
R. Gamboa and J. Davis (Eds.): ACL2 Workshop 2013 (ACL2 ’13).
EPTCS 114, 2013, pp. 5–12, doi:10.4204/EPTCS.114.1

© Matt Kaufmann and J Strother Moore
This work is licensed under the
Creative Commons Attribution License.

Enhancements to ACL2 in Versions 5.0, 6.0, and 6.1

Matt Kaufmann

Dept. of Computer Science,
University of Texas at Austin

kaufmann@cs.utexas.edu

J Strother Moore

Dept. of Computer Science,
University of Texas at Austin
moore@cs.utexas.edu

We report on highlights of the ACL2 enhancements introduced in ACL2 releases since the 2011
ACL2 Workshop. Although many enhancements are critical for soundness or robustness, we focus
in this paper on those improvements that could benefit users who are aware of them, but that might
not be discovered in everyday practice.

1 Introduction

This paper discusses ACL2 enhancements introduced in releases made since the ACL2 Workshop in
November, 2011: Versions 5.0 (August, 2012), 6.0 (December, 2012), and 6.1 (expected February, 2013).
We thus discuss enhancements made after the release of ACL2 Version 4.3 in July, 2011.

The release notes [3] for those three versions report approximately 200 enhancements, which typi-
cally were made in direct response to user feedback or were important to soundness or robustness of the
system. Our goal in this paper is not simply to rehash the release notes; rather, it is to highlight important
improvements that ACL2 users are not likely to discover by the routine use of ACL2. We do not discuss
lower-level improvements to the system that are reported in comments in source file ld.lisp for the
release notes (e.g., (deflabel note-5-0 ...)). Those who dive into the ACL2 sources may wish
to peruse these; for example, they will notice that starting in ACL2 6.0, defrec defines a recognizer
predicate.

Because of the maturity of ACL2, many of the improvements pertain to aspects of ACL2 that may be
unfamiliar to novice users. Our hope, however, is that this paper will have value to those users as well,
by suggesting new ideas about what can be done with ACL2.

As in a preceding paper of a similar nature in the previous ACL2 workshop [5], we write “see
:DOC” to highlight documentation topics. For example, see :DOC release-notes and its subtopics (e.g.,
see :DOC note-6-0 for changes introduced in ACL2 Version 6.0). Documentation topics are also refer-
enced implicitly using underlining; for example, the topic advanced-features provides a handy summary
of advanced features of ACL2 in one place. Each documentation topic reference (of either type) is a
hyperlink in the online version of this paper.

Unlike the preceding paper mentioned above, we choose here to organize the paper in the way that
we have organized the release notes for several years, as follows.

• Changes to existing features

• New features

• Heuristic improvements

• Bug fixes

• Changes at the system level

http://dx.doi.org/10.4204/EPTCS.114.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.cs.utexas.edu/users/moore/acl2/current/RELEASE-NOTES.html
http://www.cs.utexas.edu/users/moore/acl2/current/NOTE-6-0.html
http://www.cs.utexas.edu/users/moore/acl2/current/ADVANCED-FEATURES.html

6 Enhancements to ACL2

In each of the five sections corresponding to these topics, we present a few topics in some detail, but in
many cases we simply note an improvement and point to relevant documentation.

There are typically two other categories: Emacs support and Experimental/alternate versions. The
former has changed little in the last few release notes. As for the latter, there have been significant
improvements to ACL2(h), ACL2(p), and ACL2(r); but for these we live within our space limitations,
referring readers to the release notes.

One outlier, not included in the categories above, is a series of changes related to licensing and
distribution. For Version 5.0, changes were made to satisfy University of Texas policies: the license
changed from GPL “Version 2 or later” to GPL Version 2, and the community books [1] — basically,
what has been called the regression suite — were moved away from the University of Texas, and are
hosted by Google Code. For Version 6.0 we changed the license to a BSD-style license, in order to make
it easier for industry groups to take advantage of ACL2.

Acknowledgements

We thank members of the ACL2 community whose feedback has led us to continue making improve-
ments to ACL2, including the following, each mentioned for one or more specific items in the release
notes for Version 5.0, 6.0, or 6.1: Harsh Raju Chamarthi, Jared Davis, Ruben Gamboa, Shilpi Goel, Dave
Greve, David Hardin, Marijn Heule, Warren Hunt, Anthony Knape, Robert Krug, Camm Maguire, Pete
Manolios, Francisco J. Martin Mateos, David Rager, Jose Luis Ruiz-Reina, Anna Slobodova, Eric Smith,
Rob Sumners, Sol Swords, Sarah Weissman, and Nathan Wetzler. We expressly thank Warren Hunt for
his continued support of the use of ACL2, in particular in projects at the University of Texas. Finally, we
thank the reviewers for helpful comments, one of which led us to improve :DOC provisional-certification
for the next release.

This material is based upon work supported by DARPA under Contract No. N66001-10-2-4087, by
ForrestHunt, Inc., and by the National Science Foundation under Grant Nos. CCF-0945316 and CNS-
0910913.

2 Changes to existing features

There are over 50 release note items about changes to existing features. Here we list a few and then
present a few others in a bit more detail.

• Functions READ-ACL2-ORACLE, READ-RUN-TIME, GET-TIMER, and MAIN-TIMER are no
longer untouchable; you can call them in your programs.

• Macros can take an argument named STATE, or which is the name of a stobj. However, these
variables are not bound to the “live objects” as you might expect but are treated just like other
macro variables.

• The macros MEMOIZE and UNMEMOIZE now cause a warning rather than an error in (regular,
non-HONS) ACL2.

• The macro DEFUNDmay now be used without error with :PROGRAMmode specified in an XARGS
declaration.

• The functions SYS-CALL and SYS-CALL-STATUS are now guard-verified :LOGICmode func-
tions.

http://www.cs.utexas.edu/users/moore/acl2/current/HONS-AND-MEMOIZATION.html
http://www.cs.utexas.edu/users/moore/acl2/current/PARALLELISM.html
http://www.cs.utexas.edu/users/moore/acl2/current/REAL.html
http://www.cs.utexas.edu/users/moore/acl2/current/PROVISIONAL-CERTIFICATION.html
http://www.cs.utexas.edu/users/moore/acl2/current/READ-RUN-TIME.html
http://www.cs.utexas.edu/users/moore/acl2/current/STOBJ.html
http://www.cs.utexas.edu/users/moore/acl2/current/MEMOIZE.html
http://www.cs.utexas.edu/users/moore/acl2/current/UNMEMOIZE.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUND.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUND.html
http://www.cs.utexas.edu/users/moore/acl2/current/XARGS.html
http://www.cs.utexas.edu/users/moore/acl2/current/SYS-CALL.html
http://www.cs.utexas.edu/users/moore/acl2/current/SYS-CALL-STATUS.html
http://www.cs.utexas.edu/users/moore/acl2/current/GUARD.html
http://www.cs.utexas.edu/users/moore/acl2/current/LOGIC.html

Matt Kaufmann and J Strother Moore 7

• The environment variable ACL2_COMPILE_FLG provides a default for CERTIFY-BOOK; it was
formerly named COMPILE_FLG.

Some other changes

It has been the case since Version 3.6 (August, 2009) that the definition of a function symbol can
mention that symbol in the guard and measure. Now, guards specified in ENCAPSULATE signatures
may similarly refer to the functions being introduced in the same ENCAPSULATE event.

Some utilities have been improved, so you might want to try them again even if you gave up on them
in the past. For example, consider :PL applied to a non-symbol. It didn’t work for macro calls, but now
it performs macroexpansion (and other transformations to internal form) as a first step; and moreover,
among the rule classes that it shows is now the :LINEAR class. Another utility that has been improved
is TOP-LEVEL, which no longer causes calls of LD to stop. The “with-error-trace” utility, WET, has also
been improved. Finally, if you haven’t yet tried DEFATTACH, because your code seemed to run a bit
slowly using attachments, consider trying again, as efficiency has improved for this utility.

The abbreviated proof output offered by gag-mode is now on by default. See :DOC SET-GAG-MODE
for a description of gag-mode. If you want a bit of control over the printing of induction schemes and
guard conjectures in gag-mode, see the discussion of :GAG-MODE in :DOC SET-EVISC-TUPLE.

For a macro mac, you can now add a pair (mac . fn) to the MACRO-ALIASES-TABLE even
when fn has not been defined as a function symbol. This can be useful if you want to define a set of
macros early. See :DOC ADD-MACRO-ALIAS.

When functions such as FMT-TO-STRING (see :DOC printing-to-strings) was introduced in Version
4.3, it printed with a right margin set to 10,000, but now the default right margin settings are used. Thus,
for example, the string returned as shown below had no newline characters in Version 4.3. We can return
to the default behavior as shown.

ACL2 !>(fmt-to-string "~x0"
(list (cons #\0 (make-list 20))))

(0
"

(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL
NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)

")
ACL2 !>(fmt-to-string "~x0"

(list (cons #\0 (make-list 20)))
:fmt-control-alist
`((fmt-soft-right-margin . 10000)
(fmt-hard-right-margin . 10000)))

(81
"

(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)")
ACL2 !>

The extended metafunctions have been reworked, with improved handling of forcing and also with
the option of returning a tag-tree. Also, a unifying substitution has been added to metafunction contexts,
accessed with function MFC-UNIFY-SUBST. See :DOC extended-metafunctions).

Printing of numbers now pays attention to the print radix; see :DOC SET-PRINT-RADIX. For
example, before Version 6.0 the final value was printed below as ABCD1234. Notice the use of #u to
allow underscores in numbers, which is new.

ACL2 !>(set-print-base 16 state)

http://www.cs.utexas.edu/users/moore/acl2/current/CERTIFY-BOOK.html
http://www.cs.utexas.edu/users/moore/acl2/current/ENCAPSULATE.html
http://www.cs.utexas.edu/users/moore/acl2/current/SIGNATURE.html
http://www.cs.utexas.edu/users/moore/acl2/current/PL.html
http://www.cs.utexas.edu/users/moore/acl2/current/TOP-LEVEL.html
http://www.cs.utexas.edu/users/moore/acl2/current/LD.html
http://www.cs.utexas.edu/users/moore/acl2/current/WET.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFATTACH.html
http://www.cs.utexas.edu/users/moore/acl2/current/SET-GAG-MODE.html
http://www.cs.utexas.edu/users/moore/acl2/current/SET-EVISC-TUPLE.html
http://www.cs.utexas.edu/users/moore/acl2/current/MACRO-ALIASES-TABLE.html
http://www.cs.utexas.edu/users/moore/acl2/current/ADD-MACRO-ALIAS.html
http://www.cs.utexas.edu/users/moore/acl2/current/PRINTING-TO-STRINGS.html
http://www.cs.utexas.edu/users/moore/acl2/current/EXTENDED-METAFUNCTIONS.html
http://www.cs.utexas.edu/users/moore/acl2/current/SET-PRINT-RADIX.html

8 Enhancements to ACL2

<state>
ACL2 !>(set-print-radix t state)
<state>
ACL2 !>#uxabcd_1234
#xABCD1234
ACL2 !>

3 New features

Of the approximately 50 release note items about new features, we list a few here and then elaborate on
a few others below.

• See :DOC PRINT-SUMMARY-USER for a way to add to what is printed in event summaries.

• Commands :PL and :PR now have analogues in the proof-checker.

• See :DOC provisional-certification for how to certify books in parallel even when they they are
ordered linearly by INCLUDE-BOOK.

• ACL2 now supports multiple instances of a stobj (whether conventional or abstract), known as
congruent stobjs. See :DOC DEFSTOBJ and see :DOC DEFABSSTOBJ.

• Access to the host Lisp’s disassembler is now provided in the ACL2 loop by the DISASSEMBLE$
utility.

• See :DOC DEFTHEORY-STATIC for a variant of DEFTHEORY that behaves the same when a
book containing such an event is included, as it does when when the book was certified.

• See :DOC :PSOF for a variant of :PSO that directs proof output hidden by gag-mode to a file.
Also see :DOC WOF for a general utility for directing output to a file.

• A new macro, DEFND is just DEFN (i.e., DEFUN with a guard of T) plus a disable just as
DEFUND is DEFUN plus a DISABLE.

• New utilities ORACLE-FUNCALL, ORACLE-APPLY, and ORACLE-APPLY-RAW, provide a sort
of higher-order capability, by calling a function argument on specified arguments.

• Both INLINE and NOTINLINE declarations are now supported for the FLET utility.

• See :DOC GC-VERBOSE for how to control, in some host Lisps, the printing of garbage-collection
messages.

• The utility ADD-MACRO-FN, which is a replacement for ADD-BINOP, lets you choose whether
macros are to be displayed as flat right-associated calls, for example, (append x y z) rather
than (append x (append y z)).

• The new TIME-TRACKER utility supports annotating your programs to display information dur-
ing a computation about elapsed runtime.

• The tau system is discussed in Section 4.

Some other new features

The utility DEFUN-NX has been improved, for example by avoiding stobj restrictions in the :LOGIC
component of an MBE call. Here is an example from Jared Davis that motivated this change; note the
call of function MY-IDENTITY on a stobj even though MY-IDENTITY was not declared to take a stobj
argument.

http://www.cs.utexas.edu/users/moore/acl2/current/PRINT-SUMMARY-USER.html
http://www.cs.utexas.edu/users/moore/acl2/current/PL.html
http://www.cs.utexas.edu/users/moore/acl2/current/PR.html
http://www.cs.utexas.edu/users/moore/acl2/current/PROOF-CHECKER.html
http://www.cs.utexas.edu/users/moore/acl2/current/PROVISIONAL-CERTIFICATION.html
http://www.cs.utexas.edu/users/moore/acl2/current/INCLUDE-BOOK.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFSTOBJ.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFABSSTOBJ.html
http://www.cs.utexas.edu/users/moore/acl2/current/DISASSEMBLE$.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFTHEORY-STATIC.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFTHEORY.html
http://www.cs.utexas.edu/users/moore/acl2/current/PSOF.html
http://www.cs.utexas.edu/users/moore/acl2/current/PSO.html
http://www.cs.utexas.edu/users/moore/acl2/current/GAG-MODE.html
http://www.cs.utexas.edu/users/moore/acl2/current/WOF.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFND.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFN.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUN.html
http://www.cs.utexas.edu/users/moore/acl2/current/GUARD.html
http://www.cs.utexas.edu/users/moore/acl2/current/DISABLE.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUND.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUN.html
http://www.cs.utexas.edu/users/moore/acl2/current/ORACLE-FUNCALL.html
http://www.cs.utexas.edu/users/moore/acl2/current/ORACLE-APPLY.html
http://www.cs.utexas.edu/users/moore/acl2/current/ORACLE-APPLY-RAW.html
http://www.cs.utexas.edu/users/moore/acl2/current/FLET.html
http://www.cs.utexas.edu/users/moore/acl2/current/GC-VERBOSE.html
http://www.cs.utexas.edu/users/moore/acl2/current/ADD-MACRO-FN.html
http://www.cs.utexas.edu/users/moore/acl2/current/TIME-TRACKER.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUN-NX.html
http://www.cs.utexas.edu/users/moore/acl2/current/STOBJ.html
http://www.cs.utexas.edu/users/moore/acl2/current/MBE.html

Matt Kaufmann and J Strother Moore 9

(defstobj foo (fld))
(defun-nx my-identity (x) x)
(defun my-fld (foo)

(declare (xargs :stobjs foo))
(mbe :logic (my-identity foo)

:exec (let ((val (fld foo)))
(update-fld val foo))))

But there now is another way to violate signatures in non-executable code: by using the utility, NON-EXEC.
Note that this time, MY-IDENTITY is defined with DEFN (which is DEFUN with a guard of T), not by
DEFUN-NX.

(defstobj foo (fld))
(defn my-identity (x) x)
(defun my-fld (foo)

(declare (xargs :stobjs foo))
(non-exec (my-identity foo)))

There have been many improvements to the documentation, but here we focus on two new topics. The
topic advanced-features summarizes some cool features of ACL2 that might not all be widely known, yet
may be of interest, especially to experienced users. Another new topic provides a guide to programming
with the ACL2 state; see :DOC programming-with-state.

A new event, DEFABSSTOBJ, provides an interface to conventional single-threaded objects known
as abstract stobjs [2]. These can provide advantages over conventional stobjs in several arenas: execution
speed, proof efficiency, use of symbolic simulation, and modularity of proof development.

ACL2 now provides a way to direct the host Lisp compiler to inline calls of a given function. See
:DOC DEFUN-INLINE. We expect that you can generally use this utility just as you would use DEFUN
to define a function. However, we say a bit more, in part to motivate our design of this utility. Funda-
mentally, DEFUN-INLINE is simply a macro, as we illustrate by expanding a call of this macro.

ACL2 !>:trans1 (defun-inline f (x)
(declare (xargs :guard (consp x)))
(integerp (car x)))

(PROGN (DEFMACRO F (X) (LIST 'F$INLINE X))
(ADD-MACRO-FN F F$INLINE)
(DEFUN F$INLINE (X)

(DECLARE (XARGS :GUARD (CONSP X)))
(INTEGERP (CAR X))))

ACL2 !>

Notice that F is defined to be a macro whose calls expands to a corresponding calls of a function,
F$INLINE. The invocation of ADD-MACRO-FN arranges that theory functions understand F to mean
F$INLINE and that proof output will display calls of F$INLINE as corresponding calls of F. But why
didn’t we simply support the Common Lisp form (declaim (inline f))? The reason is the sup-
port that ACL2 provides for undoing. Imagine that you want F to be inline and then you change your
mind — or maybe F is defined in a book that you include locally. How can we arrange for Common Lisp
to undo the directive to inline calls of F? Sadly, the Common Lisp language [6] does not provide for a
way to do that. The best we can do is to direct F to be notinline — but that could defeat the host
Lisp’s appropriate inlining of some subsequent definition of F. Our solution is always to direct inlining
for functions whose name ends in the string "$INLINE", and to provide the illusion that we are defining
a function F rather than F$INLINE, using ADD-MACRO-FN as discussed above. Note that analogous
considerations hold for utility DEFUN-NOTINLINE.

We invite the ACL2 community to help us to convert ACL2 system functions from :PROGRAM mode
to guard-verified :LOGIC mode. This mechanism is described in some detail in an online document [4].

http://www.cs.utexas.edu/users/moore/acl2/current/NON-EXEC.html
http://www.cs.utexas.edu/users/moore/acl2/current/DOCUMENTATION.html
http://www.cs.utexas.edu/users/moore/acl2/current/ADVANCED-FEATURES.html
http://www.cs.utexas.edu/users/moore/acl2/current/STATE.html
http://www.cs.utexas.edu/users/moore/acl2/current/PROGRAMMING-WITH-STATE.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFABSSTOBJ.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUN-INLINE.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUN.html
http://www.cs.utexas.edu/users/moore/acl2/current/ADD-MACRO-FN.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUN-INLINE.html
http://www.cs.utexas.edu/users/moore/acl2/current/PROGRAM.html
http://www.cs.utexas.edu/users/moore/acl2/current/GUARD.html
http://www.cs.utexas.edu/users/moore/acl2/current/LOGIC.html

10 Enhancements to ACL2

Here, in brief, are the steps to follow; we would be happy to provide more details leading to improvement
of the online document.

1. Install a local copy of ACL2, and build it using make.

2. Develop a book that includes VERIFY-TERMINATION and VERIFY-GUARDS forms for one or
more system functions. For simplicity we assume here that there is a single such function, FN.

3. When necessary, modify ACL2 definitions in your copy, for example by replacing some calls of
NULL by corresponding calls of ENDP or by adding or modifying guard declarations. Rebuild
your local copy of ACL2 using make.

4. Email us your ACL2 changes and your book, and we will do what is necessary in order to incor-
porate your book into the ACL2 community books [1] and your changes into the ACL2 sources.

5. Henceforth, the default build of ACL2 will accordingly mark FN as a guard-verified :LOGIC
mode function.

We, the ACL2 developers, will check each release that such proofs still go through, using a build that
leaves FN in :PROGRAM mode.

If you have written :META rules or :CLAUSE-PROCESSOR rules, you may have been frustrated
that your meta functions and clause processor functions could not assume the correctness of prover
computations, for example as performed using MFC-TS (see :DOC extended-metafunctions). A new
mechanism, designed with Sol Swords, now provides such a capability; see :DOC meta-extract). The
community book clause-processors/meta-extract-simple-test.lisp provides illus-
trative examples.

ACL2 rule names, or runes, form the basis of ACL2 theories. But runes do not take into account
macro aliases for function symbols. For example, (:definition binary-append) is a rune,
and you can use append in a theory expression to abbreviate the set of runes, {(:definition
binary-append), (:induction binary-append)}; but you cannot use (:definition
append) in a theory expression. Now, however, you can use (:d append) in a theory expression
to designate the rune (:definition binary-append). There are four new such abbreviation
mechanisms, as follows, where symb is a symbol and symb’ is the macro-aliases dereference of symb;
e.g., binary-append is the macro-aliases dereference of append, while car is the macro-aliases
dereference of itself.

• (:d symb . r) designates the rune (:definition symb’ . r).

• (:e symb . r) designates the rune (:executable-counterpart symb’ . r).

• (:i symb . r) designates the rune (:induction symb’ . r).

• (:t symb . r) designates the rune (:type-prescription symb’ . r).

Take a new look at ACL2 output when you have large case splits, which in the past could be difficult
to debug. Now, "Splitter Notes" can help you locate sources of your case splits. See :DOC splitter.

4 Heuristic improvements

As ACL2 is a heuristic theorem prover, it orchestrates many techniques to support effective automation
of reasoning. The large regression suite, contributed by many users over about 20 years, has helped
to tune the prover heuristics so that they often need relatively little of our attention. However, we have

http://www.cs.utexas.edu/users/moore/acl2/current/VERIFY-TERMINATION.html
http://www.cs.utexas.edu/users/moore/acl2/current/VERIFY-GUARDS.html
http://www.cs.utexas.edu/users/moore/acl2/current/META.html
http://www.cs.utexas.edu/users/moore/acl2/current/CLAUSE-PROCESSOR.html
http://www.cs.utexas.edu/users/moore/acl2/current/EXTENDED-METAFUNCTIONS.html
http://www.cs.utexas.edu/users/moore/acl2/current/META-EXTRACT.html
https://acl2-books.googlecode.com/svn/trunk/clause-processors/meta-extract-simple-test.lisp
http://www.cs.utexas.edu/users/moore/acl2/current/RUNE.html
http://www.cs.utexas.edu/users/moore/acl2/current/THEORIES.html
http://www.cs.utexas.edu/users/moore/acl2/current/MACRO-ALIASES-TABLE.html
http://www.cs.utexas.edu/users/moore/acl2/current/SPLITTER.html

Matt Kaufmann and J Strother Moore 11

made improvements since Version 5.0 that include avoidance of some rewriting loops, two strengthenings
of type-set reasoning, and tweaks to the heuristics for automatically expanding recursive function calls
during proofs by induction.

ACL2 now expands away calls of so-called guard-holders before storing induction schemes. These
include THE as well as all calls of RETURN-LAST. The latter include MBE, PROG2$,and equality-variants
— for example, a call of MEMBER expands to the corresponding call of MEMBER-EQUAL. Such expan-
sion also occurs before storing constraints generated by ENCAPSULATE events.

We may think of the break-rewrite utility as a heuristic, since, when enabled, it chooses debugging
information to display to the user. This utility had incurred significant overhead even when disabled, as
it is by default. That has been fixed, resulting in elimination of more than 10% of the time required for
an ACL2 regression.

The remainder of this section discusses a feature introduced in Version 5.0 that contributes to the set
of primary prover heuristics: the tau system. This system is a decision procedure designed to exploit pre-
viously proved theorems about monadic Boolean functions. The tau system was extended and improved
in Versions 6.0 and 6.1.

The system mines all the axioms, definitions, and proved rules (of any rule class) relating Boolean
function symbols of one argument. One might think of these function symbols as recognizing “soft
types” such as integerp, consp, alistp, n32-bit-numberp, etc. The tau of a term is the set
of all such recognizers known to hold of the value of the term. The tau of a term is typically computed
in a context specifying the tau of other terms (typically including variables and subterms). For example,
if an IF has the test (integerp i), then when the tau of the true branch is computed, the variable i
is known to have a tau that contains integerp and all the recognizers it is known to imply.

For purposes of the tau system, Boolean monadic functions are tracked, as are equalities and inequal-
ities with constants. As of Version 6.1, the tau system was extended to track intervals. For example, the
tau for a term might, in addition to saying that the value of the term is an integer (and thus also a rational
and not a cons), lies in the interval between 0 and 15 but is not 3 or 7.

Of special importance are signature rules that allow the tau system to compute the tau of a function
application by computing the tau of the actuals. Tau also tracks other forms of rules that relate the known
predicates, and it allows signatures for the various values returned by multiple-value functions. The tau
system also provides a way for the user to define, verify, and install “bounder” functions which can be
used to compute an interval containing a function’s output from the intervals containing its input.

It is possible to prove certain theorems by tau reasoning alone. Such formula are often, informally,
thought of as being mere consequences of “type checking.” The tau system is designed to recognize such
formulas rapidly. It is thought the tau system, if properly “programmed” with rules, will be helpful in
verifying guard conjectures.

The tau documentation has grown extensively since Version 5.0. We recommend that the interested
reader see :DOC introduction-to-the-tau-system.

5 Bug fixes

We have continued to improve ACL2 by eliminating more than 50 bugs. In this section we mention only
a few that may have the most effect on how people use ACL2.

The time reports in event summaries have been much improved. As far as we know, they now
accurately report runtime (cpu time). Of course, you can use the TIME$utility for reports of realtime
and runtime that avoid the accounting done by ACL2.

http://www.cs.utexas.edu/users/moore/acl2/current/THE.html
http://www.cs.utexas.edu/users/moore/acl2/current/RETURN-LAST.html
http://www.cs.utexas.edu/users/moore/acl2/current/MBE.html
http://www.cs.utexas.edu/users/moore/acl2/current/PROG2$.html
http://www.cs.utexas.edu/users/moore/acl2/current/EQUALITY-VARIANTS.html
http://www.cs.utexas.edu/users/moore/acl2/current/ENCAPSULATE.html
http://www.cs.utexas.edu/users/moore/acl2/current/EVENTS.html
http://www.cs.utexas.edu/users/moore/acl2/current/BREAK-REWRITE.html
http://www.cs.utexas.edu/users/moore/acl2/current/TAU-SYSTEM.html
http://www.cs.utexas.edu/users/moore/acl2/current/RULE-CLASSES.html
http://www.cs.utexas.edu/users/moore/acl2/current/BOUNDERS.html
http://www.cs.utexas.edu/users/moore/acl2/current/GUARD.html
http://www.cs.utexas.edu/users/moore/acl2/current/INTRODUCTION-TO-THE-TAU-SYSTEM.html
http://www.cs.utexas.edu/users/moore/acl2/current/TIME$.html

12 Enhancements to ACL2

The FLET construct no longer has any requirements for returning stobjs.

6 Changes at the system level

In this section we pick a few additions and improvements that are outside the realm of what one might
normally think of as “ACL2 features”.

The character encoding for reading from files — and for some host Lisps also for reading from the
terminal — is now iso-8859-1, also known as latin-1. See :DOC character-encoding.

You can now build the ACL2 documentation locally (using make DOC). Previously, the graphics
had been omitted when doing so.

If you want to run a parallel regression using ‘make’, you should now avoid the ‘-j’ option. Instead,
use ACL2_JOBS=n where n is the maximum number of jobs to run in parallel. This change is in support
of including the centaur/ books in such regressions. (Those books had formerly only been certified
in regressions done for ACL2(h); see :DOC hons-and-memoization.) Note that you should still use ‘-j’
if you are certifying books residing in a particular directory, rather than doing a full regression.

The search button near the top of the ACL2 home page will lead you to two search utilities: one for
the documentation, and one for the community books.

7 Conclusion

We have presented an outline of changes to ACL2 in Versions 5.0, 6.0, and 6.1. Our focus has been
to describe changes that can affect one’s daily use of ACL2 but might otherwise go unnoticed. Many
more changes (close to 200 altogether) may be found in the release notes for these three versions, and
many changes at a lower level are described in comments in the source code for those release notes
((deflabel note-5-0 ...) etc.).

A critical component in the continued evolution of ACL2 is feedback from the user community. We
hope that you’ll keep that feedback coming! Another contribution of the user community is the large
body of Community Books [1], which put demands on the system and help us to test improvements.
Please keep these coming, too!

References
[1] The ACL2 community: ACL2 Community Books. See URL https://code.google.com/p/

acl2-books/.
[2] Shilpi Goel, Warren A. Hunt, Jr. & Matt Kaufmann (2013): Abstract Stobjs and Their Application to ISA

Modeling. In: Proceedings 11th International Workshop on the ACL2 Theorem Prover and its Applications.
[3] Matt Kaufmann & J Strother Moore: ACL2 documentation topic: RELEASE-NOTES. See URL http:

//www.cs.utexas.edu/users/moore/acl2/current/RELEASE-NOTES.html.
[4] Matt Kaufmann & J Strother Moore: Instructions for modifying ACL2 system code. See URL http://www.

cs.utexas.edu/users/moore/acl2/open-architecture/how-to-make-patches.txt.
[5] Matt Kaufmann & J Strother Moore (2011): How Can I Do That with ACL2? Recent Enhancements to

ACL2. In David Hardin & Julien Schmaltz, editors: ACL2, EPTCS 70, pp. 46–60. Available at http:
//dx.doi.org/10.4204/EPTCS.70.4.

[6] Guy L. Steele, Jr. (1990): Common LISP: the language (2nd ed.). Digital Press, Newton, MA, USA.

http://www.cs.utexas.edu/users/moore/acl2/current/FLET.html
http://www.cs.utexas.edu/users/moore/acl2/current/CHARACTER-ENCODING.html
http://www.cs.utexas.edu/users/moore/acl2/current/DOCUMENTATION.html
http://www.cs.utexas.edu/users/moore/acl2/current/HONS-AND-MEMOIZATION.html
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/current/RELEASE-NOTES.html
https://code.google.com/p/acl2-books/
https://code.google.com/p/acl2-books/
http://www.cs.utexas.edu/users/moore/acl2/current/RELEASE-NOTES.html
http://www.cs.utexas.edu/users/moore/acl2/current/RELEASE-NOTES.html
http://www.cs.utexas.edu/users/moore/acl2/open-architecture/how-to-make-patches.txt
http://www.cs.utexas.edu/users/moore/acl2/open-architecture/how-to-make-patches.txt
http://dx.doi.org/10.4204/EPTCS.70.4
http://dx.doi.org/10.4204/EPTCS.70.4

	1 Introduction
	2 Changes to existing features
	3 New features
	4 Heuristic improvements
	5 Bug fixes
	6 Changes at the system level
	7 Conclusion

