminaries on bialgebras and distributive
laws. In Section 3 we recall the notion of similarity on coalgebras, which we use in Section 4 to define
monotone specifications and prove the existence of least supported models. Section 5 contains our main
result: canonical distributive laws for monotone biGSOS specifications. In Section 6, this is extended to
countably accessible functors.

Notation We use the categories Set of sets and functions, PreOrd of preorders and monotone functions,
and DCPO⊥ of pointed DCPOs and continuous maps. By P we denote the (contravariant) power set
functor; Pc is the countable power set functor and P f the finite power set functor. Given a relation R ⊆
X ×Y , we write π1 : R → X and π2 : R → Y for its left and right projection, respectively. Given another
relation S ⊆Y ×Z we denote the composition of R and S by R◦S. We let Rop = {(y,x) | (x,y) ∈ R}. For a
set X , we let ∆X = {(x,x) | x ∈ X}. The graph of a function f : X →Y is Graph( f ) = {(x, f (x)) | x ∈ X}.
The image of a set S ⊆ X under f is denoted simply by f (S) = { f (x) | x ∈ S}, and the inverse image of
V ⊆Y by f−1(V ) = {x | f (x) ∈V}. The pairing of two functions f ,g with a common domain is denoted
by 〈 f ,g〉 and the copairing (for functions f ,g with a common codomain) by [ f ,g]. The set of functions
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from X to Y is denoted by Y X . Any relation R ⊆ Y ×Y can be lifted pointwise to a relation on Y X ;
in the sequel we will simply denote such a pointwise extension by the relation itself, i.e., for functions
f ,g : X →Y we have f Rg iff f (x)Rg(x) for all x ∈ X , or, equivalently, ( f ×g)(∆X)⊆ R.

Acknowledgements The author is grateful to Henning Basold, Marcello Bonsangue, Bartek Klin and
Beata Nachyła for inspiring discussions and suggestions.

2 (Co)algebras, (co)monads and distributive laws

We recall the necessary definitions on algebras, coalgebras, and distributive laws of monads over comon-
ads. For an introduction to coalgebra see [20, 12]. All of the definitions and results below and most of the
examples can be found in [15], which provides an overview of bialgebraic semantics. Unless mentioned
otherwise, all functors considered are endofunctors on Set.

2.1 Algebras and monads

An algebra for a functor Σ : Set → Set consists of a set X and a function f : ΣX → X . An (algebra)
homomorphism from f : ΣX → X to g : ΣY → Y is a function h : X → Y such that h ◦ f = g ◦Σh. The
category of algebras and their homomorphisms is denoted by alg(Σ).

A monad is a triple T = (T,η ,µ) where T : Set→ Set is a functor and η : Id⇒ T and µ : T T ⇒ T
are natural transformations such that µ ◦T η = id= µ ◦ηT and µ ◦µT = µ ◦T µ . An (Eilenberg-Moore,
or EM)-algebra for T is a T -algebra f : T X → X such that f ◦ηX = id and f ◦µX = f ◦T f . We denote
the category of EM-algebras by Alg(T ).

We assume that a free monad (Σ∗,η ,µ) for Σ exists. This means that there is a natural transformation
ι : ΣΣ∗ ⇒ Σ∗ such that ιX is a free algebra on the set X of generators, that is, the copairing of

ΣΣ∗X
ιX // Σ∗X X

ηXoo

is an initial algebra for Σ+X . By Lambek’s lemma, [ιX ,ηX ] is an isomorphism. Any algebra f : ΣX → X
induces a Σ+X -algebra [ f , id], and therefore by initiality a Σ∗-algebra f ∗ : Σ∗X → X , which we call the
inductive extension of f . In particular, the inductive extension of ιX is µX . This construction preserves
homomorphisms: if h is a homomorphism from f to g, then it is also a homomorphism from f ∗ to g∗.

Example 1. An algebraic signature (a countable collection of operator names with finite arities) induces
a polynomial functor Σ, meaning here a countable coproduct of finite products. The free monad Σ∗

constructs terms, that is, Σ∗X is given by the grammar t ::= σ(t1, . . . , tn) | x where x ranges over X and
σ ranges over the operator names (and n is the arity of σ ), so in particular Σ∗ /0 is the set of closed terms
over Σ.

2.2 Coalgebras and comonads

A coalgebra for the functor B consists of a set X and a function f : X → BX . A (coalgebra) homomor-
phism from f : X → BX to g : Y → BY is a function h : X →Y such that Bh◦ f = g◦h. The category of
B-coalgebras and their homomorphisms is denoted by coalg(B).

A comonad is a triple D = (D,ε ,δ ) consisting of a functor D : Set→ Set and natural transformations
ε : D ⇒ Id and δ : D ⇒ DD satisfying axioms dual to the monad axioms. The category of Eilenberg-
Moore coalgebras for D , defined dually to EM-algebras, is denoted by CoAlg(D).
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We assume that a cofree comonad (B∞,δ ,ε) for B exists. This means that there is a natural transfor-
mation θ : B∞ ⇒ BB∞ such that θX is a cofree coalgebra on the set X , that is, the pairing of

BB∞X B∞X
εX //θXoo X

is a final coalgebra for B×X . Any coalgebra f : X → BX induces a B×X -coalgebra 〈 f , id〉, and therefore
by finality a B∞-coalgebra f ∞ : X → B∞X , which we call the coinductive extension of f . In particular, the
coinductive extension of θX is δX . This construction preserves homomorphisms: if h is a homomorphism
from f to g, then it is also a homomorphism from f ∞ to g∞.
Example 2. Consider the Set functor BX = A×X for a fixed set A. Coalgebras for B are called stream
systems. There exists a final B-coalgebra, whose carrier can be presented as the set Aω of all streams
over A, i.e., Aω = {σ | σ : ω → A} where ω is the set of natural numbers. For a set X , B∞X = (A×X)ω .
Given f : X → A×X , its coinductive extension f ∞ : X → B∞X maps a state x ∈X to its infinite unfolding.
The final coalgebra of GX = A×X +1 consists of finite and infinite streams over A, that is, elements of
A∗∪Aω . For a set X , G∞X = (A×X)ω ∪ (A×X)∗×X .
Example 3. Labelled transition systems are coalgebras for the functor (P−)A, where A is a fixed set
of labels. Image-finite transition systems are coalgebras for the functor (P f−)A, and coalgebras for
(Pc−)A are transition systems which have, for every action a ∈ A and every state x, a countable set of
outgoing a-transitions from x. A final coalgebra for (P−)A does not exist (so there is no cofree comonad
for it). However, both (P f−)A and (Pc−)A have a final coalgebra, consisting of possibly infinite rooted
trees, edge-labelled in A, modulo strong bisimilarity, where for each label, the set of children is finite
respectively countable. The cofree comonad of (P f−)A respectively (Pc−)A, applied to a set X , consist
of all trees as above, node-labelled in X .
Example 4. A complete monoid is a (necessarily commutative) monoid M together with an infinitary
sum operation consistent with the finite sum [7]. Define the functor M : Set → Set by M (X) = {ϕ |
ϕ : X → M} and, for f : X →Y , M (h)(ϕ) = λy.∑x∈ f−1(y) ϕ(x). A weighted transition system over a set
of labels A is a coalgebra f : X → (M X)A. Similar to the case of labelled transition systems, we obtain
weighted transition systems whose branching is countable for each label as coalgebras for the functor
(Mc−)A, where Mc is defined by Mc(X) = {ϕ : X → M | ϕ(x) 6= 0 for countably many x ∈ X}. We
note that this only requires a countable sum on M to be well-defined and, by further restricting to finite
support, weighted transition systems are defined for any commutative monoid (see, e.g., [14]). Labelled
transition systems are retrieved by taking the monoid with two elements and logical disjunction as sum.
Another example arises by taking the monoid M = R+∪{∞} of non-negative reals extended with a top
element ∞, with the supremum operation.

2.3 GSOS, coGSOS and distributive laws

Given a signature, a GSOS rule [5] σ of arity n is of the form

{xi j

a j→ y j} j=1..m {xik

bk
6→}k=1..l

σ(x1, . . . ,xn)
c→ t

(4)

where m and l are the number of positive and negative premises respectively; a1, . . . ,am,b1, . . . ,bl,c ∈ A
are labels; x1, . . . ,xn, y1, . . . ,ym are pairwise distinct variables, and t is a term over these variables. An
abstract GSOS specification is a natural transformation of the form

Σ(B× Id)⇒ BΣ∗ .
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As first observed in [22], specifications in the GSOS format are generalised by abstract GSOS specifica-
tions, where Σ models the signature and BX = (P f X)A.

A safe ntree rule (as taken from [15]) for σ is of the form {zi
ai→yi}i∈I {w j

b j
6→} j∈J

σ(x1,...,xn)
c→t

where I and J are
countable possibly infinite sets, the zi, yi, w j, xk are variables, and b j,c,ai ∈A; the xk and yi are all distinct
and they are the only variables that occur in the rule; the dependency graph of premise variables (where
positive premises are seen as directed edges) is well-founded, and t is either a variable or a term built of a
single operator from the signature and the variables. A coGSOS specification is a natural transformation
of the form

ΣB∞ ⇒ B(Σ+ Id) .

As stated in [22], every safe ntree specification induces a coGSOS specification where Σ models the
signature and BX = (P f X)A.

A distributive law of a monad T = (T,η ,µ) over a comonad D = (D,ε ,δ ) is a natural transforma-
tion λ : T D ⇒ DT so that λ ◦Dη = ηD, εT ◦λ = T ε , λ ◦ µT = Dµ ◦λT ◦T λ and Dλ ◦λD ◦T δ =
δT ◦ λ . A λ -bialgebra is a triple (X , f ,g) where X is a set, f is an EM-algebra for T and g is an
EM-coalgebra for D , such that g◦ f = D f ◦λX ◦T g.

Every distributive law λ induces, by initiality, a unique coalgebra h : T /0 → DT /0 such that (T /0,µ /0,h)
is λ -bialgebra. If D is the cofree comonad for B, then h is the coinductive extension of a B-coalgebra
m : T /0 → BT /0, which we call the operational model of λ . Behavioural equivalence on the operational
model is a congruence. This result applies in particular to abstract GSOS and coGSOS specifications,
which both extend to distributive laws of monad over comonad.

A lifting of a functor T : Set→ Set to CoAlg(D) is a functor T making the following commute:

CoAlg(D)

��

T // CoAlg(D)

��
Set

T // Set

where the vertical arrows represent the forgetful functor, sending a coalgebra to its carrier. Further,
a monad (T ,η ,µ) on CoAlg(D) is a lifting of a monad T = (T,η ,µ) on Set if T is a lifting of T ,
Uη = ηU and U µ = µU . A lifting of T to coalg(B) is defined similarly.

Distributive laws of T over D are in one-to-one correspondence with liftings of (T,η ,µ) to CoAlg(D)
(see [13, 22]). If D is the cofree comonad for B, then CoAlg(D) ∼= coalg(B), hence a further equivalent
condition is that T lifts to coalg(B). In that case, the operational model of a distributive law can be
retrieved by applying the corresponding lifting to the unique coalgebra ! : /0 → B /0.

3 Similarity

In this section, we recall the notion of simulations of coalgebras from [10], and prove a few basic results
concerning the similarity preorder on final coalgebras.

An ordered functor is a pair (B,⊑) of functors B : Set→ Set and ⊑ : Set→ PreOrd such that

PreOrd

��
Set

B //

⊑
::✉✉✉✉✉✉✉✉✉
Set
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commutes, where the arrow from PreOrd to Set is the forgetful functor. Thus, given an ordered functor,
there is a preorder ⊑BX⊆ BX ×BX for any set X , and for any map f : X →Y , B f is monotone.

The (canonical) relation lifting of B is defined on a relation R ⊆ X ×Y by

Rel(B)(R) = {(b,c) ∈ BX ×BY | ∃d ∈ BR.Bπ1(d) = b and Bπ2(d) = c} .
For a detailed account of relation lifting, see, e.g., [11]. Let (B,⊑) be an ordered functor. The lax relation
lifting Rel⊑ is defined as follows:

Rel⊑(B)(R ⊆ X ×Y ) =⊑BX ◦Rel(B)(R)◦⊑BY .

Let (X , f ) and (Y,g) be B-coalgebras. A relation R ⊆ X ×Y is a simulation (between f and g) if R ⊆
( f ×g)−1(Rel⊑(B)(R)). The greatest simulation between coalgebras f and g is called similarity, denoted
by .g

f , or . f if f = g, or simply . if f and g are clear from the context.
Given a set X and an ordered functor (B,⊑), we define the ordered functor (B×X ,⊑̃) by

(b,x)⊑̃BX(c,y) iff b ⊑BX c and x = y .

The induced notion of simulation can naturally be expressed in terms of the original one:
Lemma 1. Let . be the similarity relation between coalgebras 〈 f , f ′〉 : X → BX ×Z and 〈g,g′〉 : X →
BX × Z. Then for any relation R ⊆ X ×X, we have R ⊆ (〈 f , f ′〉× 〈g,g′〉)−1(Rel⊑̃(B× Z)(R)) iff R ⊆
( f ×g)−1(Rel⊑(B)(R)) and for all (x,y) ∈ R: f ′(x) = g′(x).

Given an ordered functor (B,⊑) we write

.B∞X

for the similarity order induced by (B×X ,⊑̃) on the cofree coalgebra (B∞X ,〈θX ,εX〉). We discuss a few
examples of ordered functors and similarity—see [10] for many more.
Example 5. For the functor L f X = (P f X)A ordered by (pointwise) subset inclusion, a simulation as
defined above is a (strong) simulation in the standard sense. For elements p,q ∈ L∞

f X , we have p .L∞
f X q

iff there exists a (strong) simulation between the underlying trees of p and q, so that related pairs agree
on labels in X .
Example 6. For any G : Set→ Set, the functor B = G+ 1, where 1 = {⊥}, can be ordered as follows:
x ≤ y iff x =⊥ or x = y, for all x,y ∈ BX . If G = A× Id then B∞X consists of finite and infinite sequences
of the form x0

a0−→ x1
a1−→ x2

a2−→ . . . with xi ∈ X and ai ∈ A for each i (cf. Example 2). For σ ,τ ∈ B∞X we
have σ .B∞X τ if σ does not terminate before τ does, and σ and τ agree on labels in X and A on each
position where σ is defined.
Lemma 2. Coalgebra homomorphisms h,k preserve similarity: if x . y then h(x) . k(y).

In the remainder of this section we state a few technical properties concerning similarity on cofree
comonads, which will be necessary in the following sections. The proofs use Lemma 2 and a few basic,
standard properties of relation lifting.

Pointwise inequality of coalgebras implies pointwise similarity of coinductive extensions:
Lemma 3. Let (B,⊑) be an ordered functor, and let f and g be B-coalgebras on a common carrier X. If
( f ×g)(∆X)⊆⊑BX then ( f ∞ ×g∞)(∆X )⊆.B∞X .

Recall from Section 2 that any B-homomorphism yields a B∞-homomorphism between coinductive
extensions. A similar fact holds for inequalities.
Lemma 4. Let (B,⊑) be an ordered functor where B preserves weak pullbacks, and let f : X → BX,
g : Y → BY and h : X →Y .

• If Bh◦ f ⊑BY g◦h then B∞h◦ f ∞ .B∞Y g∞ ◦h, and conversely,

• if Bh◦ f ⊒BY g◦h then B∞h◦ f ∞ &B∞Y g∞ ◦h.
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4 Monotone biGSOS specifications

As discussed in the introduction, GSOS and coGSOS have a straightforward common generalisation,
called biGSOS specifications. Throughout this section we assume (B,⊑) is an ordered functor, B has a
cofree comonad and Σ has a free monad.
Definition 1. A biGSOS specification is a natural transformation of the form ρ : ΣB∞ ⇒ BΣ∗. A triple
(X ,a, f ) consisting of a set X , an algebra a : ΣX → X and a coalgebra f : X → BX (i.e., a bialgebra) is
called a ρ-model if the following diagram commutes:

ΣX a //

Σ f ∞

��

X

f
��

ΣB∞X
ρX // BΣ∗X Ba∗ // BX

If BX = (P f X)A, then one can obtain biGSOS specifications from concrete rules in the ntree format,
which combines GSOS and safe ntree, allowing lookahead in premises, negative premises and complex
terms in conclusions.

Of particular interest are ρ-models on the initial algebra ι /0 : ΣΣ∗ /0 → Σ∗ /0:

ΣΣ∗ /0
ι /0 //

Σ f ∞

��

Σ∗ /0

f
��

ΣB∞Σ∗ /0
ρΣ∗ /0 // BΣ∗Σ∗ /0

Bµ /0 // BΣ∗ /0

(5)

(Notice that ι∗/0 = µ /0.) We call these supported models. Indeed, for labelled transition systems, this notion
coincides with the standard notion of the supported model of an SOS specification (e.g., [1]).

In the introduction, we have seen that biGSOS specifications do not necessarily induce a supported
model. But even if they do, such a model is not necessarily unique, and behavioural equivalence is not
even a congruence, in general, as shown by the following example.
Example 7. In this example we consider a signature with constants c and d, and unary operators σ and
τ . Consider the specification (represented by concrete rules) on labelled transition systems where c and
d are not assigned any behaviour, and σ and τ are given by the following rules:

x a−→ x′ x′ a−→ x′′

σ(x) a−→ x′′ τ(x) a−→ σ(τ(x))

The behaviour of τ(x) is independent of its argument x. Which transitions can occur in a supported
model? First, for any t there is a transition τ(t) a−→ σ(τ(t)). Moreover, a transition σ(τ(t)) a−→ t ′′ can be
in the model, although it does not need to be. But if it is there, it is supported by an infinite proof.

In fact, one can easily construct a model in which the behaviour of σ(τ(c)) is different from that
of σ(τ(d))—for example, a model where σ(τ(c)) does not make any transitions, whereas σ(τ(d)) a−→ t
for some t. Then behavioural equivalence is not a congruence; c is bisimilar to d, but σ(τ(c)) is not
bisimilar to σ(τ(d)).

The above example features a specification that has many different interpretations as a supported
model. However, there is only one which makes sense: the least model, which only features finite
proofs. It is sensible to speak about the least model of this specification, since it does not contain any
negative premises. More generally, absence of negative premises can be defined based on an ordered
functor and the induced similarity order.
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Definition 2. A biGSOS specification ρ : ΣB∞ ⇒ BΣ∗ is monotone if the restriction of ρX × ρX to
Rel(Σ)(.B∞X) corestricts to ⊑BΣ∗X , for any set X .

If Σ represents an algebraic signature, then monotonicity can be conveniently restated as follows
(c.f. [6], where monotone GSOS is characterised in a similar way). For every operator σ :

b1 .B∞X c1 . . . bn .B∞X cn

ρX(σ(b1, . . . ,bn))⊑BΣ∗X ρX(σ(c1, . . . ,cn))

for every set X and every b1, . . . ,bn,c1, . . . ,cn ∈ B∞X . Thus, in a monotone specification, if ci simulates
bi for each i, then the behaviour of σ(b1, . . . ,bn) is “less than” the behaviour of σ(c1, . . . ,cn).

In the case of labelled transition systems, it is straightforward that monotonicity rules out (non-trivial
use of) negative premises. Notice that the example specification in the introduction consisting of rules (2)
and (3), which does not have a model, is not monotone. This is no coincidence: every monotone biGSOS
specification has a model, if BΣ∗ /0 is a pointed DCPO, as we will see next. In fact, the proper canonical
choice is the least model, corresponding to behaviour obtained in finitely many proof steps.

4.1 Models of monotone specifications

Let ρ be a monotone biGSOS specification. Suppose BΣ∗ /0 is a pointed DCPO. Then the set of coalgebras
coalg(B)Σ∗ /0 = { f | f : Σ∗ /0 → BΣ∗ /0}, ordered pointwise, is a pointed DCPO as well.

Consider the function ϕ : coalg(B)Σ∗ /0 → coalg(B)Σ∗ /0, defined as follows:

ϕ( f ) = Bµ /0 ◦ρΣ∗ /0 ◦Σ f ∞ ◦ ι−1
/0 (6)

Since ι /0 is an isomorphism, a function f is a fixed point of ϕ if and only if it is a supported model of ρ
(Equation (5)). We are interested in the least supported model. To show that it exists, since coalg(B)Σ∗ /0
is a pointed DCPO, it suffices to show that ϕ is monotone.

Lemma 5. The function ϕ is monotone.

Proof. Suppose f ,g : Σ∗ /0 → BΣ∗ /0 and f ⊑BΣ∗ /0 g. By Lemma 3, we have f ∞ .B∞Σ∗ /0 g∞. From standard
properties of relation lifting we derive Σ f ∞ Rel(Σ)(.B∞Σ∗ /0) Σg∞ and now the result follows by mono-
tonicity of ρ (assumption) and monotonicity of Bµ /0 (B is ordered).

Corollary 1. If BΣ∗ /0 is a pointed DCPO and ρ is a monotone biGSOS specification, then ρ has a least
supported model.

The condition of the Corollary is satisfied if B is of the form B = G+1 (c.f. Example 6), that is, B =
G+1 for some functor G (where the element in the singleton 1 is interpreted as the least element of the
pointed DCPO). Consider, as an example, the functor BX = A×X +1 of finite and infinite streams over
A. Any specification that does not mention termination (i.e., a specification for the functor GX = A×X )
yields a monotone specification for B.

Example 8. Consider the following specification (in terms of rules) for the functor BX = N×X + 1 of
(possibly terminating) stream systems over the natural numbers. It specifies a unary operator σ , a binary
operator ⊕, infinitely many unary operators m⊗− (one for each m ∈ N), and constants ones,pos, c:

x n−→ x′ x′ m−→ x′′

σ(x) n−→ n⊗ (m⊗σ(x′′))

x n−→ x′ y m−→ y′

x⊕ y n+m−−→ x′⊕ y′
x n−→ x′

m⊗ x m×n−−→ m⊗ x′
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ones 1−→ ones pos 1−→ ones⊕pos c 1−→ σ(c)

where + and × denote addition and multiplication of natural numbers, respectively. This induces a
monotone biGSOS specification; the rule for σ is GSOS nor coGSOS, since it uses both lookahead and
a complex conclusion. By the above Corollary, it has a model. The coinductive extension maps pos to
the increasing stream of positive integers, and σ(pos) is the stream (1,6,120, . . .) = (1!,3!,5!, . . .). But
c does not represent an infinite stream, since σ(c) is undefined.

The case of labelled transition systems is a bit more subtle. The problem is that (P f Σ∗ /0)A and
(PcΣ∗ /0)A are not DCPOs, in general, whereas the functor (P−)A does not have a cofree comonad.
However, if the set of closed terms Σ∗ /0 is countable, then (PcΣ∗ /0)A is a pointed DCPO, and thus Corol-
lary 1 applies. The specification in Example 7 can be viewed as a specification for the functor (Pc−)A,
and it has a countable set of terms. Therefore it has, by the Corollary, a least supported model. In this
model, the behaviour of σ(t) is empty, for any t ∈ Σ∗ /0.

5 Distributive laws for biGSOS specifications

In the previous section we have seen how to construct a least supported model of a monotone biGSOS
specification, as the least fixed point of a monotone function. In the present section we show that, given
a monotone biGSOS specification, the construction of a least model generalizes to a lifting of the free
monad Σ∗ to the category of B-coalgebras. It then immediately follows that there exists a canonical
distributive law of the monad Σ∗ over the comonad B∞, and that the (unique) operational model of this
distributive law corresponds to the least supported model as constructed above.

In order to proceed we define a DCPO⊥-ordered functor as an ordered functor (Section 3) where
PreOrd is replaced by DCPO⊥. Below we assume that (B,⊑) is DCPO⊥-ordered, and Σ and B are as
before (having a free monad and cofree comonad respectively).

Example 9. A general class of functors that are DCPO⊥-ordered are those of the form B+ 1, where
the singleton 1 is interpreted as the least element and all other distinct elements are incomparable (see
Example 6). Another example is the functor (P−)A of labelled transition systems with arbitrary branch-
ing, but this example can not be treated here because there exists no cofree comonad for it. The case of
labelled transition systems is treated in Section 6.

Let coalg(B)Σ∗X be the set of B-coalgebras with carrier Σ∗X , pointwise ordered as a DCPO by the
order on B. The lifting of Σ∗ to coalg(B) that we are about to define maps a coalgebra c : X → BX to the
least coalgebra c : Σ∗X → BΣ∗X , w.r.t. the above order on coalg(B)Σ∗X , making the following diagram
commute.

ΣB∞Σ∗X
ρΣ∗X // BΣ∗Σ∗X

BµX // BΣ∗X BX
BηXoo

ΣΣ∗X ιX
//

Σ(c)∞

OO

Σ∗X

c

OO

XηX
oo

c

OO

Equivalently, c is the least fixed point of the operator ϕc : coalg(B)Σ∗X → coalg(B)Σ∗X defined by

ϕc( f ) = [BµX ◦ρΣ∗ /0 ◦Σ f ∞,BηX ◦ c]◦ [ιX ,ηX ]
−1 .

Following the proof of Lemma 5 it is easy to verify:

Lemma 6. For any c : X → BX, the function ϕc is monotone.
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For the lifting of Σ∗, we need to show that the above construction preserves coalgebra morphisms.

Theorem 1. The functor Σ∗ : coalg(B)→ coalg(B) defined by

Σ∗(X ,c) = (Σ∗X ,c) and Σ∗(h) = Σ∗h

is a lifting of the functor Σ∗.

Proof. Let (X ,c) and (Y,d) be BΣ∗-coalgebras. We need to prove that, if h : X → Y is a coalgebra
homomorphism from c to d, then Σ∗h is a homomorphism from c to d.

The proof is by transfinite induction on the iterative construction of c and d as limits of the ordinal-
indexed initial chains of ϕc and ϕd respectively. For the limit (and base) case, given a (possibly empty)
directed family of coalgebras fi : Σ∗X → BΣ∗X and another directed family gi : Σ∗Y → BΣ∗Y , such that
BΣ∗h ◦ fi = gi ◦ Σ∗h for all i, we have BΣ∗h ◦∨i fi =

∨
i(BΣ∗h ◦ fi) =

∨
i(gi ◦ Σ∗h) = (

∨
i gi) ◦ Σ∗h by

continuity of BΣ∗h and assumption.
Let f : Σ∗X → BΣ∗X and g : Σ∗Y → BΣ∗Y be such that BΣ∗h◦ f = g◦Σ∗h. To prove: BΣ∗h◦ϕc( f ) =

ϕd(g)◦Σ∗h, i.e., commutativity of the outside of:

Σ∗X
[ιX ,ηX ]

−1
//

Σ∗h
��

ΣΣ∗X +X
Σ f ∞+c //

ΣΣ∗h+h
��

ΣB∞Σ∗X +BX
ρΣ∗X+id //

ΣB∞Σ∗h+Bh
��

BΣ∗Σ∗X +BX
[BµX ,BηX ]//

BΣ∗Σ∗h+Bh
��

BΣ∗X

BΣ∗h
��

Σ∗Y
[ιY ,ηY ]

−1
// ΣΣ∗Y +Y

Σg∞+d
// ΣB∞Σ∗Y +BY

ρΣ∗Y+id
// BΣ∗Σ∗Y +BY

[BµY ,BηY ]
// BΣ∗Y

From left to right, the first square commutes by naturality of [ι ,η ] (and the fact that it is an isomorphism),
the second by assumption that Σ∗h is a B-coalgebra homomorphism from f to g (and therefore a B∞-
coalgebra homomorphism) and the assumption that h is a coalgebra homomorphism from c to d, the
third by naturality of ρ , and the fourth by naturality of µ and η .

We show that the (free) monad (Σ∗,η ,µ) lifts to coalg(B). This is the heart of the matter. The main
proof obligation is to show that µX is a coalgebra homomorphism from Σ∗(Σ∗(X ,c)) to Σ∗(X ,c), for any
B-coalgebra (X ,c).

Theorem 2. The monad (Σ∗,η ,µ) on Set lifts to the monad (Σ∗,η ,µ) on coalg(B), if B preserves weak
pullbacks.

The lifting gives rise to a distributive law of monad over comonad.

Theorem 3. Let ρ : ΣB∞ ⇒ BΣ∗ be a monotone biGSOS specification, where B is DCPO⊥-ordered and
preserves weak pullbacks. There exists a distributive law λ : Σ∗B∞ ⇒ B∞Σ∗ of the free monad Σ∗ over
the cofree comonad B∞ such that the operational model of λ is the least supported model of ρ .

Proof. By Theorem 2, we obtain a lifting of (Σ∗,η ,µ) to coalg(B). As explained in the preliminaries,
such a lifting corresponds uniquely to a distributive law of the desired type. The operational model of λ
is obtained by applying the lifting to the unique coalgebra ! : /0 → B /0. But that coincides, by definition
of the lifting, with the least supported model as defined in Section 4.

It follows from the general theory of bialgebras that the unique coalgebra morphism from the least
supported model to the final coalgebra is an algebra homomorphism, i.e., behavioural equivalence on the
least supported model of a monotone biGSOS specification is a congruence.
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Labelled transition systems The results above do not apply to labelled transition systems. The prob-
lem is that the cofree comonad for the functor (P−)A does not exist. A first attempt would be to restrict
to the finitely branching transition systems, i.e., coalgebras for the functor (P f−)A. But this functor is
not DCPO⊥-ordered, and indeed, contrary to the case of GSOS and coGSOS, even with a finite biGSOS
specification one can easily generate a least model with infinite branching, so that a lifting as in the
previous section can not exist.

Example 10. Consider the following specification on (finitely branching) labelled transition systems,
involving a unary operator σ and a constant c:

c a−→ σ(c) σ(x) a−→ σ(σ(x))

x a−→ x′ a−→ x′′ a−→ x′′′

σ(x) a−→ x′′′

The left rule for σ constructs an infinite chain of transitions from σ(x) for any x, so in particular for
σ(c). The right rule takes the transitive closure of transitions from σ(c), so in the least model there are
infinitely many transitions from σ(c).

The model in the above example has countable branching. One might ask whether it can be adapted
to generate uncountable branching, i.e., that we can construct a biGSOS specification for the functor
(Pc−)A, such that the model of this specification would feature uncountable branching. However, as it
turns out, this is not the case, at least if we assume Σ to be a polynomial functor (a countable coproduct
of finite products, modelling a signature with countably many operations each of finite arity), and the set
of labels A to be countable. This is shown more generally in the next section.

6 Liftings for countably accessible functors

In the previous section, we have seen that one of the most important instances of the framework—the
case of labelled transition systems—does not work, because of size issues: the functors in question either
do not have a cofree comonad, or are not DCPO-ordered. In the current section, we solve this problem by
showing that, if both functors B,Σ are reasonably well-behaved, then it suffices to have a DCPO-ordering
of B only on countable sets.

More precisely, let cSet be the full subcategory of countable sets, with inclusion I : cSet→ Set. We
assume that (B,⊑) is an ordered functor on Set, and that its restriction to countable sets is DCPO⊥-
ordered:

DCPO⊥ // PreOrd

��
cSet

⊑
::ttttttttt

I
// Set

⊑
99rrrrrrrrrrr

B
// Set

This is a weaker assumption than in Section 5: before, every set BX was assumed to be a pointed DCPO,
whereas here, they only need to be pointed DCPOs when X is countable (and just a preorder otherwise).

Example 11. The functor (Pc−)A coincides with the DCPO⊥-ordered functor (P−)A when restricted
to countable sets, hence it satisfies the above assumption. Notice that (Pc−)A is not DCPO⊥-ordered.
The functor (P f−)A does not satisfy the above assumption.

The functor (M−)A, for the complete monoid R+ ∪ {∞} (Example 4), is ordered as a complete
lattice [19], so also DCPO⊥-ordered. Similar to the above, the functor (Mc−)A is DCPO⊥-ordered
when restricted to countable sets, i.e., satisfies the above assumption.



J. Rot 95

We define coalgc(B) to be the full subcategory of B-coalgebras whose carrier is a countable set, with
inclusion I : coalgc(B)→ coalg(B). The associated forgetful functor is denoted by U : coalgc(B)→ cSet.

The pointed DCPO structure on each BX , for X countable, suffices to carry out the fixed point con-
structions from the previous sections for coalgebras over countable sets, if we assume that Σ∗ preserves
countable sets. Notice, moreover, that the (partial) order on the functor B is still necessary to define the
simulation order on B∞X , and hence speak about monotonicity of biGSOS specifications. The proof of
the following theorem is essentially the same as in the previous section.

Theorem 4. Suppose Σ∗ preserves countable sets, and B is an ordered functor which preserves weak pull-
backs and whose restriction to cSet is DCPO⊥-ordered. Let (Σ∗

c ,ηc,µc) be the restriction of (Σ∗,η ,µ)
to cSet. Any monotone biGSOS specification ρ : ΣB∞ ⇒ BΣ∗ gives rise to a lifting (Σ∗

c,ηc,µc) of the
monad (Σ∗

c ,ηc,µc) to coalgc(B).

In the remainder of this section, we will show that, under certain assumptions on B and Σ∗, the above
lifting extends to a lifting of the monad Σ∗ from Set to coalg(B), and hence a distributive law of the
monad Σ∗ over the cofree comonad B∞. It relies on the fact that, under certain conditions, we can present
every coalgebra as a (filtered) colimit of coalgebras over countable sets.

We use the theory of locally (countably, i.e., ω1-) presentable categories and (countably) accessible
categories. Because of space limits we can not properly recall that theory in detail here (see [3]); we
only recall a concrete characterisation of when a functor on Set is countably accessible, since that will be
assumed both for B and Σ∗ later on. On Set, a functor B : Set→ Set is countably accessible if for every
set X and element x ∈ BX , there is an injective function i : Y → X from a finite set Y and an element
y ∈ BY such that Bi(y) = x. Intuitively, such functors are determined by how they operate on countable
sets.

Example 12. Any finitary functor is countably accessible. Further, the functors (Pc−)A and (Mc−)A

(c.f. Example 11) are countably accessible if A is countable.

A functor is called strongly countably accessible if it is countably accessible and additionally pre-
serves countable sets, i.e., it restricts to a functor cSet → cSet. We will assume this for our “syntax”
functor Σ∗. If Σ correponds to a signature with countably many operations each of finite arity (so is a
countable coproduct of finite products) then Σ∗ is strongly countably accessible.

The central idea of obtaining a lifting to coalg(B) from a lifting to coalgc(B) is to extend the monad
on coalgc(B) along the inclusion I : coalgc(B)→ coalg(B). Concretely, a functor T : Set→ Set extends
Tc : cSet → cSet if there is a natural isomorphism α : ITc ⇒ T I. A monad (T,η ,µ) on Set extends
a monad (Tc,ηc,µc) on cSet if Tc extends T with some isomorphism α such that α ◦ Iηc = ηI and
α ◦ Iµc = µI ◦T α ◦αTc. This notion of extension is generalised naturally to arbitrary locally countably
presentable categories. Monads on the category of countably presentable objects can always be extended.

Lemma 7. Let C be a locally countably presentable category, with I : Cc →C the subcategory of count-
ably presentable objects. Any monad (Tc,ηc,µc) on Cc extends uniquely to a monad (T,η ,µ) on C ,
along I : Cc → C .

Since B is countably accessible, coalg(B) is locally countably presentable and coalgc(B) is the asso-
ciated category of countably presentable objects [2]. This means every B-coalgebra can be presented as
a filtered colimit of B-coalgebras with countable carriers. The above lemma applies, so we can extend
the monad on coalgc(B) of Theorem 4 to a monad on coalg(B), resulting in Theorem 6 below. The latter
relies on Theorem 5, which ensures that, doing so, we will get a lifting of the monad on Set that we
started with.
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In the remainder of this section, we will consider a slightly relaxed version of functor liftings, up to
isomorphism, similar to extensions defined before. This is harmless—those still correspond to distribu-
tive laws—but since the monad on coalg(B) is constructed only up to isomorphism, it is more natural
to work with in this setting. We say (T ,η ,µ) lifts (T,η ,µ) (up to isomorphism) if there is a natural
isomorphism α : UT ⇒ TU such that α ◦Uη = ηU and α ◦Uµ = µU ◦T α ◦αT .

Theorem 5. Let B : Set→ Set be countably accessible. Suppose (Tc,ηc,µc) is a monad on cSet, which
lifts to a monad (T c,ηc,µc) on coalgc(B). Then

1. (Tc,ηc,µc) extends to (T,η ,µ) along I : Setc → Set,

2. (T c,ηc,µc) extends to (T ,η ,µ) along I : coalgc(B)→ coalg(B),

3. (T ,η ,µ) is a lifting (up to isomorphism) of (T,η ,µ).

By instantiating the above theorem with the lifting of Theorem 4, the third point gives us the desired
lifting to coalg(B). In particular Tc is instantiated to the restriction Σ∗

c of Σ∗, which means that the
extension in the first point is just Σ∗ itself.

Theorem 6. Let ρ : ΣB∞ ⇒ BΣ∗ be a monotone biGSOS specification, where B is an ordered functor
whose restriction to countable sets is DCPO⊥-ordered, B is countably accessible, B preserves weak
pullbacks, and Σ∗ is strongly countably accessible. There exists a distributive law λ : Σ∗B∞ ⇒ B∞Σ∗ of
the free monad Σ∗ over the cofree comonad B∞ such that the operational model of λ is the least supported
model of ρ .

As explained in Example 12 and Example 11, if B is either (Pc−)A or (Mc−)A (weighted in the
non-negative real numbers) with A countable, then it satisfies the above hypotheses (that Mc preserves
weak pullbacks follows essentially from [9]). So the above theorem applies to labelled transition systems
and weighted transition systems (of the above type) over a countable set of labels, as long as the syntax
is composed of countably many operations each with finite arity. Hence, behavioural equivalence on the
operational model of any biGSOS specification for such systems is a congruence.

7 Future work

In this paper we provided a bialgebraic foundation of positive specification formats over ordered functors,
involving rules that feature lookahead in the premises as well as complex terms in conclusions. From
a practical point of view, it would be interesting to find more concrete rules formats corresponding to
the abstract format of the present paper. In particular, concrete GSOS formats for weighted transition
systems exist [14]; they could be a good starting point.

It is currently unclear to us whether the assumption of weak pullback preservation in the main results
is necessary. This assumption is used in our proof of Lemma 4, which in turn is used in the proof that the
free monad lifts to the category of coalgebras (Theorem 2). Finally, we would like to study continuous
specifications, as opposed to specifications that are only monotone, as in the current paper. Continuous
specifications should be better behaved than monotone ones. However, it is currently not yet clear how
to characterize continuity of a specification both at the concrete, syntactic level.
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