Stateman: Using Metafunctions to Manage Large Terms Representing Machine States

J Strother Moore
(Department of Computer Science, The University of Texas at Austin)

When ACL2 is used to model the operational semantics of computing machines, machine states are typically represented by terms recording the contents of the state components. When models are realistic and are stepped through thousands of machine cycles, these terms can grow quite large and the cost of simplifying them on each step grows. In this paper we describe an ACL2 book that uses HIDE and metafunctions to facilitate the management of large terms representing such states. Because the metafunctions for each state component updater are solely responsible for creating state expressions (i.e., "writing") and the metafunctions for each state component accessor are solely responsible for extracting values (i.e., "reading") from such state expressions, they can maintain their own normal form, use HIDE to prevent other parts of ACL2 from inspecting them, and use honsing to uniquely represent state expressions. The last feature makes it possible to memoize the metafunctions, which can improve proof performance in some machine models. This paper describes a general-purpose ACL2 book modeling a byte-addressed memory supporting "mixed" reads and writes. By "mixed" we mean that reads need not correspond (in address or number of bytes) with writes. Verified metafunctions simplify such "read-over-write" expressions while hiding the potentially large state expression. A key utility is a function that determines an upper bound on the value of a symbolic arithmetic expression, which plays a role in resolving writes to addresses given by symbolic expressions. We also report on a preliminary experiment with the book, which involves the production of states containing several million function calls.

In Matt Kaufmann and David L. Rager: Proceedings Thirteenth International Workshop on the ACL2 Theorem Prover and Its Applications (ACL2 2015), Austin, Texas, USA, 1-2 October 2015, Electronic Proceedings in Theoretical Computer Science 192, pp. 93–109.
Published: 18th September 2015.

ArXived at: http://dx.doi.org/10.4204/EPTCS.192.8 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org