
Hardin and Schmaltz (Eds): ACL2 2011
EPTCS 70, 2011, pp. 70–83, doi:10.4204/EPTCS.70.6

Formal Verification of an Iterative Low-Power x86
Floating-Point Multiplier with Redundant Feedback

Peter-Michael Seidel
Advanced Micro Devices, Inc.

Austin, Tex., USA

seidel@acm.org

We present the formal verification of a low-power x86 floating-point multiplier. The multiplier op-
erates iteratively and feeds back intermediate results in redundant representation. It supports x87
and SSE instructions in various precisions and can block theissuing of new instructions. The design
has been optimized for low-power operation and has not been constrained by the formal verification
effort. Additional improvements for the implementation were identified through formal verification.
The formal verification of the design also incorporates the implementation of clock-gating and con-
trol logic. The core of the verification effort was based on ACL2 theorem proving. Additionally,
model checking has been used to verify some properties of thefloating-point scheduler that are rele-
vant for the correct operation of the unit.

Keywords: Floating-Point, multiplication, IEEE standard, theorem proving, ACL2.

1 Introduction

Machine-assisted formal reasoning has become an integral part of the verification strategy for many
floating-point (FP) hardware designs. At AMD, FP hardware has already been formally verified for
more than 15 years [7, 9, 10, 11, 12, 13].

In this paper we describe the formal verification of an iterative, low-power x86 FP multiplier that
has been designed from scratch for a new processor core. We also reiterated the verification effort for a
second processor core that reused two instances of the design in slight variations with little verification
overhead. A detailed description of the initial design is presented in [16]. The unit incorporates several
new features and optimizations that cause a large number of corner cases in the design. Many of these
corner cases would have been very difficult to cover based on only random or directed simulation. The
goal of the complete coverage of all corner cases of the design, together with the novelty and complexity
of the design, were the initial motivation for the formal verification of this implementation. The reuse
of the verification effort for a second design generation hasshown to be an additional benefit for this
verification approach.

The core of our formal verification effort is based on ACL2 theorem proving [1]. The unit function-
ality has been specified behaviorally at RTL level in a designer-readable Verilog description [7]. For this
specification we have also established equivalence to specifications from previous implementations of
the same FP instructions. We built on an existing Verilog-to-ACL2 translation tool to make the design
and the specification accessible in ACL2. We verify the design rigorously with all bit-level details and
features of the RTL that is used for production. Additional refinements for the implementation of certain
macros are locally shown to be logically equivalent at the implementation stage.

The FP multiplier supports x87 and SSE multiplication, reciprocal approximation, division, and
square root instructions. Operands and results can have oneof seven different formats (two SSE, three

http://dx.doi.org/10.4204/EPTCS.70.6

P.-M. Seidel 71

x87, and two internal), and the three x87 precisions can be different in the operands and in the result. All
four rounding modes of the IEEE FP standard 754 [4] are supported in compliance with previous x86
implementations. The division and square root instructions are implemented based on a multiplicative
algorithm with dedicated use of the multiplier hardware. Additional features for buffering, comple-
menting, and normalizing intermediate results, for multiply-add and multiply-subtract operation of the
multiplication array, and for the IEEE rounding of an approximate significand quotient or square root
are included in the multiplier hardware in support of the division and square root operations. We do not
discuss these additional features in this paper, and solelyfocus on the FP multiplication operation of the
unit in this presentation.

Depending on the instruction and precision, FP multiplications in this unit have a latency between
two and five clock cycles. In the significand path, the generation of the Booth-recoded partial products
and their compression to a carry-save representation of theproduct takes between one and three iterations
of the same stage using a rectangular 76× (27+2)-bit multiplier array. A result of this stage is fed back
to the previous stage in redundant carry-save representation and added as two additional addends into the
rectangular multiplier array. For the Booth recoding of thepartial products, the result of the adder tree
contains a carry bit that represents the combined effect of the sign corrections for all partial products.
The carry-save feedback of the multiplier array may or may not contain contributions to this carry bit.
The tracking and compensation of carries in the feedback path needs very careful consideration of all
possible scenarios. This complicates writing cycle-basedinvariants for the partial-product accumulation
stage. During the iterative partial-product accumulation, the representation of the intermediate result
is already shortened towards the target precision by iteratively calculating a sticky and a carry bit to
summarize the effect of the lower tail of the representationon the rounding computation. From the
representation of the partially compressed exact sum, the rounded results are then determined in either
one or two rounding stages. These rounding stages are implemented by operation and precision, and
the implementation is organized in a way very close to havinga separate rounding implementation per
instruction type. The subtle differences in the rounding algorithms for the different instruction types
significantly reduces the reuse of verification efforts between different rounding versions.

The fact that the calculation of a multiplication can block the partial-product accumulation stage for
up to three cycles restricts the pipelining of the unit and requires the unit to be state-controlled. New
instructions may be scheduled only when the accumulation stage is available. This condition needs to be
ensured by the FP scheduler that is implemented as a separateentity external to the FP multiplier. We
address the correctness of the scheduling of FP multiplication instructions to the unit with respect to the
unit’s constraints as a separate verification effort. We have addressed this separate verification task with a
different verification approach based on a commercial model-checking tool. We have used the definition
of standard Verilog signals to build assume-guarantee relationships between assertions and assumptions
in these two verification efforts.

The iterative nature of the implementation requires a cycle-based setup for the control bits of the
stages. In addition, operands also need to be held appropriately to be available when they are needed (e.g.,
during the iterations of the partial-product accumulationstage). The design is controlling the clocking
logic of the corresponding flops for this purpose. In the viewof our RTL translation tool, this introduces
additional clocks to the design. The implementation of clock-gating creates a similar situation. We deal
with both cases by removing the additional clocks and translating them to the original clock in a pre-
processing step of the translation tool. The clock gating logic is often dependent on reset and requires
inductive proofs. Because some of the clock-gating is implemented hierarchically, the corresponding
inductive proofs also had to be conducted hierarchically.

The design and the formal verification of this unit largely did not occur concurrently. The design

72 Formal Verification of an Iterative Low-power X86 Floating-point Multiplier

ACL2 processing

Correctness

certificates

System Model

ACL2

Custom

ACL2 theorems

translation

Verilog−to−ACL2

ACL2 libraries

RTL & arithmetic

RTL*

System Specification

Verilog*

Clock translation

RTL

System

Figure 1: ACL2 Verification Flow

was almost completed by the time the formal verification effort was started. The advantage of this
setting was that the design was very stable and the verification effort had to go through very few design
modifications. One of them was the addition of a part of the clock gating logic. But this also means the
design effort was not constrained by the formal verificationeffort, and the design had not been structured
to simplify modular and hierarchical specification and the application of formal verification. This created
more effort for the verification.

The formal specification and verification of the unit led to a deeper understanding of the properties
of the implementation and its operation. This understanding allowed us to propose several improvements
to the unit that were inspired by the formal verification of some of the properties of the unit. At least four
of these optimizations have been realized in the current implementation. These improvements allowed
removal of some logic from the design, reducing some critical delays in the implementation.

In Section 2 we describe our formal verification flow. In Section 3 we describe the formal specifi-
cation of the unit. In Section 4 we describe some details of the FP multiplication implementation and
highlight some verification challenges. In Section 5 we summarize our results before we conclude in
Section 6.

2 Verification Flow

The core of our verification is based on ACL2 theorem proving [1]. Our ACL2 based verification flow is
illustrated in Figure 1. To verify the RTL implementation, we need to translate both the multiplier RTL
and the multiplier specification from Verilog to ACL2 logic.We use the formalization from [7] for the

P.-M. Seidel 73

translation and build on an existing translation tool. Justa few small extensions were necessary for the
translation tool to handle a few new features of the Verilog dialect used in this project. We made a few
more changes to the translation process to deal with module dependencies more efficiently and to handle
the translation of a large number of RTL modules faster.

As a result of the translation, Verilog wires and registers are translated to function definitions in ACL2
that maintain the signal name as the function name and that depend on a cycle parametern. Verilog bit
vectors are translated to integer-valued ACL2 functions, and the translation process also generates for
each signal an ACL2-verified property on its bit width as expressed by its value range. The formalization
is supported by the ACL2 RTL library [13] that has been developed during previous ACL2 verification
projects at AMD and that is part of the public ACL2 distribution. Functions to extract, concatenate, or
manipulate bits and bit vectors, and functions for logical operations, as well as a large set of verified
properties and lemmas, are provided in this library in more than 600 function definitions and theorems.

In the translation, Verilog assignments are translated using the logic definitions of the RTL library that
correspond to the logic from the Verilog assignment from thesignal definition in Verilog. The translation
process works in several stages. An early, more direct translation is simplified in a later processing step
and the equivalence of the two translations is proven in ACL2[6]. ACL2 functions for wire definitions
relate to the signals on which they depend in the same cycle. ACL2 functions for register definitions for
cyclen relate to signals from the previous cyclen-1 or the current cyclen.

The translation of a wire

assign imm1 = in1 | (in2 & in3);

results in the following ACL2 function definition forimm1:

(DEFUN imm1 (n)

(LIOR (in1 n)

(LAND (in2 n) (in3 n)

1)

1))

The translation of a register assignment

always @ (posedge clk)

out1 <= in2

results in the following ACL2 function definition forout1:

(DEFUN out1 (n)

(if (zp n)

(reset ‘out1 1)

(in2 (- n 1))

))

In this translation process, all signals are related to the common ACL2 clockn. For the treatment of gated
and modified clocks, we consider a pre-processing step that translates all Verilog clocks to one common
Verilog clock, so the translation would only contain one common ACL2 clock parametern. For a gated
clock gclk = gcond & clk and its application to the assignment ofgout1:

always @ (posedge gclk)

gout1 <= in1;

our clock translation results in the following conditionalstatement using the common clock:

74 Formal Verification of an Iterative Low-power X86 Floating-point Multiplier

always @ (posedge clk)

if (gcond)

gout1 <= in1;

The translation of our multiplier RTL takes about 70 minutes. This time only needs to be spent once
after each modification of the design or the specification fileto create the corresponding certified ACL2
model. To work on theorems using the ACL2 model, the certifiedmodel file can be loaded into ACL2 in
a matter of seconds.

3 Formal Specification

The functionality of the unit we target is the computation ofFP multiplications. The unit supports a
variety of different multiplication options and a variety of other operations like divisions and square
roots. The input of an opcode and an activeenable bit indicates to the unit to start calculating on the
operation represented by the opcode.

The different operations supported by the unit have different latencies. FP multiplications take two
clock cycles for packed and scalar SSE SP operation, four clock cycles for SSE DP operation and five
clock cycles for all other FP multiplications.

We would like to state as the functional specification that, if we observe the opcode of a five-cycle
multiplication in cyclen with an activeenable signal, the results of this instruction would be available
after cyclen+4.

(Opcode(n) == ‘FMUL5) & enable(n)

==>

FPM.out(n+4) == FPM5spec.out(FPM.in(n))

This is our ultimate verification goal for the five-cycle FP multiplications, and this is what we ultimately
show. But this property is not a property of just the FP multiplier. The unit relies on the external
FP scheduler to meet some requirements and to drive appropriate control signals to the unit. The FP
scheduler needs to avoid scheduling new instructions when the unit is busy in iterations in its first stage
and cannot accept the issue of new instructions, or when the schedule of the new instruction would lead to
contention at the result bus of the unit, because two instructions in the unit would finish their calculations
in the same cycle. We deal with the constraints for the FP scheduler in a separate verification effort
outside of ACL2 and reformulate the unit functionality to remove the scheduling constraints. For this
purpose, we express the unit functionality from the observations at its outputs and consider how these
outputs have been computed. For the output observation in cycle n, it could be either that two cycles
ago, a two-cycle multiplication had been started, or four cycles ago, a four-cycle multiplication had been
started, or five cycles ago a five-cycle multiplication had been started. The following statement describes
these conditions:

if ((Opcode(n-1)==‘FMUL2) & enable(n-1))

FPM.out(n) == FPM2spec.out(FPM.in(n-1))

else if ((Opcode(n-3)==‘FMUL4) & enable(n-3) & ~enable(n-2))

FPM.out(n) == FPM4spec.out(FPM.in(n-3))

else if ((Opcode(n-4) == ‘FMUL5) & enable(n-4) & ~enable(n-3) & ~enable(n-2))

FPM.out(n) == FPM4spec.out(FPM.in(n-4))

This statement implicitly defines a priority for two-cycle FP multiplications over four- and five-cycle
multiplications and for four-cycle multiplications over five-cycle multiplications, and removes any ad-
ditional scheduling constraints at the same time. This specification statement can be shown for the FP

P.-M. Seidel 75

multiplier unit. Together with the external properties derived for the scheduler, it can then result in the
ultimate verification target from further above.

In the code statements, we used some notation that is supposed to improve readability and represent
our high-level view on the verification task. The equations combined Verilog-like syntax with the cycle
parametern from the ACL2 translations. The specification we work with inour design is written in
Verilog syntax readable to designers. The Verilog specification has a few extensions allowed to define
rational valued registers and to use certified functions forthe specification of IEEE-specific rounding
definitions [13]. These extensions are used to simplify and improve specification of IEEE FP functional-
ity.

To deal with delays in our Verilog specification, we define delayed registers for all inputs to the unit.
If we relateenable to the value ofenable(n) in cyclen and assign

always @ (posedge CLK) begin

enable_D1 <= enable;

enable_D2 <= enable_D1;

enable_D3 <= enable_D2;

enable_D4 <= enable_D3;

end

we get the corresponding values forenable(n-1) to enable(n-4) in enable D1 to enable D4.
The arithmetic definition of the result values of the specification involves several steps:

1. Extract the operand bits from register or memory format ofthe input operands to the sign, expo-
nent, and significand fields and indications of special values.

2. Define the rational values of the operands.

3. Define the exact, unrounded (rational) operation result.

4. Define the IEEE operation result of the appropriate targetprecision and rounding mode using
parameterized IEEE rounding functions.

5. Check for value ranges and exception conditions.

6. Calculate the register format representation of the result.

7. Select the correct case for the specification result.

An example of the definitions of rational FP operand values, of an unrounded, and of an IEEE-rounded
result according to Steps 2 to 4 is given in the following:

always @* begin

ValA = (-1) ** SignA * MantA

* 2 ** (ExpA - (2 ** 17 - 1) - 67);

ValB = (-1) ** SignB * MantB

* 2 ** (ExpB - (2 ** 17 - 1) - 67);

ValUnrnd = ValA * ValB;

case (RND_MODE[1:0])

‘RN: ValRnd = $Near(ValUnrnd, Prec);

‘RM: ValRnd = $Minf(ValUnrnd, Prec);

‘RP: ValRnd = $Inf(ValUnrnd, Prec);

‘RZ: ValRnd = $Trunc(ValUnrnd, Prec);

endcase

end

76 Formal Verification of an Iterative Low-power X86 Floating-point Multiplier

The final specification statement in the FP multiplier specification is written as an assert statement,
which is translated into an ACL2 theorem. The main verification target for the ACL2 verification of
FP multiplication is to verify this main theorem. Additional theorems are targeted for exception signals
and other output results of the unit.

The Verilog specification for the FP multiplications is largely simplified by the behavioral features
of the enhanced Verilog language and the availability of parameterized definitions for IEEE-specific
functions (e.g., the use of the function$Near in extended Verilog for the specification of IEEE rounding
in rounding mode round-to-nearest by the functionnear from the ACL2 RTL library). The writing of
the specification for a larger set of x86 functions with the goal to match the functionality of previous x86
implementations of the same instructions can still be an error-prone task.

We had the specification of previous x87 and SSE FP multiplication implementations available in
ACL2 for the design from K7/K8 [9]. Writing our specificationin the same structure and using the same
functions and definitions from the previous specification, so our Verilog specifications would match the
previous ACL2 specifications after Verilog-to-ACL2 translation, helped us increase confidence in the
specification and in the backwards compatibility of our verification target.

Our specification applied to any design evolution that we have considered. Clock-gating did not
change any of the functional behavior that was specified for the design. Only the theorems and proofs of
properties local to the unit had to be adjusted to incorporate the features of the additional clock-gating
logic.

4 FP multiplier implementation

In this section we describe some details and features of the FP multiplier implementation. More details
of the implementation can be found in [16]. A block diagram ofthe FP multiplier illustrating the details
of the significand datapath is shown in Figure 2. To simplify this diagram, the additional hardware for
exception processing, exponent computations, and divide/square-root support is not shown.

The significand datapath consists of three pipeline stages.The first pipeline stage consists of a
76× (27+ 2)-bit multiplier that uses modified radix-4 Booth recoding and a partial-product reduction
tree consisting of 4− 2 compressors. The 76× (27+ 2)-bit multiplier accepts a feedback product in
redundant carry-save form to facilitate iteration and a 76-bit addend that can be added to the product
or subtracted from the product specifically to support divide and square-root operations. The addend
is needed because the iterations for divide and square root use a restricted form of the multiply-add
operation during iterations. The operand width of 76 bits isrequired at the micro-architectural level
to support division at the internal precision of 68 bits thatis needed for transcendental functions. The
second and third pipeline stages consist of combined addition and rounding followed by result selection,
formatting for different precisions, and forwarding of theresult to the register file and bypass networks.

There are two identical copies of the SP rounding unit to support packed SP multiply operations
and a single combined DP/EP rounding unit that also handles all rounding for divide and square-root
operations. The SP rounders take one cycle and the DP/EP rounder takes two cycles. The outputs of
the two SP rounders are combined, formatted, and multiplexed with the output from the DP/EP rounder
to form the final result. The final result is written to the register file and forwarded back to the inputs
of the FP multiplier and other FP units via the bypass networks to enhance performance of dependent
operations. With such a configuration, a scalar SP multiplication takes one iteration, two parallel (packed)
SP multiplications take one iteration, a scalar DP multiplication takes two iterations, and a scalar EP
multiplication takes three iterations.

P.-M. Seidel 77

Figure 2: Significand Datapath from [16]

The significand multiplier consists of a 76× (27+2)-bit rectangular tree multiplier, which performs
76×76-bit multiplications over multiple cycles. This saves considerable area compared to a fully par-
allel 76×76-bit multiplier, but penalizes the performance of the higher precision (DP and EP) multiply
instructions because the multiplier must stall subsequentmultiply instructions. However, the multiplier
is fully pipelined for SP operations.

The multiplier accepts a 76-bit multiplicand input, a 76-bit multiplier input, and a 76-bit addend
input. These inputs are held for the duration of the operation. The 76-bit multiplier input is supplied to
alignment multiplexing, which outputs two 27-bit values. Each 27-bit value is then recoded using a set
of modified radix-4 Booth encoders. Two separate 27-bit multiplier values are required to support the
packed SP mode.

The outputs of the Booth encoders are used to select the multiples of the multiplicand to form fourteen
81-bit partial products. One of the 27-bit multiplier values controls the generation of the upper 38 bits of
each partial product while the other 27-bit multiplier value controls the generation of the lower 38 bits

78 Formal Verification of an Iterative Low-power X86 Floating-point Multiplier

Figure 3: Partial-product Layout in Modes Other than SSE SP from [16]

of each partial product. In non-packed modes, the two 27-bitmultiplier values are identical.

In parallel to the partial-product generation, two 76-bit feedback terms are combined with a 76-bit
addend using a 3− 2 carry-save adder. The 3− 2 carry-save addition is computed in parallel with the
Booth encoding and multiplexing and does not add to the critical path. The 14 partial products plus two
combined terms are summed using a compression tree consisting of three levels of 4−2 compressors to
produce a 103-bit product in redundant carry-save representation. The 103-bit carry-save product is then
stored in two 103-bit registers. A diagram of the partial-product array for the 76×27-bit multiplication
is show in Figure 3. This diagram also shows the alignment of the two 76-bit feedback terms and the
76-bit addend. The two feedback terms are needed to support iterations and are aligned to the right. The
addend is needed to support division and square root and is aligned to the left.

To avoid unnecessary hardware, the additional terms are inserted into the unused portions of the
array wherever possible. This makes the hardware more efficient, but also more irregular, and it adds
the complexity of having to decompose and recombine severalbits and bit fields in the formulation of
properties during verification. The ACL2 RTL and arithmeticlibraries do not handle a large amount of
these bit manipulations very efficiently. Figure 3 also shows how the partial-product terms are partitioned
into groups of four corresponding to the first level of 4− 2 compressors. Although the multiplier is
unsigned, a sign extension term is required to accommodate the sign embedded in the uncompressed
feedback terms from the previous iteration. This is an artifact of the signed nature of the Booth encoding
and the use of sign encoding of each individual partial product. The two feedback terms and addend
are compressed using a 3−2 carry-save-adder (CSA) into two terms, for a total of sixteen values to be
summed.

To support two parallel SP multiplications, the two SP multiplications are mapped onto the array
simultaneously. The superposition of two 24× 24-bit multiplier partial-product arrays onto a 76× 27-
bit partial-product array is shown in Figure 4. Because the lower array ends at bit 48, the significant
bits of the upper array and lower array are separated by sevenbits. The reduction tree has three levels
of 4− 2 compressors. The width of the split between the upper and the lower part has been justified
by the designers by the number of levels of 4− 2 compressors and based on how many bit positions a
carry can travel at most per level. Based on this reasoning, no additional hardware had been added to
kill any potential carries propagating from the lower arrayinto the upper array. This kind of bit-level
justification has also been used at some other parts of the design. It has caused the design to have some
dependencies between module-level behavioral features and bit-level implementation details of low-level

P.-M. Seidel 79

Figure 4: Partial-product Layout in SSE SP Mode from [16]

modules. These dependencies have made it more challenging to specify the implementation in a clean,
modular fashion.

To accommodate the sign encoding bits and the hot-ones, an additional multiplexer is inserted after
the Booth multiplexers and prior to the 4−2 compressor tree. The multiplexing after the Booth multi-
plexing is only required for the sign encoding bits of the lower array and the hot-ones of the upper array,
so the additional hardware required is small. This hardware, however, is on the critical path and adds the
delay of a 2−1 multiplexer.

For each multiply iteration of the iterative multiplication algorithm, the appropriate multiplier bits
are selected for the high and low multiplier values and the product is computed in redundant carry-save
form. For SSE-SP multiplies and the first iteration of all other precisions, the two feedback terms are
set to zero. For the second iteration of SSE-DP multiplies and the second and third iterations of EP
multiplies, the two feedback terms are set to the upper 76 bits of the product from the previous iteration
and are then added to the lower 76 bits of the current product.SP multiplies require only a single
iteration, DP multiplies require two iterations, and EP multiplies require three iterations.

The rounding circuitry takes as input the product in redundant carry-save form and rounds the re-
sult according to the given rounding mode. The rounding circuitry contains separate rounding units
for SSE-SP high and SSE-SP low results, and a combined rounding unit that rounds for SSE-DP, x87-
EP, and divide/square-root results. Each of the rounding units is based on a compound adder rounding
scheme. The micro-architecture requires that the FP multiplier be able to produce the unrounded, nor-
malized result for support of denormalized results. This complicates the use of injection-based rounding,
which could have simplified the rounding units and their verification, because this would be closer to an
available formalization of IEEE rounding in the ACL2 RTL library [13].

The SSE SP rounder performs SSE single-precision rounding only. This is a highly optimized and
compact rounder compared to the DP/EP rounder because it only has to deal with one precision. This
unit has two identical instances: one for the lower SSE-SP result and one for the upper SSE-SP result. In
the SP rounding scheme, the upper 25 bits are passed through one level of half-adders before applying the
compound adder. Initially, the design had implemented two levels of half-adders for this compression.

80 Formal Verification of an Iterative Low-power X86 Floating-point Multiplier

The formal analysis revealed that the upper bound for the bits that are involved in the calculation of
the LSB of the rounded significant were smaller by one than assumed by the designers. This allowed
the removal one of the half-adder lines from the design without adverse effects. This is one of the
optimizations that we referred to as inspired by the formal verification effort.

The combined DP/EP rounder performs rounding for SSE-DP, x87-SP, x87-DP, x87-EP, IP68 (for
transcendental functions), and divide and square-root operations. Due to the large number of different
precisions that must be supported, the DP/EP rounder is split over two cycles. The combined DP/EP
rounder is based on a compound adder rounding scheme. It has some similarities with the SP rounding
scheme, except it is necessary to perform a right shift to pre-align the rounding point to the same sig-
nificance prior to the compound addition and to perform a left-shift to post-align the MSB to the same
significance after the compound addition. This is the overhead for having to support multiple rounding
points in the same datapath.

The second difference is that the carry tree and sticky logicneed to include the carry-out and sticky
from previous iterations.

The third difference is that for each target precision thereis a pair of 2-1 multiplexers that are used
to insert the two rounded LSBs into the correct positions within the final rounded significand.

The fourth difference is that for DP/EP operation, double significand overflows can occur during
rounding. The DP/EP needs to be able to detect them, while theSP rounder can simply neglect any
carries beyond position 102. For the DP/EP rounder, it is important to be careful to avoid any additional
carry that could be contained in the 103-bit carry-save representation that is fed into the rounder. The
non-existence of such carry is also a property that makes assumptions among several module boundaries
and is only justified by bit-level details of the 4− 2 compressor implementations. The DP/EP rounder
also provides a bypass path for divide and square root to allow the compound adder to be reused for
other additions, such as computing the intermediate quotient +/− 1 ULP, instead of adding dedicated
hardware.

To conclude the description of the design, we would like to point out a few selected challenges
from this verification effort. The implementation of the unit was new and the design had largely been
completed by the time the formal verification effort started. While the stability of the design was an
advantage for verification, the fact that it was hard to justify any changes to the design to simplify the
specification and verification effort created some challenges.

The designers were very helpful in explaining features of the design, but their knowledge of details
and signal correlations to specify cycle- and bit-accurateconstraints for the operation of some sub-
modules was limited. Some of these constraints had to be determined experimentally in some iterations.

A particular cause for complexity in the specification of some modules and the proof of the corre-
sponding properties was the high degree of optimization in the implementation. The optimizations made
several high-level properties dependent on bit-level details of the design. Particular examples are the
carry correction logic of the redundant feedback in the adder tree iterations, a subtle difference in the
calculation of the significand overflow detection for rounding versus the selection of the corresponding
exponent adjustment, the iterative sticky and carry computation with logic spread over different modules,
the double significand overflow detection, and the hierarchyof clock-gating logic that is dependent on
reset.

While these features help improve the performance and lowerthe power of the design, they also com-
plicate modular specification and formal verification with our ACL2 theorem proving-based approach.

The design from this presentation has been reused for a second processor core in two instances
with slight modifications. The main changes in one of the instances were related to variations in the
implementation of clock-gating and the change of latenciesand types of other instructions that could be

P.-M. Seidel 81

handled concurrently by the unit. The main changes in the other instances involved the removal of RTL
logic for a more efficient implementation of a subset of the original unit’s functionality. The adjustment
of the verification effort to the modified unit instances required significantly less effort than the original
verification. But all modifications were made more complex bythe properties that were not modularized
and spread over module hierarchies and boundaries. The concurrent instruction constraints and the clock-
gating conditions could have been handled more efficiently in the updated instances if their properties
had been better encapsulated and kept local in the original theorem formulations.

5 Verification Results

As the main result, the ACL2 verification effort has verified the main theorem from the Verilog speci-
fication of the unit and shown that the functionality of the implementation meets the FP multiplication
specification from K7/K8. In the verification of this unit, wehave made use of the ACL2 RTL and
arithmetic libraries, but we also had to interactively develop and prove 8,500 new custom theorems and
function definitions in about 250,000 lines of LISP in 86 files.

The time to translate the design RTL and Verilog specification to ACL2 is about 70 minutes; the
time to certify the new theorems is about 11 hours on a single machine and about six hours when using
multiple machines.

The design had undergone a few modifications during the verification effort. Most of them were
small and local, so it took only several days to adjust the theorems and proof hints to the design changes.
One larger design change was the addition of an additional level of clock-gating to some parts of the
design. This change required a significant modification in the assumptions and invariants of several
sub-units, and adjusting the theorems and proof hints to work with the changes took a few months.

A significant number of theorems from the ACL2 verification effort could be shown by generating
some of them in a more automated way, especially for parts of the control logic and bit-level features
of the 4−2 compressors. A main area for this are the properties that are implied by control bits of the
unit that have fixed values for a specific cycle and a specific operation mode. The propagation of these
constants through the logic and the simplification of expressions and theorems based on these constants
were needed in multiple parts of the verification effort. In the past, we have looked into generating
properties of such propagations automatically for the casethat the values are constant during all cycles
of the operation, but we have not adjusted this approach for the case that independent propagations and
properties, that are not generally valid, are to be exploredfor individual cycles of the operation. The
previous effort had used byproducts of the Verilog-to-ACL2translation process to generate properties
in ACL2 theorems that were then proven automatically. One way to extend this approach for cycle
dependent properties could be based on unrolling the logic for the latencies of the operations, so that
the properties would become cycle independent. Another approach could be based on the use of more
automatic features of the ACL2 theorem prover like generating computed hints based on the propagated
control values. The serious exploitation of these strategies did not fit into the schedule of this verification
project, but will be considered for future ACL2-based verification at AMD.

To resolve the control and scheduling constraints for the FPmultiplier, we have used a commercial
model-checking tool by Jasper Design Automation. The main effort in this part of the project was the
reduction of the logic in the cone of influence of the assertions. We interacted with our RTL designers
for feedback on the interface constraints and dependenciesin the FP scheduler. For the remaining set of
interface signals, we applied exhaustive exploration to discover the dependency of the assertions on the
interface signals. This helped us first to increase the depthof the search of the model checker, and finally

82 Formal Verification of an Iterative Low-power X86 Floating-point Multiplier

to complete the proof of the assertions.
It is hard to specify any absolute time requirement for this part of the project because the interaction

with the model checker was run as a side project to the ACL2 verification for a larger part of the project
duration.

6 Conclusions

We have discussed the formal verification of a state-of-the-art low-power x86 FP multiplier implemen-
tation. The unit has been specified behaviorally in Verilog to match the functionality of previous x86
multiplication implementations. The multiplication implementation has been rigorously verified with all
logic-level design details including clock-gating, unit control, and the scheduling of concurrent instruc-
tions. In this respect we have advanced the breadth, rigor, and complexity of the formal verification for
our design and its environment compared to previous FP multiplication verification efforts to the extent
that their efforts are revealed in the literature (e.g., [2,3, 5, 8, 14, 15]). The design has also incorporated
several new design features like the signed redundant iterative additive multiplier feedback that, to the
best of our knowledge, have not previously been implementedor formally verified in production-level
RTL for a commercial FP unit implementation.

The deeper understanding of the design that was gained from the verification process during speci-
fying and proving design properties has shown to be very beneficial for the current design in identifying
several improvements for the unit. We have also found that the verification effort could be modified to
variations of the design. In two new instances of the unit that included small variations of the design, the
formal verification effort could be reused with reasonable overhead for adjustments. Better understand-
ing of the challenges of the verification process for this unit and the two modified instances will also help
make future design and verification iterations more efficient and help identify areas of the verification
process to be targeted for improved automation.

References

[1] ACL2 Web site. http://www.cs.utexas.edu/users/moore/acl2/.

[2] Mark D Aagaard & Carl-Johann H Seger (1995):The formal verification of a pipelined double-precision
IEEE floating-point multiplier. In: International Conference on Computer Aided Design, pp. 7–10.

[3] Christoph Berg & Christian Jacobi (2001):Formal Verification of the VAMP Floating Point Unit. In:
CHARME 2001, volume 2144 of LNCS, pp. 325–339, doi:10.1007/3-540-44798-926.

[4] Institute of Electrical and Electronics Engineers (1985): IEEE Standard for Binary Floating-Point Arithmetic.
ANSI/IEEE Standard 754-1985. IEEE, New York.

[5] Roope Kaivola & Naren Narasimhan (2002):Formal Verification of the Pentium 4 Floating-Point Multiplier.
In: Conference on Design, Automation and Test in Europe (DATE), pp. 20–27.

[6] Matt Kaufmann (2003):A Tool for simplifying files of ACL2 definitions. In: Proceedings ACL2 Workshop.
Available at: http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/.

[7] Matt Kaufmann, David Russinoff, Eric Smith & Rob Sumners(2005):Formal Verification of Floating-Point
RTL at AMD Using the ACL2 Theorem Prover. In: 17th IMACS World Congress:Scientific Computation,
Applied Mathematics and Simulation. Available at: http://www.russinoff.com/papers/paris.html.

[8] Erik Reeber & Jun Sawada (2006):Combining ACL2 and an automated verification tool to verify a
multiplier. In: International Workshop on the ACL2 Theorem Prover and its Applications, pp. 63–70,
doi:10.1145/1217975.1217990.

http://dx.doi.org/10.1007/3-540-44798-9_26
http://dx.doi.org/10.1145/1217975.1217990

P.-M. Seidel 83

[9] David M. Russinoff (1998):A Mechanically Checked Proof of IEEE Compliance of a Register-Transfer-Level
Specification of the AMD-K7 Floating-Point Multiplication, Division, and Square Root Instructions. LMS
Journal of Computation and Mathematics1, pp. 148–200.

[10] David M. Russinoff (1999): A Mechanically Checked Proof of IEEE Compliance of the AMD
K5 Floating-Point Square Root Microcode. Formal Methods in System Design14, pp. 75–125,
doi:10.1023/A:1008669628911.

[11] David M. Russinoff (2007): A Mathematical Approach to RTL Verification. In: 19th Interna-
tional Conference on Computer Aided Verification, doi:10.1007/978-3-540-73368-32. Available at:
http://www.russinoff.com/papers/cav/.

[12] David M. Russinoff (2009):A Mechanically Verified Commercial SRT Divider. In: Design and Verification
of Microprocessor Systems for High-Assurance Applications, Springer, pp. 23–63.

[13] David M. Russinoff & Arthur Flatau (2000):Mechanical Verification of Register-Transfer Logic: A Floating-
Point Multiplier. In: Computer-Aided Reasoning: ACL2 Case Studies, Kluwer, pp. 201–232.

[14] Anna Slobodová, Jared Davis, Sol Swords & Warren Hunt (2011):A Flexible Formal Verification Framework
for Industrial Scale Validation. In: Formal Methods and Models for Codesign (MEMOCODE), pp. 89–97,
doi:10.1109/MEMCOD.2011.5970515.

[15] Anna Slobodová & Krishna Nagalla (2004):Formal verification of floating point multiply add on Itanium
processors. In: Fifth International Workshop on Designing Correct Circuits, ETAPS, pp. 144–156.

[16] Dimitri Tan, Carl Lemonds & Michael J. Schulte (2009):Low-Power Multiple-Precision Iterative Floating-
Point Multiplier with SIMD Support. IEEE Trans. Computers58(2), pp. 175–187, doi:10.1109/TC.2008.203.

http://dx.doi.org/10.1023/A:1008669628911
http://dx.doi.org/10.1007/978-3-540-73368-3_2
http://dx.doi.org/10.1109/MEMCOD.2011.5970515
http://dx.doi.org/10.1109/TC.2008.203

	1 Introduction
	2 Verification Flow
	3 Formal Specification
	4 FP multiplier implementation
	5 Verification Results
	6 Conclusions

