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Using ACL2 to Verify Loop Pipelining in Behavioral Synthesis
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Behavioral synthesis involves compiling an Electronic System-Level (ESL) design into its Register-
Transfer Level (RTL) implementation. Loop pipelining is one of the most critical and complex
transformations employed in behavioral synthesis. Certifying the loop pipelining algorithm is chal-
lenging because there is a huge semantic gap between the input sequential design and the output
pipelined implementation making it infeasible to verify their equivalence with automated sequential
equivalence checking techniques. We discuss our ongoing effort using ACL2 to certify loop pipelin-
ing transformation. The completion of the proof is work in progress. However, some of the insights
developed so far may already be of value to the ACL2 community. In particular, we discuss the key
invariant we formalized, which is very different from that used in most pipeline proofs. We discuss
the needs for this invariant, its formalization in ACL2, and our envisioned proof using the invariant.
We also discuss some trade-offs, challenges, and insights developed in course of the project.

1 Introduction

Behavioral synthesis is the process of synthesizing an Electronic System-level (ESL) specification of
a hardware design into an RTL implementation. The idea of ESL is to raise the design abstraction by
specifying the high-level, functional behavior of the hardware design. Designs are typically specified in
a language like C, SystemC, or C++. The approach is promising since the user is relieved of the require-
ment to develop and optimize low-level implementations. It has recently received significant attention,
as the steady increase in hardware complexity has made it increasingly difficult to design high-quality
designs through hand-crafted RTL under aggressive time-to-market schedules. Studies have shown that
ESL reduces the design effort by 50% or more while attaining excellent performance results [6]. Never-
theless, and in spite of availability of several commercial behavioral synthesis tools, the adoption of the
approach in main-stream hardware development for microprocessor and SoC design companies has been
tentative. One key reason is the lack of designers’ confidence that the synthesized RTL indeed corre-
sponds to the ESL specification. To satisfy the power and performance demands of modern applications,
a behavioral synthesis tool applies hundreds of transformations, many involving complex and aggressive
optimizations that require subtle and delicate invariants. It is unsurprising that the transformations can
contain errors, which can result in bugs in synthesized hardware. Thus it is critical to develop mecha-
nized support to certify the semantic equivalence between ESL and RTL designs. On the other hand, the
large difference in abstraction between the two representations makes such certification non-trivial.

Loop pipelining is a critical transformation in behavioral synthesis. The goal of this transformation
is to increase throughout and reduce latency of the synthesized hardware by allowing temporal overlap
of successive loop iterations. It is performed by most state-of-the-art commercial synthesis tools. Unfor-
tunately, it is also one of the most complex transformations [14], and creates challenges in developing
viable automated certification techniques. In particular, efficient overlapping of loop iterations creates
a design that differs significantly from its sequential counterpart. Thus there is little correspondence
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in internal signals between the two designs, making it infeasible to compare them through automated
sequential equivalence checking (SEC).

In this paper, we discuss our ongoing work on using ACL2 for certifying loop pipelining transforma-
tions. A short companion paper [11] provides a high-level summary of our approach suitable for general
audience. In this paper we provide more ACL2-specific details. Certification of loop pipelining is a part
of our larger overall effort targeted towards certifying hardware designs synthesized by behavioral syn-
thesis. An explicit goal of this overall framework is to make use of fully automatic decision procedures
to the extent possible. Many components of the project are quite mature, but they are based on automatic
sequential equivalence checking (SEC). The work discussed here is the key theorem proving component.
We discuss the overall framework and how our work fits with the rest of the components in Section 2.

Our ACL2 proof is ongoing, and its completion will still require significant work. Nevertheless, our
work so far has already produced insights that we believe are worth disseminating to the community. The
paper touches upon the following three points.

First, a key technical contribution is the invariant we defined. It differs from a typical invariant
used for correctness of pipelined systems in that it explicitly specifies the correspondence between the
sequential and pipelined programs at each transition. We elaborate on our definition in Section 5.

Second, our project is somewhat different from the traditional applications of ACL2 in hardware
verification. First, since an over-arching goal is to exploit automatic decision procedures, we use theorem
proving primarily to complement automated tools. Second, we eschew theorem proving on inherently
complex or low-level implementations. Third, interactive theorem proving is acceptable for one-time use,
e.g. in certification of a single transformation, but not as part of a methodology that requires ongoing
use in certification of each design. The constraints are imposed by the the environment in which we
envision our framework being deployed: it may not be possible to have a dedicated team of experts
doing theorem proving as full-time job. Finally, as discussed above, our approach is targeted towards
verification of procedures which are closed-source (and exceedingly complex), thus making traditional
program verification techniques unusable. We believe our approach shows a novel way in which theorem
proving can be applied even under those constraints, in concert with automatic SEC.

Finally, we comment upon our experience in a new user’s experience with ACL2. ACL2, like any
other interactive reasoning tool, has a significant learning curve. Unfortunately, most of the participants
of the team in this task had no previous exposure to automated theorem proving. In particular, the
majority of the work in this effort was done by the first author and it represents her first project in
formal methods beyond exercises in the ACL2 textbook. Our experience provides some insight in the
complexity of developing industrial-scale solutions with ACL2 from a new user’s perspective.

The remainder of the paper is organized as follows. Section 2 provides some background on the
overall project and explains the context of our theorem proving work. In Section 3 we discuss our
formalization of CCDFG, a structure which formalizes intermediate representations used in behavioral
synthesis. Section 4 discusses our correctness statement, while Section 5 presents the key proof steps,
and the definition of our invariant. In Section 6 we share some insights we gleaned from this experience
on difficulty of using ACL2 in a proof project of this scale for a new user.

2 Background and Context

In this section, we discuss the overall framework of the project we are working on, and how the certifica-
tion of loop pipelining fits into this project. The description here is, of course, necessarily minimal. The
reader interested in a thorough understanding of other components of the project is welcome to review
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the prior publications [12, 5].

2.1 Behavioral Synthesis

We start with a brief summary of behavioral synthesis, highlighting the aspects necessary to understand
the rest of our presentation. Note that behavioral synthesis is a complex technology whose description
is far beyond the scope of this paper. However, there are several behavioral synthesis tools available,
including both commercial and academic ones, with extensive manuals, documentations and tutorials
providing user-level description of their workings [3, 2, 15], and we encourage the interested reader to
these materials for further information.

At a high level, a behavioral synthesis tool can be best viewed as a “compiler” that takes an ESL
description and generates RTL. Analogous to a regular compiler, a behavioral synthesis tool performs
the standard lexical and syntax analysis to generate in intermediate representation (IR). The IR is then
subjected to a number of transformation, which can be categorized into three phases.

• Compiler Transformations: These include typical compiler operations, e.g., dead-code elimi-
nation, constant propagation, loop unrolling, etc. A design may undergo hundreds of compiler
transformations.

• Scheduling Transformations: Scheduling entails computing for each operation the clock cycle of
its execution, accounting for hardware resource constraints and control/data flow. Loop pipelining,
the subject of this paper, is a component of this phase.

• Resource Allocation and Control Synthesis: This phase involves mapping a hardware resource
to each operation (e.g., the “+” operation may be mapped to a hardware adder), allocating registers
to variables, and generating a controlling finite-state machine to implement the schedule.

After the three phases above, the design can be expressed in RTL. The synthesized RTL may be subjected
to further manual tweaks to optimize for area, power, etc.

2.2 Certification Framework

The overall goal of our project is to provide a mechanized framework for certifying hardware designs
synthesized from ESL specifications by commercial behavioral synthesis tools. One obvious approach,
of course, is to apply standard verification techniques (e.g., SEC or theorem proving) on the synthesized
RTL itself. Unfortunately, such a methodology is not practical. The large gap in abstraction between
the ESL and RTL descriptions means that there is little correspondence in internal variables between the
two. Consequently, direct SEC between the two reduces to cost-prohibitive computation of input-output
equivalence. On the other side, applying theorem proving is also troublesome since extensive manual
effort is necessary and this effort needs to be replicated for each different synthesized design. On the
opposite end of this, it is also infeasible to directly certify the implementation of the synthesis tool via
theorem proving. In addition to being highly complex and thus potentially requiring prohibitive effort
to formally verify with any theorem prover, the implementations are typically closed-source and closely
guarded by EDA vendors and thus out of reach of external automated reasoning communities.

To address this problem, previous work developed two key SEC solutions, which we will refer to
below as Back-end and Front-end. We then discuss the gap between them, which is being filled by
theorem proving efforts.

Back-end SEC: The key insight behind back-end SEC is that automated SEC techniques, while inef-
fective for directly comparing synthesized RTL with the top-level ESL description, is actually suitable
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to compare the RTL with the intermediate representation (IR) generated by the tools after the high-level
(compiler and scheduling) transformations have been applied. In particular, operation-to-resource map-
pings generated by the synthesis tool provide the requisite correspondence between internal variables
of the IR and RTL. Furthermore, a key insight is that while the implementations of transformations are
unavailable for commercial EDA tools, most tools provide these IRs after each transformation applica-
tion together with some other auxiliary information. To exploit these, an SEC algorithm was developed
between the IR (extracted from synthesis tool flow after these transformations) and RTL [12, 5]. The
approach scales to tens of thousands of lines of synthesized RTL.

Front-end SEC: Of course the back-end SEC above is only meaningful if we can certify that the input
ESL indeed corresponds to the extracted IR produced after the compiler and scheduling transformations
applied in the first two phases of synthesis. To address this, another SEC technique was developed to
compare two IRs. The idea then is to obtain the sequence of intermediate representations IR0, . . . , IRn

generated by the compiler and scheduling transformations, and compare each pair of consecutive IRs
with this new algorithm. Then back-end SEC can be used to compare IRn with the synthesized RTL,
completing the flow.

A Methodology Gap: Unfortunately, the front-end SEC algorithm can only compare two IRs that are
structurally close. If a transformation significantly transforms the structure of an IR then the heuris-
tics for detecting corresponding variables between the two IRs will not succeed, causing equivalence
checking to fail. Unfortunately, loop pipelining falls in the category of transformations that significantly
changes the structure of the IR. It is a quintessential transformation that changes the control/data flow
and introduces additional control structures (e.g., to eliminate hazards). This makes front-end SEC in-
feasible for its certification. On the other hand, it is also a complex and error-prone transformation, and
ubiquitous across different behavioral synthesis tools. Furthermore, most commercial implementations
are of course proprietary and consequently not available to us for review; applying theorem proving on
those implementations is not viable from a methodology perspective. Thus a specialized approach is
warranted for handling its certification.

2.3 A Reference Pipeline Approach

To develop a specialized approach for pipelines, our key observation is that while the transformation
implementation is inaccessible to us, commercial synthesis tools typically generates a report specify-
ing pipeline parameters (e.g., pipeline interval, number of loop iterations pipelined, etc.). Our approach
then is to develop an algorithm that takes as inputs these parameters and an IR C for the design before
pipelining, and generates a reference pipelined IR P . Note that our algorithm is much simpler than that
employed during synthesis; while the former includes advanced heuristics to compute pipeline param-
eters (like pipeline interval, number of iterations pipelined etc.), we merely use the values provided by
its report. To certify a synthesized RTL with pipelines, it is sufficient to (1) check that our algorithm
can generate a pipeline P for the parameters reported by synthesis, (2) use SEC to compare P with the
synthesized RTL, and (3) prove (using theorem proving) the correctness of our algorithm.

Previous work [4] in fact justified the viability of steps 1 and 2 above; such a reference pipeline gen-
eration algorithm was developed and used to successfully compare a variety of pipelined designs across
various application domains. This suggested that the approach of using a reference implementation is
viable for certifying industrial synthesized pipelines. However, a key (and perhaps the most compli-
cated) component of the approach, step 3, was missing. The algorithm was not verified (indeed, not
implemented in a formal language), rendering the “certification” flow unsound.
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The unsoundness mentioned above is not just an academic notion. In fact, merely by going through
the formalization process and thinking about necessary invariants, we have already found multiple bugs
in this algorithm. Thus it is critical to develop a mechanized proof of correctness of this implementation.
Unfortunately, it is not easy to verify the original pipeline generation algorithm as written. Its author
was an expert in behavioral synthesis but not in program verification or theorem proving; consequently,
the algorithm, while simpler than that implemented in a synthesis tool, was still a highly complex piece
of code. In particular, since it was not written with correctness in mind, it is difficult to decompose the
algorithm into manageable pieces with nice invariants.

One way to address this problem is to “buckle down” and verify the pipeline generation algorithm
(and fixing the bugs found in the process). However, a key insight in our case is that we can get away
without verifying such a complex implementation. After all, there is nothing “sacred” about this specific
algorithm for pipeline generation: given the steps described above, any verifiable pipeline generation
algorithm would suffice.1 Thus the approach of this paper can be viewed as a rational deconstruction
of the pipeline synthesis algorithm of the previous work. We identify the key invariant that we need
to maintain for proving computational equivalence between the pipelined and un-pipelined loops and
design the algorithm to explicitly maintain that invariant.

3 CCDFG

In order to formalize and prove the correspondence between pipelined and unpipelined IRs, a first step is
to define a formalization of the IRs themselves. We call our formalization of IRs Clocked Control Data
Flow Graph (CCDFG). An informal description of CCDFG has been provided before [12]. It can be
best viewed as a traditional control/data flow graph used by most compilers, augmented with a schedule.
Control flow is broken into basic blocks. Instructions are grouped into microsteps which can be executed
concurrently. A scheduling step is a group of microsteps which can be executed in a single clock cycle.
The state of a CCDFG at a particular microstep is a list of all the variables of a CCDFG with their
corresponding values.

The semantics of CCDFG require a formalization of the underlying language used to represent the
individual instructions in each scheduling step. The underlying language we use is the LLVM [8]. It is a
popular compiler infrastructure for many behavioral synthesis tools and includes an assembly language
front-end. At the point of this writing we support a limited subset of LLVM, which however is sufficient
to handle all the designs we have seen. Instructions supported include assignment, load, store, bounded
arithmetic, bit vectors, arrays, and pointer manipulation instructions. We define the syntax of each type
of statement by defining an ACL2 predicate. For example, in our syntax, an assignment statement can
be expressed as a list of a list of a variable and an expression.

(defun assignment-statement-p (x)

(and (equal (len x) 1)

(and (equal (len (car x)) 2)

(first (car x)) (symbolp (first (car x)))

(expression-p (second (car x))))))

Here, an expression can further be of multiple types, e.g., load expression (loading the value of a
variable from memory), add expression (add two variables), xor expression (xor of two variables) etc.,
where each expression includes the operation applied to the appropriate number of arguments.

1Note that our algorithm must create a pipeline in accordance with the pipeline parameters obtained from the behavioral
synthesis tools else we may fail to certify correct designs. However, in practice, we have not found this to be a problem.
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(defun add-expression-p (x)

(and (equal (len x) 3)

(equal (first x) ’add)

(variable-or-numberp (second x))

(variable-or-numberp (third x))))

(defun expression-p (x)

(and (consp x)

(or (load-expression-p x) (add-expression-p x) (xor-expression-p x)...)))

We provide semantics to these instructions through a state-based operational formalization as is com-
mon with ACL2. We define the notion of a CCDFG state, which includes the states of the variables,
memory, pointers, etc. Then we define the semantics of each instruction by specifying how it changes
the state. Thus, for assignment statement we will have a function execute-assignment that specifies
the effect of executing the assignment statement on a CCDFG state.

Defining the semantics of most supported statements is straightforward, with one exception. The
exception is the so-called “φ -construct” available in LLVM. A φ -construct is a list of φ -statements. A
φ -statement is v := φ [σ ,bb1][τ,bb2], where v is a variable, σ and τ are expressions, and bb1 and bb2
are basic blocks: if while execution, the previous scheduling step of the φ -statement is bb1 then it is
the same as the assignment statement v := σ ; if reached from bb2 i.e., the previous scheduling step is
bb2, it is the same as v := τ; the meaning is undefined otherwise. The construct is complex since the
effect of executing this statement on a CCDFG state s depends not only on the state s but also on how s is
reached by the control flow. Unfortunately, φ -statements abound in pipelined (and sequential) designs we
have worked with – they are used to find the value of loop dependencies. Consequently, the complexity
induced by this instruction cannot be avoided.

(defun phi-expression-p (x)

(and (consp x) (equal (len x) 1)

(consp (car x)) (> (len (car x)) 2)

(equal (caar x) ’phi) (phi-l (cdr (car x)))))

(defun phi-statement-p (x)

(and (consp x) (equal (len x) 2)

(symbolp (first x)) (first x)

(phi-expression-p (cdr x))))

Here phi-1 recognizes an expression of the form ((E0 b) (E1 b-prime)) where E0 and E1 are
expressions and b and b-prime are symbols representing basic blocks. Thus in ACL2, the φ -statement
looks like (v (phi ((E0 b) (E1 b-prime)))). Finally, the execution semantics requires the addi-
tional parameter prev-bb to track the previous basic block.

(defun choose (choices prev-bb)

(if (or (equal (nth 1 (first choices)) prev-bb)

(equal (symbol-name (nth 1 (first choices))) prev-bb))

(nth 0 (first choices))

(nth 0 (second choices))))

(defun evaluate-val (val bindings)

(if (symbolp val)

(cdr (assoc-equal val bindings))

val))
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a = 0;

i = 0;

While(i < N){

a = a + 2; 

c = i + 3;

i = a + c;

}

Entry

Exit

{ a := ϕ [0,Entry] [a',Z]
i := ϕ [0,Entry] [i',Z] }

if [not (i < N)] goto Exit 
a'  := a + 2

c := i + 3

i'  := a' + c

X

Y

Z

X1 Y1 Z1 X2 Y2 Z2 X3 Y3 Z3

X3 Y3 Z3

X2 Y2 Z2

X1 Y1 Z1

Execution order before pipelining

Execution order after pipelining

(a) (b) (c)

Figure 1: (a) Loop in C (b) Loop CCDFG before pipelining (c) Pipelining increases throughput

(defun execute-phi (stmt init-state prev-bb)

(let* ((expr (cdr stmt))

(var (first stmt))

(val (evaluate-val (choose (cdr (car expr)) prev-bb) (car init-state))))

(list (replace-var var val (variables-of init-state))

(memory-of init-state)

(pointers-of init-state))))

The init-state represents the state of a CCDFG before executing φ -statement. The function variables-
of is used to get a list of all the variables of init-state with their corresponding values. replace-var replaces
the values of the variable var to val in the list of those variables.

4 Correctness of Loop Pipelining

For the purposes of this paper, a pipelinable loop is a loop with the following restrictions [4]:

1. no nested loop;

2. only one Entry and one Exit block; and

3. no branching between the scheduling steps.

These restrictions are not meant to simplify the problem, but reflect the kind of loops that can be actually
pipelined during behavioral synthesis. For instance, synthesis tools typically require inner loops to have
been fully unrolled (perhaps by a previous compiler transformation) in order to pipeline the outer loop.

Figure 1(a) illustrates the C code (ESL description) for a loop. The C code does not have a schedule
or the concept of a clock cycle. Figure 1(b) shows CCDFG of the sequential loop just before loop
pipelining. The loop has three scheduling steps: X , Y and Z. The scheduling step before the loop is
Entry and after the loop is Exit. The edges in the CCDFG indicate the control flow. Note that the
sequential CCDFG has SSA structure, as a result variable a and i are not assigned more than once and
we require the quoted variables a′ and i′. Note that there is a φ -statement in the first scheduling step of
the loop. This φ -statement accounts for variables whose values are different based on the first time we
enter the loop.
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Assuming that each scheduling step takes one clock cycle to complete, one iteration of the sequential
design takes three clock cycles and three iterations would take nine clock cycles. Given a pipeline interval
of one, three iterations of the pipelined loop takes only five clock cycles as shown in Figure 1(c). So, loop
pipelining is important to reduce latency and improve throughput of the synthesized pipeline circuit. The
main lemma involved in the correspondence proof between the sequential and pipelined CCDFG can be
stated in ACL2 as follows.2

(defthm correctness-statement-key-lemma

(implies (and (posp k) (posp pp-interval) (posp m)

(equal pp-ccdfg (superstep-construction pre loop pp-interval m))

(not (equal pp-ccdfg "error")))

(equal

(in-order (get-real (run-ccdfg (first pp-ccdfg) (second pp-ccdfg)

(third pp-ccdfg) k init-state prev)))

(in-order (run-ccdfg pre loop nil (+ (- k 1) (ceil m pp-interval))

init-state prev)))))

The theorem involves several ACL2 functions, e.g., get-real, superstep-construction, etc.
We do not discuss the detailed definitions of these functions in the paper, but they are available with
the supporting ACL2 script for this workshop. We provide a brief, informal description of some of the
critical functions in the theorem below. Following is an English paraphrase of the theorem.

If the pipeline generation succeeds without error, executing the pipelined CCDFG loop for
k iterations generates the same state of the relevant variables as executing the sequential
CCDFG for some k′ iterations. The explicit value of k′ is given by the term (+ (- k 1)

(ceil m pp-interval)).

Two key functions that appear in the theorem above are superstep-construction and run-ccdfg.
The functrion superstep-construction combines the scheduling steps of successive iterations to cre-
ate the “scheduling supersteps” of pipelined CCDFG. If there are data-hazards and pipelined CCDFG
cannot be generated as per the pp-interval given, the function generates an “error”. The function run-ccdfg
runs a CCDFG including a pipelinable loop in three parts, first the prologue before the loop, next the loop
itself, and finally the epilogue past the loop.3 This function is defined as follows, where prefix deter-
mines the previous scheduling step of the iteration (required to resolve φ -statements).

(defun run-ccdfg (pre loop post iterations init-state prev)

(let* ((state1 (run-block-set pre init-state nil prev))

(state2 (run-blocks-iters loop state1 iterations (prefix loop)))

(state3 (run-block-set post state2 nil (prefix post)))

state3))

Finally, the function get-real removes from the pipelined CCDFG state, all auxiliary variables in-
troduced by the pipeline generation algorithm itself, leaving only the variables that correspond to the

2Although we state this lemma as a defthm in the paper, as we mentioned before we have not completed its proof in ACL2.
We do have a sufficient proof sketch. However, the final form of this theorem, when proven, can have some differences, e.g.,
additional hypotheses that we have overlooked so far.

3Of course one can have the standard function run that executes the entire CCDFG rather than in parts. However, for
reasons that will be clear when we define the invariant, in our case it is easier to do most of the work with the execution in three
parts and then assemble them into a final theorem about the CCDFG run in the end.



D. Puri, S. Ray, K. Hao & F. Xie 119

X

Y

Z

Exit

Pipeline
Prologue 

Pipeline
Full

Pipeline
Epilogue

Exit

Z

Z Y

Y

X

X

X'

Sequential CCDFG Pipelined CCDFG

Figure 2: Conversion of sequential CCDFG to pipelined CCDFG using superstep construction. Pipeline
full stage depicts the loop in pipelined CCDFG. Horizontal dashed arrows indicate data forwarding.

sequential CCDFG,4 and in-order normalizes “sorts” the components in a CCDFG state in a normal
form so that the sequential and pipelined CCDFG states can be compared with equal.

5 Algorithm, Invariant, and Proof

Pipeline synthesis is based on the key observation that execution of successive iterations can be over-
lapped as long as no data hazard is introduced. Thus, the two main activities of a pipeline synthesis
algorithm are to (1) identify possible hazards, and (2) eliminate them, typically by introduction of new
variables. In our case, the identification is simplified since the synthesis tool provides a pipeline interval;
thus, instead of discovering a pipeline interval ourselves so that no hazard is introduced, we merely need
to work with the provided interval.

Remark: In addition to (1) and (2) above, we need another operation to eliminate the thorny φ -statement.
The insight behind this procedure is that the φ -statement is used to evaluate values of variables based
on the previous basic block; so if the loop is unwound by one iteration the statement can be replaced by
corresponding assignment statements (e.g., for the first (unwound) iteration, the assignment statement
would correspond to the component of φ in the Entry block, and in the rest it would correspond to the
component of φ for the last basic block in the body of the loop). The correctness of φ -elimination is
independent of the remainder of the pipeline operations. Once this is performed on CCDFG C, we have
a sequential CCDFG C′ with no φ -statement but whose loop includes a preamble that corresponds to the
first iteration of the loop in C and whose “loop body” corresponds to the remaining loop iterations in C.

There are two key operations involved in pipeline synthesis : (1) insertion of shadow variables, and
(2) combining microsteps from different iterations of the sequential loop into one “superstep” of the
pipelined CCDFG. Inserting shadow variables protects variables that are written and then read within
the same iteration from introducing hazards when iterations are overlapped. To understand its role,

4The algorithm has to introduce new variables in order to eliminate hazards. One consequence of this is that the new
variables so introduced must not conflict with any variable subsequently used in the CCDFG. Since we do not have a way to
ensure generation of fresh variables, this constraint has to be imposed in the hypothesis.
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suppose a variable x is first written and then read in the same iteration and consider overlapping two
iterations. Then the write from the second iteration may overwrite the value of x before the read from
the first iteration had a “chance” to read the previous value. To avoid this, we introduce a fresh variable
x reg, which preserves the old value of x, and reads to x are replaced by reads to x reg. Finally,
the superstep construction entails combining scheduling steps of successive iterations (the number of
overlapping iterations being defined by the pipeline interval provided). We combine two corresponding
scheduling steps from successive iterations if there is no hazard introduced, viz., if a variable is written in
scheduling step S and read subsequently in S′ then S′ cannot be in a superstep that precedes S. S and S′ can
be in a single superstep since we implement data forwarding. Note that the superstep consruction simply
fails if we cannot combine the requisite scheduling steps. So it is possible that although a pipelined
CCDFG exists with the provided pipeline interval but we fail to construct it by being conservative in
our analysis of potential hazards. However, all our soundness claims are only for pipelines that we can
synthesize.

Our key invariant defines a “correspondence relation” between the backedges of the sequential and
pipelined CCDFG. The relation can be informally paraphrased as follows [11].

Let S be a sequential loop and G be the pipelined loop generated from our algorithm. The
pipelined loop consists of three stages as depicted in Figure 2: prologue Gp, full stage Gl ,
and epilogue Ge. Let sl be any state of G poised to execute Gl , and let k be any number
such that the loop of G is not exited in k iterations from sl . Then executing Gp followed by
k iterations of Gl is equivalent to executing first iteration of S, say S1 followed by (k− 1)
iterations of S together with a collection of “partially completed” iterations of S.5

Suppose the number of scheduling steps of the first iteration in pipeline prologue is m and the pipeline
interval is i. We calculate the value of m based on the number of scheduling steps in a CCDFG and the
pipeline interval. In our example, m is 2 and i is 1. The invariant implies that starting from the same
initial state, executing Gp and k iterations of Gl is the same as executing k iterations of S, followed by m

scheduling steps of S, followed by (m - i) scheduling steps of S, by (m - 2i) scheduling steps of S,
etc. till the number remains positive. The invariant can be defined in ACL2 as follows.

(defun get-m-blocks-seq (m seq-loop pp-interval)

(if (or (not (posp m))

(not (posp pp-interval))) nil

(if (<= m pp-interval)

(take-n m seq-loop) ; get first m blocks of loop

(append (take-n m loop)

(get-m-blocks-seq (- m pp-interval) seq-loop pp-interval)))))

(defun pipeline-loop-invariant

(pp-state k seq-pre seq-loop pp-interval init-state prev m)

(let* ((seq-loop-top (run-block-set seq-pre init-state nil prev))

(seq-loop-k (run-blocks-iters seq-loop seq-loop-top (- k 1) prev))

(seq-loop-x (run-block-set (get-m-blocks-seq m seq-loop pp-interval)

seq-loop-k nil prev)))

(equal pp-state seq-loop-x)))

5The formalization actually characterizes each incomplete iteration, e.g., if the pipeline includes d iterations and successive
iterations are introduced in consecutive clock cycles, then the i-th iteration has i−1 incomplete scheduling steps.
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Figure 3: Correctness of invariant implies the correctness statement

(defthm invariant-holds

(implies (and (posp k) (posp m) (posp pp-interval)

(equal pp-ccdfg

(superstep-construction seq-pre seq-loop pp-interval m))

(not (equal pp-ccdfg ‘‘error’’)))

(pipeline-loop-invariant

(run-ccdfg-k (car pp-ccdfg) (second pp-ccdfg)

k init-state prev)

k seq-pre seq-loop pp-interval init-state prev m))

Here, seq-loop-k represents the state after executing seq-loop for k iterations starting from
state init-state, seq-loop-x represents the state after executing the blocks defined by function
get-m-blocks-seq on the on the sequential loop seq-loop starting from state seq-loop-k. The
invariant then says that the state thus obtained is equal to the input pp-state. Note that pp-state is the
state obtained by function run-ccdfg-k which executes pipeline prologue and k iterations of pipeline
full stage starting from state init-state.

As is standard with proofs involving invariants, there are two obligations to prove the correctness
(in this case the main lemma of the previous section - correctness-statement-key-lemma), viz., that it is
indeed an invariant, and that its invariance is sufficient to imply the desired correctness theorem. Here
we give a sense of our envisioned proof.

Our invariant is defined specifically to make the proof of sufficiency straightforward. Suppose the
P is the pipelined CCDFG and S is the sequential CCDFG. Equivalence of CCDFG states of P and S
follows from the invariant by noting that the epilogue Pe exactly constitutes the incomplete scheduling
steps of S specified by the invariant (cf. Figure 3).

The proof of invariance of this predicate is, of course, the main “work horse” in this exercise. The
proof depends on a fundamental idea for pipelining, viz., commutability of independent instructions.

Suppose that the set of variables written and read by two consecutive operations a and b is
disjoint. Then executing a followed by b generates the same result as executing b followed
by a.

If we view the scheduling steps in Figure 1 as arranged in a matrix, then the sequential execution
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Figure 4: (a) Invariant base case where k = 1, executing pipeline prologue and one pipeline full stage is
the same as executing seq-pre followed by sequence of partially completed sequential loop CCDFG. (b)
Assuming that invariant is true for k steps, executing one pipeline full stage on both sides gives us (k+1)
iterations of sequantial loop CCDFG followed by partially completed sequences as expected.

proceeds column-wise along the matrix while the pipelined execution proceeds row-wise. Thus the core
proof obligation involves the following two proof requirements.

• Our pipelining algorithm correctly combines the “appropriate” scheduling supersteps which do not
have read-write hazards.

• Given that there are no read-write hazards at appropriate places, executing scheduling steps row-
wise is same as executing those scheduling steps column-wise in the pipelined CCDFG. This
makes use of the fundamental observation above.

Although these requirements justify that our correspondence relation is an invariant, they are used
somewhat differently in the base case (when the number of iterations k of the pipelined loop is 1) and
inductive step (assume the invariant holds for k iterations of the pipeline and prove that it holds for (k+1)
iterations). Their usage is pictorially shown in Figure 4. For the base case, we commute operations in
the loop prologue of the pipeline (which corresponds to the first iteration after unrolling) with the loop
body, while for the inductive step we work with two consecutive iterations of the loop.

We have formalized the correspondence-relation. We have also proved the implication chain from
this relation to the correctness statement and made progress in the proof of invariance (but not completed
it yet). Our current ACL2 script has 125 definitions and 150 lemmas, including many lemmas about
structural properties of CCDFGs (but not counting the false starts discussed in Section 6). We are still
working on proving some of the key components of the proof obligations to show that the algorithm does
not introduce data hazards.

6 Approaches, False Starts, and ACL2 Experience of a New User

The invariant discussed in the preceding section, even if complex, is somewhat natural in hindsight.
However, it is actually the result of several iterations and false starts. In this section we discuss some of
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these, and also touch upon our experience with using ACL2 for a proof like this, particularly from a new
user’s viewpoint (see below). We explain these experiences with the hope that they may help other new
users attempting something similar to avoid some of the pitfalls.

Our invariant is very different from a typical invariant used in the verification of pipelined machines
(e.g., for microprocessor pipelines). We make explicit the correspondence with the sequential execution.
The key requirement from a pipeline invariant, viz., hazard freedom, is left implicit and arises indirectly
as a proof obligation for invariance of this predicate. Most microprocessor pipeline verification work
went the other way. For instance, Sawada and Hunt’s invariant [13], expressed through an intermediate
structure called MAETT, “tracks” the instructions as they pass through different pipeline stages to ensure
that hazards are not introduced. One difference in our case is that we are not working with a concrete
pipeline with a fixed set of operations but an algorithm that generates pipelines with an arbitrary sequence
of scheduling steps; a construction like MAETT is thus not directly applicable. However, there is a deeper
reason for defining our invariant the way we did. Consider the pipeline in Figure 2. Ignoring the back
edge (e.g., the edge from X to Z in the scheduling step marked “pipeline full” in the pipelined CCDFG),
three columns in Figure 2(b) correspond roughly to three iterations of the sequential loop. Suppose we
simply unroll the loop in the sequential design three times, and then use a technique similar to MAETT
to track scheduling steps in this “unrolled loop body” in the pipeline execution. Unfortunately, this does
not work, because of the back edge. There is no direct correlation between this edge and any edge in
the sequential loop. In fact, it is interesting to observe what its introduction achieves: completion of one
scheduling step in each of the three partially executed, overlapping loop iterations. This suggests that
the invariant must explicitly capture the state of the executions that have been partially completed during
each iteration of the pipeline (i.e., each traversal of the back edge).

The above is reflective of one of our major false starts: in our initial approach we had decided to
simplify the problem by ignoring the back edge and proving the correspondence between an unrolled
loop and the pipeline as outlined above. Only after substantially completing this proof and in attempting
to extend it to the pipeline with the back edge did we realize that the extension does not work.

Another false start was in the way we initially formalized hazard freedom. Hazard freedom entails
showing the following. “Suppose a variable v is written by a scheduling step S and read subsequently
by a scheduling step S′ in the sequential CCDFG. Then in the pipelined CCDFG, there is no scheduling
step P that writes v and is executed between S and S′.” Originally, we defined this notion directly for
each variable, viz., with a function that statically analyzes the CCDFG to identify the range of scheduling
steps between a write and subsequent read of each variable. However, this does not directly work. For
example, proving this property for variable x may require a similar property to hold for another variable
y (perhaps because x is assigned an expression involving y). But the range of scheduling steps in which
x and y are read and written are different, and the extension of the property to all the variables cannot
be easily specified by an invariant for any specific scheduling step. Our current approach alleviates this
problem in that it succinctly captures an “on-track property”, viz., that the state after k pipeline iterations
is equivalent to partial execution of a certain number of iterations in the sequential CCDFG (in addition
to completion of k′ iterations) which avoids this problem and can indeed be specified as an invariant.

Perhaps the overall lesson is that it is foolhardy to start mechanization until sufficient outline is
completed as hand proof. However, it is impossible to fill in everything with a hand proof. Spotting
whether an outline is sufficient requires significant maturity, both with reasoning and with the limits
of what is doable automatically with ACL2. Of course, this will certainly always remain a creative
process. However, published ACL2 proofs (in the workshop and elsewhere) rarely touch upon false
starts, focusing only on the key steps of successful proofs. It is difficult to understand from that material
at which level the authors understood the proof before embarking on ACL2 and what paths did or did
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not work. Our experience directly supports Moore’s appeal [10] to highlight “the ‘minor’ decisions that
represent major breakthroughs in the problem” at least in the context of describing successful (or failed)
proofs.

The above pitfalls may be a by-product of the team involved in this effort. Of the four authors
listed, three have had no previous exposure to theorem proving; the remaining author participated in
the project in a consulting and advisory role — helping with questions at a high level and with generic
ACL2 proofs. The bulk of the ACL2 work was done by the first author, to whom this was the first project
beyond exercises in the ACL2 book. This is clearly not a typical ACL2 project team doing proofs at
this scale. Indeed, ACL2 is not designed for effective usage of teams with this level of expertise. For
instance, the ACL2 textbook [7] states the following.

It takes weeks or months to learn to use the language and the theorem prover, but months to
years to become really good at it.

It also advises the user to start one’s ACL2 project with toy exercises. While this is good advice, there
are situations where one cannot afford either a large team with ACL2 expertise or the luxury to spend
months to years to become proficient ACL2 users. Consequently, we believe it is critical to find ways
to address the question of learning curve in theorem proving in order for ACL2 to make effective forays
in industrial contexts beyond organizations where it has already been established. We hope that our
experience, including the pitfalls mentioned above, will serve as a basis for rethinking and conversation
in the ACL2 community on possible self-teaching materials to enable fast ramp-up on ACL2 expertise
for industrial and industrial-strength projects.

We end this section with discussion with a few notes on limitations in ACL2 documentation that,
although simple once resolved, stumped a new ACL2 user. These are taken directly from the records
of the first author during the initial phases of this work as a new user. ACL2 is a complex system.
The amount of documentation it provides is impressive, and in our experience, far beyond that by most
other tools of similar complexity. Nevertheless, as is expected of a tool with more than two decades
of development, there are places where documentation is not complete nor at the appropriate level for
a new user. It is our endeavor to point out these corner cases in the hopes that this will improve the
documentation further, not to complain about limitations. We hope it will be taken in that spirit. Of
course, the documentation has certainly evolved and improved since these notes were taken. We did not
check if the current documentation would have addressed the confusion better, since what makes sense
as a more experienced user today might not have made sense to a new user.

Commonly used primitives link endp: The first author wanted to understand its usage after seeing
some definitions written by others, that used this construct. However, :DOC endp merely suggests that it
is the same as atom (a function unfamiliar to her), and then discusses the difference in their guards; :DOC
atom suggests it is not a cons (together with a discussion of guards again). In addition to not providing
any explanation of the usage of endp, this discussion inadvertently seemed to suggest that one must
understand the lengthy documentation on guard to make further progress. Perhaps a small explanation
that endp is used as a base case of functions that recur over a list using cdr (e.g., when the list when a
list is empty) would have dispelled this confusion early.

Measure and Termination: Most of our functions recur on complex graph structures and one must
supply a measure. Unfortunately, documentation at the new user level is lacking. :DOC measure merely
points to :DOC xargs. The latter provides an intimidating example that involves all possible xargs (and
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that the documentation admits is nonsensical). Delving into the :MEASURE argument, one reads the
following.

Value is a term involving only the formals of the function being defined. This term is indi-
cates what is getting smaller in the recursion. The well-founded relation with which succes-
sive measures are compared is o<. Also allowed is a special case...

What it does not say is what we need to actually put in the measure, and what we need to prove about
it. :DOC defun provides a bit more explanation but also with no examples, and the discussion here
also seemed to indicate (at least to the author) that one has to understand ordinals at some depth before
attempting to provide measure.

Induction Hint: Documentation of induction hint suffers from similar problem. :DOC hint, the topic
where one is led from an Internet search for induction hint in ACL2, again provides an example of form
of all possible hints, but with little insight on what to write for induction hint and how it will work. The
subtopic :induct provides some clue on what to do, e.g., it says the following:

...if value is a term other than t, then not only should the system apply induction immediately,
but it should analyze value rather than the goal to generate its induction scheme. Merging
and the other induction heuristics are applied....

Admittedly, the first sentence above certainly provides a complete description of what one needs to
know to give an induction hint, viz., that the term provided will be analyzed to generate the scheme.
However, this cryptic explanation is difficult to translate to an actionable item for actually generating
induction. An example where a non-trivial induction hint is used would have helped the user understand
how to use it.

String Manipulation Functions: Our project makes significant use of functions for string manipula-
tion. However, finding them in the documentation is a challenge. For example, a simple Internet search
on “ACL2 functions for converting strings to symbols” did not turn up with packn, resulting in a number
of unsuccessful attempts at defining something equivalent until its existence was pointed to by a more
experienced member.

The above is perhaps indicative of a more general problem. ACL2 documentation is vast and com-
plicated, and it is easy to get lost. We typically used Internet search to find a topic of interest. However,
this requires a significant, searchable (by Internet search) description of the different available function
symbols. Many of these functions may have been developed by the community and may not have ade-
quate descriptions provided, making this a challenge. Perhaps the new initiative of “Combined ACL2 +
Community Books Manual” is a step in this direction, if the result becomes searchable via standard Web
search.

Of course, documentation suggestions necessarily are narrow and low-level, and one might ask why
we bother to point them out in a paper rather than through personal communication with the ACL2
authors, or even try to fix them ourselves in the ACL2+books combined manual which is maintained and
developed by the community rather than the authors of ACL2.6 The reason we nevertheless point them

6After the acceptance of this paper, Kaufmann requested us to make some of the changes to the documentation to address
the comments below, and the first author has volunteered to do so.
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out in the paper is that they are symptomatic of a larger issue which we believe merits deeper discussion,
deliberation, and collaboration of the entire community. As pointed out above, the standard model of
successful application of ACL2 in the industrial projects has been through the efforts of one or more
experts with years of experience in the theorem prover working full-time with ACL2 on an industrial
application. However, our experience suggests that this large barrier to entry often dooms the possibility
of a new “customer” looking into it as a solution, long before it has had a chance to “prove its mettle”
on the customer’s problem. Addressing this requires us to rethink how we can make ACL2 useful to
promising but new users taking on an industrial project, at least at the level in which a new user can take
on other formal verification and validation tools. Our experience suggests that if that were possible, there
would be several new industrial partners willing to try it out. However, achieving that does require the
community collaboratively rethinking how the theorem prover ought to be presented to such a new user.
We do not have a solution to offer, but we hope that our remarks would cause some deliberation and
discussion within the community. Identifying documentation pitfalls is a tiny contribution to this effort
from our part.

7 Conclusion

There has been a significant amount of work on pipeline verification, both within and outside the ACL2
community [1, 13, 9, 16]. However, most of pipeline verification research has focused on architec-
tural pipelines, in particular pipelined microprocessors. There are significant differences in goals and
techniques between these efforts and ours. Microprocessor pipelines include optimized (hand-crafted)
control and forwarding logics, but a static set of operations based on the instruction set. Loop pipelines
tend to be deep with a high complexity at each stage, but control and forwarding logics are more stan-
dardized since they are automatically synthesized. Furthermore, microprocessor pipeline verification is
focused on one (hand-crafted) pipeline implementation, while our work focuses on verifying an algo-
rithm producing pipelines. As we discussed in Section 6, abstraction techniques such as MAETT [13]
does not apply to our case and we had to come up with a very different invariant.

Our work is very closely related to recent work on verification of software pipelines. In particular,
Tristan and Leroy [14] present a verified translation validator for software loop pipelines. The loop
pipelines in behavioral synthesis considered in this paper are close in structure to software loop pipelines,
although our formalization (e.g., CCDFG) has different semantics from the Control Flow Graphs they
use, reflecting the difference between eventual targets of compilation (viz., hardware vs. software).
However, the fundamental difference is in the approach taken to actually certify the pipelines. Tristan
and Leroy’s approach decomposes the certification problem into two parts, a “dynamic” part that is
certified on a case-by-case basis and a “static” part that is certified in the Coq theorem prover once and
for all. The theorem proven by Coq is informally paraphrased as follows:

Suppose the pipelining algorithm generates a pipeline P from a sequential design S . Sup-
pose symbolic simulation of S and P verifies certain “dynamic” verification conditions
(VCs). Then S and P are indeed semantically equivalent.

Thus for any pipeline instance P generated by their algorithm, symbolic simulation is executed between
P and S to certify that P is indeed a correct pipelined implementation of S . The dynamic VCs
checked by symbolic simulation essentially certify that the pipeline generation did not overlook any
hazards.

This is where our work differs from theirs. Our work is expected to provide a single theorem certify-
ing the correctness of the reference pipelined implementation, without requiring further runtime hazard
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check. Furthermore, their correspondence theorem relates the pipelined implementation with a sequen-
tial design with a (bounded) unrolled loop, while our approach certifies the correspondence between the
actual Control Flow Graph (CFG) and the pipelined implementation. Indeed, Tristan and Leroy remark
that the mechanization of the correspondence between the CFG and unrolled loop is “infuriatingly diffi-
cult”. We speculate this is so because they focus on verifying the correspondence between the unrolled
loop and the pipeline. As we discuss in Section 6, attempting the formal correspondence between the
unrolled sequential loop and pipelined design was not possible since there is no formal way to connect
to back edge of the loop with any of the edges in the pipeline. We believe that reconciling this problem
and developing a fully certified pipeline generation algorithm would require backtracking from the cor-
respondence with an unrolled loop (and hence translation validation) to a more complex invariant like
ours. Of course we must note that we can “afford” to develop a fully certified algorithm in our approach
since the pipelines are simpler (cf. Section 4); achieving this for arbitrary software pipeline may require
further more subtle invariants.

In addition to technical contributions, we see our work as providing an important methodological
contribution enabling use of theorem proving in situations where one needs to certify the result of an im-
plementation on which theorem proving cannot be directly applied either because it is closed-source or
because it is highly complex: (1) create a reference implementation, perhaps using as much information
as available from the actual implementation, in our case information about pipeline intervals, (2) cer-
tify this simpler reference implementation with theorem proving, and (3) develop an SEC framework to
compare the result of the reference implementation with that of the actual implementation. In addition
to making theorem proving applicable on industrial flows without requiring us to certify industial im-
plementations with their full complexity, this approach permits adjusting the algorithm (within limits)
to suit mechanical reasoning while still affording comparison with actual synthesized artifacts. We have
made liberal use of this “luxury”, e.g., we are continually redefining our superstep construction function
to facilitate proof of key structural lemmas of the invariant. We believe similar approach is applicable in
other contexts and may provide effective use of theorem proving within industrial verification flows.
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