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We present the formal verification of a low-power x86 floatpgjnt multiplier. The multiplier op-
erates iteratively and feeds back intermediate resultednmdant representation. It supports x87
and SSE instructions in various precisions and can blocistieng of new instructions. The design
has been optimized for low-power operation and has not beesti@ined by the formal verification
effort. Additional improvements for the implementationreédentified through formal verification.
The formal verification of the design also incorporates thplementation of clock-gating and con-
trol logic. The core of the verification effort was based onL&Gheorem proving. Additionally,
model checking has been used to verify some properties didatng-point scheduler that are rele-
vant for the correct operation of the unit.
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1 Introduction

Machine-assisted formal reasoning has become an integralop the verification strategy for many
floating-point (FP) hardware designs. At AMD, FP hardware Alieady been formally verified for
more than 15 years|[71 9,10,/11, 12] 13].

In this paper we describe the formal verification of an itgegtlow-power x86 FP multiplier that
has been designed from scratch for a new processor core.sW/ecgtlerated the verification effort for a
second processor core that reused two instances of thendesstight variations with little verification
overhead. A detailed description of the initial design isganted in[16]. The unit incorporates several
new features and optimizations that cause a large numberpérccases in the design. Many of these
corner cases would have been very difficult to cover basechiynrandom or directed simulation. The
goal of the complete coverage of all corner cases of the dggigether with the novelty and complexity
of the design, were the initial motivation for the formal feation of this implementation. The reuse
of the verification effort for a second design generation stamvn to be an additional benefit for this
verification approach.

The core of our formal verification effort is based on ACL2dbem proving[[1]. The unit function-
ality has been specified behaviorally at RTL level in a desigeadable Verilog description/[7]. For this
specification we have also established equivalence tofgmgmns from previous implementations of
the same FP instructions. We built on an existing Verilogx@lL2 translation tool to make the design
and the specification accessible in ACL2. We verify the desigorously with all bit-level details and
features of the RTL that is used for production. Additioreflmements for the implementation of certain
macros are locally shown to be logically equivalent at thplementation stage.

The FP multiplier supports x87 and SSE multiplication, peatal approximation, division, and
square root instructions. Operands and results can havef@aven different formats (two SSE, three
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x87, and two internal), and the three x87 precisions canfierelnt in the operands and in the result. All
four rounding modes of the IEEE FP standard 754 [4] are swpgon compliance with previous x86
implementations. The division and square root instrustiare implemented based on a multiplicative
algorithm with dedicated use of the multiplier hardware. daidnal features for buffering, comple-
menting, and normalizing intermediate results, for miytipdd and multiply-subtract operation of the
multiplication array, and for the IEEE rounding of an appnoate significand quotient or square root
are included in the multiplier hardware in support of theision and square root operations. We do not
discuss these additional features in this paper, and siwlelys on the FP multiplication operation of the
unit in this presentation.

Depending on the instruction and precision, FP multipiicet in this unit have a latency between
two and five clock cycles. In the significand path, the geimmadf the Booth-recoded partial products
and their compression to a carry-save representation @irtdtrict takes between one and three iterations
of the same stage using a rectangulax{@7+ 2)-bit multiplier array. A result of this stage is fed back
to the previous stage in redundant carry-save represemiatid added as two additional addends into the
rectangular multiplier array. For the Booth recoding of gagtial products, the result of the adder tree
contains a carry bit that represents the combined effedteofign corrections for all partial products.
The carry-save feedback of the multiplier array may or maycoatain contributions to this carry bit.
The tracking and compensation of carries in the feedbadk pe¢ds very careful consideration of all
possible scenarios. This complicates writing cycle-baseariants for the partial-product accumulation
stage. During the iterative partial-product accumulatitire representation of the intermediate result
is already shortened towards the target precision by retgtcalculating a sticky and a carry bit to
summarize the effect of the lower tail of the representatanthe rounding computation. From the
representation of the partially compressed exact sumdineded results are then determined in either
one or two rounding stages. These rounding stages are iraptedh by operation and precision, and
the implementation is organized in a way very close to hagirsgparate rounding implementation per
instruction type. The subtle differences in the roundingpethms for the different instruction types
significantly reduces the reuse of verification efforts kestw different rounding versions.

The fact that the calculation of a multiplication can blobk partial-product accumulation stage for
up to three cycles restricts the pipelining of the unit amgunees the unit to be state-controlled. New
instructions may be scheduled only when the accumulatiess available. This condition needs to be
ensured by the FP scheduler that is implemented as a sepatdjeexternal to the FP multiplier. We
address the correctness of the scheduling of FP multigitatstructions to the unit with respect to the
unit’s constraints as a separate verification effort. Westealdressed this separate verification task with a
different verification approach based on a commercial motdetking tool. We have used the definition
of standard Verilog signals to build assume-guarantedioakhips between assertions and assumptions
in these two verification efforts.

The iterative nature of the implementation requires a epaleed setup for the control bits of the
stages. In addition, operands also need to be held apprpiia be available when they are needed (e.qg.,
during the iterations of the partial-product accumulatstage). The design is controlling the clocking
logic of the corresponding flops for this purpose. In the vidwur RTL translation tool, this introduces
additional clocks to the design. The implementation of kigating creates a similar situation. We deal
with both cases by removing the additional clocks and tedimg] them to the original clock in a pre-
processing step of the translation tool. The clock gatimiclés often dependent on reset and requires
inductive proofs. Because some of the clock-gating is imgleted hierarchically, the corresponding
inductive proofs also had to be conducted hierarchically.

The design and the formal verification of this unit largeld diot occur concurrently. The design
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Figure 1: ACL2 Verification Flow

was almost completed by the time the formal verification reffleas started. The advantage of this
setting was that the design was very stable and the verditaffort had to go through very few design
modifications. One of them was the addition of a part of thelcigating logic. But this also means the
design effort was not constrained by the formal verificagfort, and the design had not been structured
to simplify modular and hierarchical specification and thpleation of formal verification. This created
more effort for the verification.

The formal specification and verification of the unit led toepler understanding of the properties
of the implementation and its operation. This understamdifowed us to propose several improvements
to the unit that were inspired by the formal verification afreoof the properties of the unit. At least four
of these optimizations have been realized in the currentementation. These improvements allowed
removal of some logic from the design, reducing some ctitieéays in the implementation.

In Sectiol 2 we describe our formal verification flow. In SeeiB we describe the formal specifi-
cation of the unit. In Sectionl 4 we describe some details @R multiplication implementation and
highlight some verification challenges. In Sectidn 5 we samne our results before we conclude in
Sectior( 6.

2 Verification Flow
The core of our verification is based on ACL2 theorem provitlg Qur ACL2 based verification flow is

illustrated in Figuré 1. To verify the RTL implementationeweed to translate both the multiplier RTL
and the multiplier specification from Verilog to ACL2 logidVe use the formalization from [[7] for the
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translation and build on an existing translation tool. Ju#gw small extensions were necessary for the
translation tool to handle a few new features of the Veril@ett used in this project. We made a few

more changes to the translation process to deal with modylerdiencies more efficiently and to handle
the translation of a large number of RTL modules faster.

As aresult of the translation, Verilog wires and registeestaanslated to function definitions in ACL2
that maintain the signal name as the function name and tipgihdeon a cycle parameter Verilog bit
vectors are translated to integer-valued ACL2 functiomsl the translation process also generates for
each signal an ACL2-verified property on its bit width as egged by its value range. The formalization
is supported by the ACL2 RTL library [13] that has been depetbduring previous ACL2 verification
projects at AMD and that is part of the public ACL2 distrilmrii Functions to extract, concatenate, or
manipulate bits and bit vectors, and functions for logiga¢mtions, as well as a large set of verified
properties and lemmas, are provided in this library in mbeat600 function definitions and theorems.

In the translation, Verilog assignments are translateaisie logic definitions of the RTL library that
correspond to the logic from the Verilog assignment fromdiigaal definition in Verilog. The translation
process works in several stages. An early, more directlatms is simplified in a later processing step
and the equivalence of the two translations is proven in A(E]2ACL2 functions for wire definitions
relate to the signals on which they depend in the same cy€&&2Aunctions for register definitions for
cyclen relate to signals from the previous cyelel or the current cycla.

The translation of a wire

assign imml = inl | (in2 & in3);
results in the following ACL2 function definition faimm1:

(DEFUN imml (n)
(LIOR (inl n)
(LAND (in2 n) (in3 n)
1)
1))

The translation of a register assignment

always @ (posedge clk)
outl <= 1in2

results in the following ACL2 function definition farut1:

(DEFUN outl (n)

(if (zp n)
(reset ‘outl 1)
(in2 (- n 1))
))

In this translation process, all signals are related to ¢imemon ACL2 clocka. For the treatment of gated
and modified clocks, we consider a pre-processing steprtraglates all Verilog clocks to one common
Verilog clock, so the translation would only contain one coom ACL2 clock parametet. For a gated
clockgclk = gcond & clk and its application to the assignmentgofuti:

always @ (posedge gclk)
goutl <= inl;

our clock translation results in the following conditiorsshtement using the common clock:
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always @ (posedge clk)
if (gcond)
goutl <= inil;
The translation of our multiplier RTL takes about 70 minut@is time only needs to be spent once
after each modification of the design or the specificationtdilereate the corresponding certified ACL2
model. To work on theorems using the ACL2 model, the certifirediel file can be loaded into ACL2 in
a matter of seconds.

3 Formal Specification

The functionality of the unit we target is the computationFéf multiplications. The unit supports a
variety of different multiplication options and a variety ather operations like divisions and square
roots. The input of an opcode and an actwable bit indicates to the unit to start calculating on the
operation represented by the opcode.

The different operations supported by the unit have diffefatencies. FP multiplications take two
clock cycles for packed and scalar SSE SP operation, foak agcles for SSE DP operation and five
clock cycles for all other FP multiplications.

We would like to state as the functional specification thalyé observe the opcode of a five-cycle
multiplication in cyclen with an activeenable signal, the results of this instruction would be available
after cyclen+4.

(Opcode(n) == ‘FMUL5) & enable(n)
==>
FPM.out (n+4) == FPMbspec.out(FPM.in(n))
This is our ultimate verification goal for the five-cycle FPltiplications, and this is what we ultimately
show. But this property is not a property of just the FP mu#ip The unit relies on the external
FP scheduler to meet some requirements and to drive apgt®montrol signals to the unit. The FP
scheduler needs to avoid scheduling new instructions whneniit is busy in iterations in its first stage
and cannot accept the issue of new instructions, or wherctiezlsle of the new instruction would lead to
contention at the result bus of the unit, because two instmg in the unit would finish their calculations
in the same cycle. We deal with the constraints for the FPddhe in a separate verification effort
outside of ACL2 and reformulate the unit functionality tarreve the scheduling constraints. For this
purpose, we express the unit functionality from the obdemwa at its outputs and consider how these
outputs have been computed. For the output observationcie ay it could be either that two cycles
ago, a two-cycle multiplication had been started, or fowl&y ago, a four-cycle multiplication had been
started, or five cycles ago a five-cycle multiplication hadrbstarted. The following statement describes
these conditions:
if ((Opcode(n-1)==‘FMUL2) & enable(n-1))
FPM.out(n) == FPM2spec.out(FPM.in(n-1))
else if ((Opcode(n-3)==‘FMUL4) & enable(n-3) & “enable(n-2))
FPM.out(n) == FPM4spec.out (FPM.in(n-3))
else if ((Opcode(n-4) == ‘FMUL5) & enable(n-4) & ~enable(n-3) & ~enable(n-2))
FPM.out(n) == FPM4spec.out(FPM.in(n-4))
This statement implicitly defines a priority for two-cycld® Fnultiplications over four- and five-cycle
multiplications and for four-cycle multiplications ovewd-cycle multiplications, and removes any ad-
ditional scheduling constraints at the same time. Thisifipation statement can be shown for the FP
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multiplier unit. Together with the external propertiesided for the scheduler, it can then result in the
ultimate verification target from further above.

In the code statements, we used some notation that is supfmsaprove readability and represent
our high-level view on the verification task. The equatioambined Verilog-like syntax with the cycle
parametem from the ACL2 translations. The specification we work withaar design is written in
Verilog syntax readable to designers. The Verilog spetifinahas a few extensions allowed to define
rational valued registers and to use certified functionstierspecification of IEEE-specific rounding
definitions [13]. These extensions are used to simplify amgtove specification of IEEE FP functional-
ity.

To deal with delays in our Verilog specification, we defineagted registers for all inputs to the unit.
If we relateenable to the value oknable (n) in cyclen and assign

always @ (posedge CLK) begin
enable_D1 <= enable;
enable_D2 <= enable_D1;
enable_D3 <= enable_D2;
enable_D4 <= enable_D3;
end

we get the corresponding values tatable (n-1) to enable(n-4) in enable D1 t0 enable D4.
The arithmetic definition of the result values of the speatian involves several steps:

1. Extract the operand bits from register or memory formahefinput operands to the sign, expo-
nent, and significand fields and indications of special \&alue

2. Define the rational values of the operands.
3. Define the exact, unrounded (rational) operation result.

4. Define the IEEE operation result of the appropriate tapgetision and rounding mode using
parameterized IEEE rounding functions.

5. Check for value ranges and exception conditions.
6. Calculate the register format representation of thetresu
7. Select the correct case for the specification result.

An example of the definitions of rational FP operand valuésnounrounded, and of an IEEE-rounded
result according to Steps 2 to 4 is given in the following:
always @* begin
ValA = (-1) *x SignA * MantA
* 2 *xx (ExpA - (2 »x 17 - 1) - 67);

ValB = (-1) ** SignB * MantB
* 2 xx (ExpB - (2 *x 17 - 1) - 67);
ValUnrnd = ValA x ValB;
case (RND_MODE[1:0])
‘RN: ValRnd = $Near(ValUnrnd, Prec);
‘RM: ValRnd = $Minf(ValUnrnd, Prec);

‘RP: ValRnd = $Inf(ValUnrnd, Prec);
‘RZ: ValRnd $Trunc (ValUnrnd, Prec);
endcase
end
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The final specification statement in the FP multiplier speaffon is written as an assert statement,
which is translated into an ACL2 theorem. The main verifmatiarget for the ACL2 verification of
FP multiplication is to verify this main theorem. Additidrtaeorems are targeted for exception signals
and other output results of the unit.

The Verilog specification for the FP multiplications is lalg simplified by the behavioral features
of the enhanced Verilog language and the availability ofipaaterized definitions for IEEE-specific
functions (e.qg., the use of the functi¢Near in extended Verilog for the specification of IEEE rounding
in rounding mode round-to-nearest by the functicrar from the ACL2 RTL library). The writing of
the specification for a larger set of x86 functions with thalgo match the functionality of previous x86
implementations of the same instructions can still be aorgmone task.

We had the specification of previous x87 and SSE FP multipdicamplementations available in
ACL2 for the design from K7/K8[9]. Writing our specificatian the same structure and using the same
functions and definitions from the previous specificatianpsar Verilog specifications would match the
previous ACL2 specifications after Verilog-to-ACL2 traatébn, helped us increase confidence in the
specification and in the backwards compatibility of our fieation target.

Our specification applied to any design evolution that weeheansidered. Clock-gating did not
change any of the functional behavior that was specifiedi®design. Only the theorems and proofs of
properties local to the unit had to be adjusted to incorgotta¢ features of the additional clock-gating
logic.

4 FP multiplier implementation

In this section we describe some details and features of Rhedtiplier implementation. More details
of the implementation can be found in [16]. A block diagranitef FP multiplier illustrating the details
of the significand datapath is shown in Figlie 2. To simplifis tdiagram, the additional hardware for
exception processing, exponent computations, and degdefe-root support is not shown.

The significand datapath consists of three pipeline staddw first pipeline stage consists of a
76 x (274 2)-bit multiplier that uses modified radix-4 Booth recodinglam partial-product reduction
tree consisting of 4 2 compressors. The 36(27+ 2)-bit multiplier accepts a feedback product in
redundant carry-save form to facilitate iteration and abit@addend that can be added to the product
or subtracted from the product specifically to support divathd square-root operations. The addend
is needed because the iterations for divide and square saotiuestricted form of the multiply-add
operation during iterations. The operand width of 76 bitseiguired at the micro-architectural level
to support division at the internal precision of 68 bits tisaheeded for transcendental functions. The
second and third pipeline stages consist of combined additnd rounding followed by result selection,
formatting for different precisions, and forwarding of tlesult to the register file and bypass networks.

There are two identical copies of the SP rounding unit to suppacked SP multiply operations
and a single combined DP/EP rounding unit that also handlesunding for divide and square-root
operations. The SP rounders take one cycle and the DP/EBentakes two cycles. The outputs of
the two SP rounders are combined, formatted, and multiglith the output from the DP/EP rounder
to form the final result. The final result is written to the s#gr file and forwarded back to the inputs
of the FP multiplier and other FP units via the bypass net&/dokenhance performance of dependent
operations. With such a configuration, a scalar SP mulépba takes one iteration, two parallel (packed)
SP multiplications take one iteration, a scalar DP multgtion takes two iterations, and a scalar EP
multiplication takes three iterations.
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Figure 2: Significand Datapath from [16]

The significand multiplier consists of a #6227+ 2)-bit rectangular tree multiplier, which performs
76 x 76-bit multiplications over multiple cycles. This savesisiglerable area compared to a fully par-
allel 76 x 76-bit multiplier, but penalizes the performance of theheigprecision (DP and EP) multiply
instructions because the multiplier must stall subsequoentiply instructions. However, the multiplier
is fully pipelined for SP operations.

The multiplier accepts a 76-bit multiplicand input, a 7&-multiplier input, and a 76-bit addend
input. These inputs are held for the duration of the opeanatithe 76-bit multiplier input is supplied to
alignment multiplexing, which outputs two 27-bit valuesadh 27-bit value is then recoded using a set
of modified radix-4 Booth encoders. Two separate 27-bit ipligt values are required to support the
packed SP mode.

The outputs of the Booth encoders are used to select theptesltf the multiplicand to form fourteen
81-bit partial products. One of the 27-bit multiplier vaduspntrols the generation of the upper 38 bits of
each partial product while the other 27-bit multiplier valcontrols the generation of the lower 38 bits
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of each partial product. In non-packed modes, the two 2hitiplier values are identical.

In parallel to the partial-product generation, two 76-eiédback terms are combined with a 76-bit
addend using a 3 2 carry-save adder. The-32 carry-save addition is computed in parallel with the
Booth encoding and multiplexing and does not add to thecatippath. The 14 partial products plus two
combined terms are summed using a compression tree cagsidtihree levels of 4 2 compressors to
produce a 103-bit product in redundant carry-save reptaten. The 103-bit carry-save product is then
stored in two 103-bit registers. A diagram of the partiaeprct array for the 76& 27-bit multiplication
is show in Figuré 3. This diagram also shows the alignmenheftivo 76-bit feedback terms and the
76-bit addend. The two feedback terms are needed to supg@tions and are aligned to the right. The
addend is needed to support division and square root angjmedlto the left.

To avoid unnecessary hardware, the additional terms aegt@tsinto the unused portions of the
array wherever possible. This makes the hardware moreesifjdbut also more irregular, and it adds
the complexity of having to decompose and recombine set#sabnd bit fields in the formulation of
properties during verification. The ACL2 RTL and arithmdiimaries do not handle a large amount of
these bit manipulations very efficiently. Figlile 3 also sktaw the partial-product terms are partitioned
into groups of four corresponding to the first level of2 compressors. Although the multiplier is
unsigned, a sign extension term is required to accommodbatsign embedded in the uncompressed
feedback terms from the previous iteration. This is anauatibf the signed nature of the Booth encoding
and the use of sign encoding of each individual partial pcadThe two feedback terms and addend
are compressed using a2 carry-save-adder (CSA) into two terms, for a total of ®xtealues to be
summed.

To support two parallel SP multiplications, the two SP nplitations are mapped onto the array
simultaneously. The superposition of two 244-bit multiplier partial-product arrays onto a ¥&7-
bit partial-product array is shown in Figuré 4. Because tweel array ends at bit 48, the significant
bits of the upper array and lower array are separated by d@t@nThe reduction tree has three levels
of 4—2 compressors. The width of the split between the upper amdother part has been justified
by the designers by the number of levels 6f 2 compressors and based on how many bit positions a
carry can travel at most per level. Based on this reasonio@ddlitional hardware had been added to
kill any potential carries propagating from the lower arrago the upper array. This kind of bit-level
justification has also been used at some other parts of thgnddshas caused the design to have some
dependencies between module-level behavioral featuteliatevel implementation details of low-level
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modules. These dependencies have made it more challeryspgtify the implementation in a clean,
modular fashion.

To accommodate the sign encoding bits and the hot-ones,ditioad| multiplexer is inserted after
the Booth multiplexers and prior to the-42 compressor tree. The multiplexing after the Booth multi-
plexing is only required for the sign encoding bits of the émarray and the hot-ones of the upper array,
so the additional hardware required is small. This hardwesreever, is on the critical path and adds the
delay of a 2- 1 multiplexer.

For each multiply iteration of the iterative multiplicatialgorithm, the appropriate multiplier bits
are selected for the high and low multiplier values and tloelpet is computed in redundant carry-save
form. For SSE-SP multiplies and the first iteration of alletiprecisions, the two feedback terms are
set to zero. For the second iteration of SSE-DP multiplied the second and third iterations of EP
multiplies, the two feedback terms are set to the upper &dbithe product from the previous iteration
and are then added to the lower 76 bits of the current prod8&. multiplies require only a single
iteration, DP multiplies require two iterations, and EP tiplies require three iterations.

The rounding circuitry takes as input the product in redmbdarry-save form and rounds the re-
sult according to the given rounding mode. The roundinguding contains separate rounding units
for SSE-SP high and SSE-SP low results, and a combined moginghit that rounds for SSE-DP, x87-
EP, and divide/square-root results. Each of the roundiritg imibased on a compound adder rounding
scheme. The micro-architecture requires that the FP rtialtipe able to produce the unrounded, nor-
malized result for support of denormalized results. Thimplicates the use of injection-based rounding,
which could have simplified the rounding units and their figgition, because this would be closer to an
available formalization of IEEE rounding in the ACL2 RTL fdry [13].

The SSE SP rounder performs SSE single-precision roundilyg @his is a highly optimized and
compact rounder compared to the DP/EP rounder becauseyithaslto deal with one precision. This
unit has two identical instances: one for the lower SSE-S&itrand one for the upper SSE-SP result. In
the SP rounding scheme, the upper 25 bits are passed throadével of half-adders before applying the
compound adder. Initially, the design had implemented ®svels of half-adders for this compression.



80 Formal Verification of an Iterative Low-power X86 Floatipgint Multiplier

The formal analysis revealed that the upper bound for thethit are involved in the calculation of
the LSB of the rounded significant were smaller by one thanrasd by the designers. This allowed
the removal one of the half-adder lines from the design withexlverse effects. This is one of the
optimizations that we referred to as inspired by the forneaification effort.

The combined DP/EP rounder performs rounding for SSE-DP,S, x87-DP, x87-EP, IP68 (for
transcendental functions), and divide and square-roatatipas. Due to the large number of different
precisions that must be supported, the DP/EP rounder isas@r two cycles. The combined DP/EP
rounder is based on a compound adder rounding scheme. lohressmilarities with the SP rounding
scheme, except it is necessary to perform a right shift teapge the rounding point to the same sig-
nificance prior to the compound addition and to perform adafft to post-align the MSB to the same
significance after the compound addition. This is the ovedher having to support multiple rounding
points in the same datapath.

The second difference is that the carry tree and sticky logexd to include the carry-out and sticky
from previous iterations.

The third difference is that for each target precision ther pair of 2-1 multiplexers that are used
to insert the two rounded LSBs into the correct position$iwithe final rounded significand.

The fourth difference is that for DP/EP operation, doubtgniicand overflows can occur during
rounding. The DP/EP needs to be able to detect them, whil&kheounder can simply neglect any
carries beyond position 102. For the DP/EP rounder, it isitgmt to be careful to avoid any additional
carry that could be contained in the 103-bit carry-saveasgmtation that is fed into the rounder. The
non-existence of such carry is also a property that makesrgaons among several module boundaries
and is only justified by bit-level details of the-42 compressor implementations. The DP/EP rounder
also provides a bypass path for divide and square root tavdale compound adder to be reused for
other additions, such as computing the intermediate quioti¢ — 1 ULP, instead of adding dedicated
hardware.

To conclude the description of the design, we would like tcnpout a few selected challenges
from this verification effort. The implementation of the timias new and the design had largely been
completed by the time the formal verification effort startadfhile the stability of the design was an
advantage for verification, the fact that it was hard to fusiny changes to the design to simplify the
specification and verification effort created some chalsng

The designers were very helpful in explaining features efdhsign, but their knowledge of details
and signal correlations to specify cycle- and bit-accu@estraints for the operation of some sub-
modules was limited. Some of these constraints had to bendieiied experimentally in some iterations.

A particular cause for complexity in the specification of ®modules and the proof of the corre-
sponding properties was the high degree of optimizatiohenrmplementation. The optimizations made
several high-level properties dependent on bit-levelidetd the design. Particular examples are the
carry correction logic of the redundant feedback in the adde iterations, a subtle difference in the
calculation of the significand overflow detection for roumgliversus the selection of the corresponding
exponent adjustment, the iterative sticky and carry coatprt with logic spread over different modules,
the double significand overflow detection, and the hierafhglock-gating logic that is dependent on
reset.

While these features help improve the performance and Itveguower of the design, they also com-
plicate modular specification and formal verification witlr &CL2 theorem proving-based approach.

The design from this presentation has been reused for a gguocessor core in two instances
with slight modifications. The main changes in one of theanses were related to variations in the
implementation of clock-gating and the change of latenam types of other instructions that could be
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handled concurrently by the unit. The main changes in therattstances involved the removal of RTL
logic for a more efficient implementation of a subset of thigioal unit’s functionality. The adjustment
of the verification effort to the modified unit instances riegd significantly less effort than the original
verification. But all modifications were made more complextmy properties that were not modularized
and spread over module hierarchies and boundaries. Thartentinstruction constraints and the clock-
gating conditions could have been handled more efficientlthé updated instances if their properties
had been better encapsulated and kept local in the oridgieatém formulations.

5 \Verification Results

As the main result, the ACL2 verification effort has verifiéd tmain theorem from the Verilog speci-
fication of the unit and shown that the functionality of theplementation meets the FP multiplication
specification from K7/K8. In the verification of this unit, weave made use of the ACL2 RTL and
arithmetic libraries, but we also had to interactively depeand prove 800 new custom theorems and
function definitions in about 25000 lines of LISP in 86 files.

The time to translate the design RTL and Verilog specificatm ACL2 is about 70 minutes; the
time to certify the new theorems is about 11 hours on a singlehine and about six hours when using
multiple machines.

The design had undergone a few modifications during the watifin effort. Most of them were
small and local, so it took only several days to adjust therras and proof hints to the design changes.
One larger design change was the addition of an additional & clock-gating to some parts of the
design. This change required a significant modification & dssumptions and invariants of several
sub-units, and adjusting the theorems and proof hints t& with the changes took a few months.

A significant number of theorems from the ACL2 verificatiofioef could be shown by generating
some of them in a more automated way, especially for parteeotontrol logic and bit-level features
of the 4— 2 compressors. A main area for this are the properties tleataslied by control bits of the
unit that have fixed values for a specific cycle and a specifecaipn mode. The propagation of these
constants through the logic and the simplification of exgites and theorems based on these constants
were needed in multiple parts of the verification effort. he fpast, we have looked into generating
properties of such propagations automatically for the tagethe values are constant during all cycles
of the operation, but we have not adjusted this approachh®cése that independent propagations and
properties, that are not generally valid, are to be expldoedndividual cycles of the operation. The
previous effort had used byproducts of the Verilog-to-AGt&hslation process to generate properties
in ACL2 theorems that were then proven automatically. Ong teaextend this approach for cycle
dependent properties could be based on unrolling the lagithk latencies of the operations, so that
the properties would become cycle independent. Anotheroagh could be based on the use of more
automatic features of the ACL2 theorem prover like genegatomputed hints based on the propagated
control values. The serious exploitation of these stratedid not fit into the schedule of this verification
project, but will be considered for future ACL2-based vedfion at AMD.

To resolve the control and scheduling constraints for therieRiplier, we have used a commercial
model-checking tool by Jasper Design Automation. The mé#ortan this part of the project was the
reduction of the logic in the cone of influence of the assegtid\e interacted with our RTL designers
for feedback on the interface constraints and dependemctese FP scheduler. For the remaining set of
interface signals, we applied exhaustive exploration socalier the dependency of the assertions on the
interface signals. This helped us first to increase the defgtie search of the model checker, and finally
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to complete the proof of the assertions.

It is hard to specify any absolute time requirement for tlag pf the project because the interaction
with the model checker was run as a side project to the ACLiZcation for a larger part of the project
duration.

6 Conclusions

We have discussed the formal verification of a state-ofattidew-power x86 FP multiplier implemen-
tation. The unit has been specified behaviorally in Verilogriatch the functionality of previous x86
multiplication implementations. The multiplication ingohentation has been rigorously verified with all
logic-level design details including clock-gating, uniintrol, and the scheduling of concurrent instruc-
tions. In this respect we have advanced the breadth, rigdrcamplexity of the formal verification for
our design and its environment compared to previous FP ptigltion verification efforts to the extent
that their efforts are revealed in the literature (e.gl,3[&,[8/ 14/ 15]). The design has also incorporated
several new design features like the signed redundanti‘teradditive multiplier feedback that, to the
best of our knowledge, have not previously been implemeatddrmally verified in production-level
RTL for a commercial FP unit implementation.

The deeper understanding of the design that was gained freretrification process during speci-
fying and proving design properties has shown to be veryfimalfor the current design in identifying
several improvements for the unit. We have also found tretwérification effort could be modified to
variations of the design. In two new instances of the unitith@duded small variations of the design, the
formal verification effort could be reused with reasonablerbead for adjustments. Better understand-
ing of the challenges of the verification process for thig and the two modified instances will also help
make future design and verification iterations more efficeerd help identify areas of the verification
process to be targeted for improved automation.
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