
Shilpi Goel and Matt Kaufmann (Eds.):
ACL2 Theorem Prover and its Applications (ACL2-2018)
EPTCS 280, 2018, pp. 143–160, doi:10.4204/EPTCS.280.11

c© Yan Peng, Mark Greenstreet
This work is licensed under the
Creative Commons Attribution License.

Smtlink 2.0

Yan Peng Mark R. Greenstreet
University of British Columbia∗

Vancouver, Canada
yanpeng,mrg@cs.ubc.ca

Smtlink is an extension of ACL2 with Satisfiability Modulo Theories (SMT) solvers. We presented
an earlier version at ACL2’2015. Smtlink 2.0 makes major improvements over the initial version
with respect to soundness, extensibility, ease-of-use, and the range of types and associated theory-
solvers supported. Most theorems that one would want to prove using an SMT solver must first be
translated to use only the primitive operations supported by the SMT solver – this translation includes
function expansion and type inference. Smtlink 2.0 performs this translation using a sequence
of steps performed by verified clause processors and computed hints. These steps are ensured to
be sound. The final transliteration from ACL2 to Z3’s Python interface requires a trusted clause
processor. This is a great improvement in soundness and extensibility over the original Smtlink
which was implemented as a single, monolithic, trusted clause processor. Smtlink 2.0 provides
support for FTY defprod, deflist, defalist, and defoption types by using Z3’s arrays and
user-defined data types. We have identified common usage patterns and simplified the configuration
and hint information needed to use Smtlink.

1 Introduction

Interactive theorem proving and SMT solving are complementary verification techniques. SMT solvers
can automatically discharge proof goals with thousands to hundreds of thousands of variables when the
goals are within the theories of the solver. These theories include linear and non-linear arithmetic, unin-
terpreted functions, arrays, and bit-vector theories. On the other hand, verification of realistic hardware
and software systems often involves models with a rich variety of data structures. Their proofs involve
induction, encapsulation (or other forms of higher-order reasoning), and careful design of rules to avoid
pushing the solver over an exponential cliff of search complexity. Ideally, we would like to use the capa-
bilities of SMT solvers to avoid proving large numbers of simple but tedious lemmas and combine those
results in an interactive theorem prover to enable the reasoning of properties in large, realistic hardware
and software designs.

Smtlink is a book developed for integrating SMT solvers into ACL2. In the previous work [22],
we implemented an interface using a large trusted clause-processor, and only supported a limited subset
of SMT theories. In this work, we introduce an architecture based on a collection of verified clause
processors that transform an ACL2 goal into a form amenable for discharging with an SMT solver.
The final step transliterates the ACL2 goal into the syntax of the SMT solver, invokes the solver, and
discharges the goal or reports a counter-example based on the results from the solver. This final step
is, performed by a trusted-clause processor because we are trusting the SMT solver. Because most of
the translation is performed by verified clause processors, the soundness for those steps is guaranteed.
Furthermore, the task of the final, trusted clause processor is simple to describe, and that description
suggests the form for the corresponding soundness argument. The modularized architecture is readily
extensible which makes introducing new clause transformation steps straightforward.
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Our initial motivation for linking SMT solvers with ACL2 was for proving linear and non-linear
arithmetic for Analog and Mixed-Signal (AMS) designs [23]. This original version supported the SMT
solver’s theories of boolean satisfiability and integer and rational arithmetic, but provided no support
for other types. For example, to verify theorems involving lists, one would need to expand functions
involving lists to a user-specified depth, treat remaining calls as uninterpreted functions which must
return a boolean, integer, rational, or real. The lack of support for a rich set of types restricted the
applicability of the original Smtlink to low-level lemmas that are primarily based on arithmetic. The
new Smtlink supports symbols, lists, and algebraic datatypes, with a convenient interface to FTY types.

Other changes include better support for function expansion and uninterpreted functions. The new
smtlink-hint interface is simpler. Smtlink generates auxiliary subgoals for ACL2 in “obvious” cases,
such as when the user adds a hypothesis for Smtlink that is not stated in the original goal. Hints for
these subgoals share the same structure as the ACL2 hints and are attached by the Smtlink hint syntax
to the relevant subgoal – no subgoal specifiers are required! When the SMT solver refutes a goal, the
putative counterexample is returned to ACL2 for user examination. Currently, Smtlink supports the Z3
SMT solver [20] using Z3’s Python API. Smtlink is compatible with both Python 2 and Python 3, and
can be used in ACL2(r) with realp.

Documentation is online under the topic :doc smtlink. It describes how to install Z3, configure
Smtlink, certify Smtlink and test the installation. It also describes the new interface of the Smtlink

hint, contains several tutorial examples, and some developer documentation. Examples shown in this
paper assumes proper installation and setups are done as is described in :doc smtlink. It is our belief
that given a more compelling argument of soundness for the architecture, a richer set of supported types
or theories, and a more user-friendly user interface, Smtlink can support broader and larger proofs.

In Section 2 we present the architecture of Smtlink based on verified clause processors, hint wrap-
pers, and computed hints. Section 3 describes the SMT theories supported by Smtlink and sketches the
soundness argument. Section 4 gives a simple example where we use lists, alists, symbols, and booleans
to model the behavior of a ring oscillator circuit. Section 5 provides a summary of related work, and we
summarize the paper along with describing ongoing and planned extensions to Smtlink in Section 6.

2 Smtlink 2.0 Architecture

This section describes the architecture of Smtlink 2.0. We first introduce a running example to illustrate
each of the steps taken by the clause processor. Section 2.2 describes the top-level architecture, followed
by a brief description of each of the clause processors used in Smtlink.

2.1 An Nonlinear Inequality Example

To illustrate the architecture of Smtlink, we use a running example throughout this section. Consider
proving the following theorem in ACL2:

Theorem 2.1 ∀x ∈ R and ∀y ∈ R, if 9x2

8 + y2 ≤ 1 and x2− y2 ≤ 1, then y < 3(x− 17
8 )

2−3.

Program 2.1 shows the corresponding theorem definition in ACL2. To use Smtlink to prove a
theorem, a hint :smtlink [smt-hint] can be provided using ACL2’s standard :hints interface.
SMT::smt-hint is the hint provided to Smtlink. SMT::smt-hint follows a structure that is described
in :doc smt-hint. In this example, :smtlink nil suggests using Smtlink without any additional
hints provided to Smtlink. The initial goal (underlining represented as clauses) is:

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=SMT____SMTLINK
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=SMT____SMT-HINT
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Program 2.1 A nonlinear inequality problem

1 (defun x^2-y^2 (x y) (- (* x x) (* y y)))

2

3 (defthm poly-ineq-example

4 (implies (and (real/rationalp x) (real/rationalp y)

5 (<= (+ (* (/ 9 8) x x) (* y y)) 1)

6 (<= (x^2-y^2 x y) 1))

7 (< y (- (* 3 (- x (/ 17 8)) (- x (/ 17 8))) 3)))

8 :hints(("Goal"

9 :smtlink nil)))
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Figure 1: Smtlink Architecture

(IMPLIES (AND (RATIONALP X) (RATIONALP Y)

(<= (+ (* (* 9 (/ 8)) X X) (* Y Y)) 1)

(<= (X^2-Y^2 X Y) 1))

(< Y (+ -3 (* 3 (+ X (- (* 17 (/ 8))))

(+ X (- (* 17 (/ 8))))))))

2.2 The Architecture

Let G denote the goal to be proven. As shown in Figure 1, the Smtlink hint invokes the verified clause
processor called SMT::process-hint. The arguments to this clause-processor are the clause, G, and
a list of hints provided by the user. The SMT::process-hint performs syntactic checks on the user’s
hints and translates them into an internal representation used by the subsequent clause processors. The
user can specify default hints to be used with all invocations of Smtlink. These are merged with any
hints that are specific for this theorem to produce combined-hint. The SMT::process-hint adds a
SMT::hint-please wrapper to the clause and returns a term of the form

‘(((SMT::hint-please (:clause-processor (SMT::add-hypo-cp clause ,combined-hint))) ,@G))

Smtlink 2.0 uses the hint wrapper approach from books/hints/hint-wrapper.lisp. In particu-
lar, we define a “hint-wrapper” called SMT::hint-please in package smtlink that always returns nil.
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Clauses in ACL2 are represented as lists of disjuncts, and our hint-wrapper can be added as a disjunct to
any clause without changing the validity of the clause. SMT::hint-please takes one input argument –
the list of hints.

The computed-hint called SMT::SMT-computed-hint searches for a disjunct of the form
(SMT::hint-please ...) in each goal generated by ACL2. When it finds such an instance, the
SMT::SMT-computed-hint will return a computed-hint-replacement of the form:

‘(:computed-hint-replacement

((SMT::SMT-computed-hint clause))

(:clause-processor (SMT::some-verified-cp clause ,combined-hint)))

This applies the next verified clause-processor called SMT::some-verified-cp to the current sub-
goal and installs the computed-hint SMT::SMT-computed-hint on subsequent subgoals again. The
SMT::some-verified-cp clause-processor is one step in a sequence of verified clause processors.
Smtlink uses a configuration table called *smt-architecture* to specify the sequence of clause
processors, as shown in Figure 1. Each clause processor consults this table to determine its successor.
By updating this table, Smtlink is easily reconfigured.

As described above, the initial clause processor for Smtlink, SMT::process-hint, adds a
SMT::hint-please disjunct to the clause to indicate that the clause processor, SMT::add-hypo-cp
should be the next step in translating the clause to a form amenable for a SMT solver.

2.2.1 add-hypo-cp

A key to using an SMT solver effectively is to tell it what it needs to know but to avoid overwhelm-
ing it with facts that push it over an exponential complexity cliff. The user can guide this process by
adding hypotheses for the SMT solver – typically these are facts from the ACL2 logical world that don’t
need to be stated as hypotheses of the theorem. The clause-processor SMT::add-hypo-cp is a verified
clause processor that adds user-provided hypotheses to the goal. Let G denote the original goal and
H1, ... Hn denote the new hypotheses. Each added hypothesis is returned by the clause processors as a
subgoal to be discharged by ACL2. The user can attach hints to these hypotheses – for example, show-
ing that the hypothesis is a particular instantiation of a previously proven theorem. The soundness of
SMT::add-hypo-cp is established by the theorem:

H1∨G ... Hn∨G
∧N

i=1 Hi⇒ G
G (1)

The term
∧N

i=1 Hi⇒G is the main clause that gets passed onto the next clause-processor. In the following,
let Ghyp denote

∧N
i=1 Hi⇒ G.

As for the example in Program 2.1, the user didn’t provide any additional guidance. We see that the
clauses generated are almost unchanged. The only place that changed, is that Smtlink has installed the
next clause-processor to be SMT::expand-cp.

(IMPLIES (NOT (SMT::HINT-PLEASE ’(:CLAUSE-PROCESSOR (SMT::EXPAND-CP CLAUSE ...))))

(IMPLIES (AND (RATIONALP X) (RATIONALP Y)

(<= (+ (* (* 9 (/ 8)) X X) (* Y Y)) 1)

(<= (X^2-Y^2 X Y) 1))

(< Y (+ -3 (* 3 (+ X (- (* 17 (/ 8))))

(+ X (- (* 17 (/ 8)))))))))
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2.2.2 expand-cp

The clause-processor SMT::expand-cp expands function definitions to produce a goal where all oper-
ations have SMT equivalents. Function definitions are accessed using meta-extract-formula. By
default, all non-recursive functions including disabled functions are expanded. Recursive functions are
expanded once and then treated as uninterpreted functions. We attempt one level of expansion for re-
cursive functions given the reasoning that if the theorem can indeed be proved only knowing the return
type of the function, it should still be provable when expanded once. If proving the theorem requires
expansion of more than one level, or if all occurrences of the function should uninterpreted, then we rely
on the user to specify this in a hint to Smtlink. Let Ghyp be the clause given to SMT::expand-cp and
Gexpand be the expanded version. The soundness of SMT::expand-cp is established by the theorem:

Gexpand⇒ Ghyp Gexpand

Ghyp (2)

Presently, the clause Gexpand⇒ Ghyp is returned to ACL2 for proof, and Gexpand is the main clause that
gets passed onto the next clause-processor.

For the running example, function expansion produces the two subgoals. The main clause that get
passed onto the next clause-processor is:

(IMPLIES (NOT (SMT::HINT-PLEASE ’(:CLAUSE-PROCESSOR (SMT::TYPE-EXTRACT-CP CLAUSE ...))))

(IMPLIES (AND (RATIONALP X) (RATIONALP Y)

(<= (+ (* (* 9 (/ 8)) X X) (* Y Y)) 1)

(<= (LET NIL (+ (* X X) (- (* Y Y)))) 1))

(< Y (+ -3 (* 3 (+ X (- (* 17 (/ 8))))

(+ X (- (* 17 (/ 8)))))))))

It tells Smtlink the next clause-processor is SMT::type-extract-cp which does type declaration ex-
traction. The other subgoal is:

(IMPLIES

(AND (NOT (SMT::HINT-PLEASE ’(:IN-THEORY (ENABLE X^2-Y^2))))

(IMPLIES (AND (RATIONALP X) (RATIONALP Y)

(<= (+ (* (* 9 (/ 8)) X X) (* Y Y)) 1)

(<= (LET NIL (+ (* X X) (- (* Y Y)))) 1))

(< Y (+ -3 (* 3 (+ X (- (* 17 (/ 8))))

(+ X (- (* 17 (/ 8)))))))))

(OR ... ;; some term essentially equal to nil

(IMPLIES (AND (RATIONALP X) (RATIONALP Y)

(<= (+ (* (* 9 (/ 8)) X X) (* Y Y)) 1)

(<= (X^2-Y^2 X Y) 1))

(< Y (+ -3 (* 3 (+ X (- (* 17 (/ 8))))

(+ X (- (* 17 (/ 8))))))))))

This second subgoal essentially proves that the expanded clause implies the original clause. Notice how
SMT::hint-please is used again for passing other sorts of hints (that are not clause-processor hints) to
ACL2 for help with the proof.

2.2.3 type-extract-cp

The logic of ACL2 is untyped; whereas SMT solvers such as Z3 use a many-sorted logic. To bridge
this gap, the clause-processor SMT::type-extract-cp is a verified clause processor for extracting



148 Smtlink 2.0

type information for free variables from the hypotheses of a clause. SMT::type-extract-cp tra-
verses the clause and identifies terms that syntactically are hypotheses of the form (type-p var)

where type-p is a known type recognizer, and var is a symbol. Let Gexpand denote the clause given to
SMT::type-extract-cp; T1, ... Tm denote the extracted type hypotheses; Gexpand\type denote Gexpand
with the type-hypotheses removed; and

Gtype = (SMT::type-hyp (list T1...Tm):type)⇒ Gexpand\type (3)

where SMT::type-hyp logically computes the conjunction of the elements in the list (list T1 . . .
Tm) – using SMT::type-hyp makes these hypotheses easily identified by subsequent clause processors.
The soundness of SMT::type-extract-cp is established by the theorem:

Gtype⇒ Gexpand Gtype

Gexpand (4)

Gtype⇒ Gexpand is the auxiliary clause returned back into ACL2 for proof. Gtype is the main clause that
gets passed onto the next clause-processor.

For the running example, the main clause that gets passed onto the next clause-processor is:

(IMPLIES (AND (NOT (SMT::HINT-PLEASE

’(:CLAUSE-PROCESSOR (SMT::UNINTERPRETED-FN-CP CLAUSE ...))))

(SMT::TYPE-HYP (HIDE (LIST (RATIONALP X) (RATIONALP Y))) :TYPE))

(IMPLIES (AND (<= (+ (* (* 9 (/ 8)) X X) (* Y Y)) 1)

(<= (LET NIL (+ (* X X) (- (* Y Y)))) 1))

(< Y (+ -3 (* 3 (+ X (- (* 17 (/ 8))))

(+ X (- (* 17 (/ 8)))))))))

The other auxiliary clause is:

(IMPLIES (AND (NOT (SMT::HINT-PLEASE

’(:IN-THEORY (ENABLE SMT::HINT-PLEASE SMT::TYPE-HYP)

:EXPAND ((:FREE (SMT::X) (HIDE SMT::X))))))

(IMPLIES (SMT::TYPE-HYP (HIDE (LIST (RATIONALP X) (RATIONALP Y))) :TYPE)

(IMPLIES (AND (<= (+ (* (* 9 (/ 8)) X X) (* Y Y)) 1)

(<= (LET NIL (+ (* X X) (- (* Y Y)))) 1))

(< Y (+ -3 (* 3 (+ X (- (* 17 (/ 8))))

(+ X (- (* 17 (/ 8))))))))))

(IMPLIES (AND (RATIONALP X) (RATIONALP Y)

(<= (+ (* (* 9 (/ 8)) X X) (* Y Y)) 1)

(<= (LET NIL (+ (* X X) (- (* Y Y)))) 1))

(< Y (+ -3 (* 3 (+ X (- (* 17 (/ 8))))

(+ X (- (* 17 (/ 8)))))))))

This clause is returned for proof by ACL2. The proof is straightforward – essentially ACL2 simply needs
to confirm that the terms we identified as type-hypotheses really are hypotheses of the goal.

2.2.4 uninterpreted-fn-cp

Useful facts about recursive functions can be proven using the SMT solver’s support for uninterpreted
functions. As with variables, the return-types for these functions must be specified. For soundness,
Smtlink must show that the ACL2 function satisfies the user given type constraints. This is done by
SMT::uninterpreted-fn-cp. Let Gtype denote the clause given to SMT::uninterpreted-fn-cp,
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and let R1, ... Rp denote the assertions about the types for each call to an uninterpreted function. Let Q1
be the list of clauses

Q1 = (SMT::type-hyp (list R1) :return)∨Gtype , ... ,
(SMT::type-hyp (list Rp) :return)∨Gtype

(5)

Finally, let Gtcp be the clause

Gtcp =
p∧

i=1

(SMT::type-hyp (list Ri) :return)⇒ Gtype (6)

The soundness of expand-cp is established by the theorem:

Q1 Gtcp

Gtype (7)

The list of clauses Q1 is returned to ACL2 for proof, and Gtcp is tagged with a hint to be checked by the
trusted clause processor.

Our running example does not make use of uninterpreted functions in the SMT solver; so, the clause
Gtcp is the same as Gtype except for the detail that the SMT::hint-please term now specifies that the
next clause-processor to use is the final trusted clause-processor SMT::smt-trusted-cp:

(IMPLIES (NOT (SMT::HINT-PLEASE ’(:CLAUSE-PROCESSOR (SMT::SMT-TRUSTED-CP CLAUSE ... STATE))))

(OR (NOT (SMT::TYPE-HYP (HIDE (LIST (RATIONALP X) (RATIONALP Y))) :TYPE))

(IMPLIES (AND (<= (+ (* (* 9 (/ 8)) X X) (* Y Y)) 1)

(<= (LET NIL (+ (* X X) (- (* Y Y)))) 1))

(< Y (+ -3 (* 3 (+ X (- (* 17 (/ 8))))

(+ X (- (* 17 (/ 8))))))))))

2.2.5 smtlink-trusted-cp

SMT clause
G_py

not(G_py)
SAT? Z3

sat, unsat, 
unknownunsat?

Proved!

CEX

ACL2 Z3(python)

clause G_tcp generated clause
G_SMT

The trusted clause-processor

Processing type 
information

SMT precondition 
subgoal

Figure 2: The trusted clause processor

Figure 2 shows the internal architecture of the trusted clause-processor, for which its correctness
hasn’t been proven. Smtlink returns counter-examples generated by the SMT solver back into ACL2.
The Python interface to Z3 for Smtlink includes code to translate a counterexample from Z3 into list-
syntax for ACL2. The form is not necessarily in ACL2 syntax. We wrote a printing function that takes
the Z3 counter-examples and prints it out in an ACL2-readable form. These are all done through the
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trusted clause processor. Currently, the forms returned into ACL2 are not evaluable. For example,
counter-examples for real numbers can take the form of an algebraic number, e.g.

((Y (CEX-ROOT-OBJ Y STATE (+ (^ X 2) (- 2)) 1)) (X -2))

We plan to generate evaluable forms in the future. Learn more about counter-example generation, see
:doc tutorial.

The trusted clause-processor returns a subgoal called “SMT precondition” back into ACL2. By
ensuring that certain preconditions are satisfied, we are able to bridge the logical meaning for tricky
cases, and therefore ensure soundness. We will see explanations on this issue in Section 3. For this
running example, there are no preconditions to be satisfied and the following clause trivially holds:

(IMPLIES (AND (NOT (SMT::HINT-PLEASE

’(:IN-THEORY (ENABLE SMT::MAGIC-FIX SMT::HINT-PLEASE SMT::TYPE-HYP)

:EXPAND ((:FREE (SMT::X) (HIDE SMT::X))))))

(NOT (AND (OR (NOT (<= (+ (* (* 9 (/ 8)) X X) (* Y Y)) 1))

(LET NIL T))

T)))

(OR (NOT (SMT::TYPE-HYP (HIDE (LIST (RATIONALP X) (RATIONALP Y))) :TYPE))

(IMPLIES (AND (<= (+ (* (* 9 (/ 8)) X X) (* Y Y)) 1)

(<= (LET NIL (+ (* X X) (- (* Y Y)))) 1))

(< Y (+ -3 (* 3 (+ X (- (* 17 (/ 8))))

(+ X (- (* 17 (/ 8))))))))))

2.3 A Few Notes about the Architecture

The new architecture clearly separates what’s verified from what’s trusted. As is shown in Figure 1,
given an original goal, the Smtlink workflow goes through a series of verified clause-processor, which
won’t change the logical meaning of the original goal. A computed-hint is installed to provide hints
for the next step, but won’t change the logical meaning of the goals either. The final trusted clause-
processor takes a goal that logically implies the original goal and derives information needed for the
translation through three sources of information it uses. First, information encoded in the clause using
SMT::type-hyp. This is sound because the definition of SMT::type-hyp is a conjunction of the input
boolean list. Second, information about FTY types from fty::flextypes-table. Presently, we trust
this table to be correct and intact. We plan to use rules about FTY types to derive this information in the
future. Third, we use information stored in SMT::smt-hint about configurations, including what is the
Python command, whether to treat integers as reals, where is the ACL2_to_Z3 class file and so on. We
believe this information can not accidentally introduce soundness issues from the user. For experimenters
and developers, we allow this low-level interface to be overridden by the user using :smtlink-custom

hint. Using such a “customized” Smtlink requires a different trust-tag than the standard version, thus
providing a firewall between experiments and production versions. See :doc tutorial for how to use
customizable Smtlink.

3 Types, Theories, and Soundness

Smtlink translates the original goal, G to an expanded goal, Gtcp for the trusted clause processor through
a series of verified clause processors. Thus, we regard the translation to Gtcp as sound. The trusted clause
processor translates Gtcp into a form that can be checked by the SMT solver; we refer to this translated
form as Gsmt. Let x1, x2, . . . , xn denote the free variables in Gtcp, let Gsmt denote the translated goal, and

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=SMT____TUTORIAL
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x̃1, x̃2, . . . , x̃n denote the free variables of Gsmt. For soundness, we want

SMT ` Gsmt ⇒ ACL2 ` Gtcp (8)

In the remainder, we assume
• ACL2 and the SMT solver are both sound for their respective theories.

• The SMT solver is a decision procedure for a decidable fragment of first-order logic. In particular,
this holds for Z3, the only SMT solver that is currently supported by Smtlink. In addition, we are
working with a quantifier-free fragment of Z3’s logic.

• There is a one-to-one correspondence between the free variables of Gtcp and the free variables of
Gsmt. This is the case with the current implementation of Smtlink.

Now, suppose that Gtcp is not a theorem in ACL2. Then, by Gödel’s Completeness Theorem, there
exists a model of the ACL2 axioms that satisfies ¬Gtcp. We need to show that in this case there exists
a model of the SMT solver’s axioms that satisfies ¬Gsmt. There are two issues that we must address.
First, we need to provide, for the interpretation of any function symbol facl2 in Gtcp, an interpretation for
the corresponding function symbol fsmt in Gsmt. This brings us to the second issue: the logic of ACL2
is untyped, but the logic of SMT solvers including Z3 is many-sorted. Thus, there are models of the
ACL2 axioms that have no correspondence with the models of the SMT solver. We restrict our attention
to goals, Gtcp where the type of each subterm in the formula can be deduced. We refer to such terms as
translatable. If Gtcp is not translatable, then Smtlink will fail to prove it.

For the remainder, we restrict our attention to translatable goals. Because Gtcp is translatable, there
is a set R of unary recognizer functions (primitives such as rationalp that return a boolean) and also a
set S of other functions, such that every function symbol in Gtcp is a member of R or of S, and every
function in S is “well-typed” with respect to R in some sense that we can define roughly as follows. We
associate each function symbol facl2 in S with a function symbol fsmt of Z3, and each predicate r in R
with a type in Z3. The trusted clause processor checks that there is a “type-hypothesis” associated with
every free variable of Gtcp and a fixing function for every type-ambiguous constant (e.g. nil) – Gtcp
holds trivially if any of these type-hypotheses are violated. For every function facl2 in S, we associate
a member of R to each of its arguments (i.e. a “type”) and also to the result. For user-defined functions
(i.e. uninterpreted function for the SMT solver), Smtlink generates a subgoal for each call to fsmt: if the
arguments satisfy their declared types (i.e., predicates from R), then the result must satisfy its declared
type as well. For built-in ACL2 functions (e.g. binary-plus) we assume the “obvious” theorems are
present in the ACL2 logical world. Now suppose we have a model, M1, of ¬Gtcp, and consider the
submodel, M2, containing just those objects m such that m satisfies at least one predicate in R that occurs
in Gtcp. Note that M2 is closed under (the interpretation of) every operation in S, because ¬Gtcp implies
that all of the “type-hypotheses” of Gtcp are true in M1. This essentially excludes “bad atoms”, as defined
by the function acl2::bad-atom. Then because Gtcp is quantifier-free, M2 also satisfies ¬Gtcp. We can
turn M2 into a model M′2 for the language of Z3, by assigning the appropriate type to every object. (As
noted in Section 3.1, M′2 satisfies the theory of Z3 if M2 is a model of ACL2(r); but for ACL2 that is not
the case, so in future work, we expect to construct an extension of M′2 that satisfies all of the axioms for
real closed fields.) Then we have the claim: for every assignment s from the free variables of Gtcp to
M2 with corresponding typed assignment s′ from the free variables of Gsmt to M′2 , if ¬Gtcp is true in M2
under s, then ¬Gsmt is true in M′2 under s′. Thus, if Gtcp is translatable, and ¬Gsmt is unsatisfiable, we
conclude that Gtcp is a theorem in ACL2.

In the rest of this section, we discuss for each of the recognizer functions and each of the basic
functions in ACL2, how we associate them with the corresponding Z3 functions.
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3.1 Booleans, Integers, Rationals, and Reals

If a term is a boolean constant, then the translation to the SMT solver is direct. Likewise, if xi is free
in Gtcp and (booleanp xi) is one of the hypotheses of Gtcp, then Gtcp holds trivially in the case that
xi 6∈ {t, nil}. Thus, in Gsmt Smtlink can represent the hypothesis (booleanp xi) with the declaration

x_i = Bool(’x_i’)

without excluding any satisfying assignments. We assume that the boolean operations of the SMT solver
(e.g. And, Or, Not) correspond exactly to their ACL2 equivalents when their arguments are boolean. If
a boolean operator is applied to a non-boolean value, then Z3 throws an exception, and we regard G as
non-translatable.

Similar arguments apply in the case that xi is an integer, rational, or real number. We represent ACL2
rational numbers as Z3 real numbers. Because every rational number is a real number, any satisfying
assignment of rational numbers to rational variables in ¬Gtcp has a corresponding assignment for ¬Gsmt.
Thus, Gsmt is a generalization of Gtcp. We note that for ACL2, formally proving the soundness of this gen-
eralization requires extending our previously discussed M′2 model into a model that satisfies the theory of
real closed fields 1, because we are translating rationals in ACL2 to reals in Z3. We haven’t wrapped our
heads around how to do that extension in a many-sorted setting, therefore we designate this to be future
work. As with booleans, we assume that arithmetic and comparison operators have equivalent semantics
in ACL2 and the SMT solver. In fact, we use the Python interface code to enforce this assumption. As
an example, ACL2 allows the boolean values t and nil to be used in arithmetic expressions – both are
treated as 0. Z3 also allows True and False to be used in integer arithmetic, with True treated as 1 and
False treated as 0. To ensure that Gsmt ⇒ Gtcp, our Python code checks the sorts of the arguments to
arithmetic operators to ensure that they are integers or reals, where the interpretations are the same for
both ACL2 and Z3.

When Smtlink is used with ACL2(r), non-classical functions are non-translatable. We believe that if
¬Gtcp is classical and satisfiable, then there exists a satisfying assignment to ¬Gtcp where all real-valued
variables are bound to standard values. We believe the sketched proof in the beginning of Section 3
works well for ACL2(r). If we are wrong, we hope that one of the experts in non-standard analysis at the
workshop will correct us.

3.2 Symbols

A very important basic type in ACL2 is symbolp. We represent symbols using an algebraic datatype in
Z3. In the z3 interface class, we define a Datatype called z3sym, with a single field of type IntSort.
Symbol variables are defined using the datatype z3sym. We then define a class called Symbol. This class
provides a variable count and a variable dict. It also provides a function called intern for generating
a symbol constant. This class keeps a dictionary mapping from symbol names to the generated z3sym

symbol constants. This creates an injective mapping from symbols to natural numbers. All symbol
constants that appeared in the term are mapped onto the first several, distinct, naturals.

If a satisfying assignment to ¬Gtcp binds a symbol-valued variable to a symbol-constant that doesn’t
appear in Gtcp, then in our soundness argument, we construct a new symbol value for ¬Gsmt using an
integer value distinct from the ones used so far – we won’t run out. Thus, all symbol values in a satisfying
assignment to ¬Gtcp can be translated to corresponding values for ¬Gsmt. The only operations that we
support for symbols are comparisons for equality or not-equals. We assume that these operations have
corresponding semantics in ACL2 and the SMT solver.

1http://smtlib.cs.uiowa.edu/theories-Reals.shtml
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3.3 FTY types

We have added support for common fty types that enable Smtlink to automatically construct bridges
from the untyped logic of ACL2 to the typed logic of Z3. Currently, Smtlink infers constructor/destruc-
tor relations and other properties of these types from the fty::flextypes-table. Thus, the use of fty
types extends the trusted code to include the correctness of these tables. This trust is mitigated by two
considerations. First, Smtlink only uses fty types that have been specified by the user in a hint to the
Smtlink clause processor. If the user provides no such hints, no fty types are used by Smtlink, and no
soundness concerns arise.

Second, we expect that the information that Smtlink obtains from these tables could be obtained in-
stead from the ACL2 logical world using meta-extract in Smtlink’s verified clause-processor chain.
We see the current implementation as a useful prototype to explore how to seamlessly infer type infor-
mation from code written according to a well-defined type discipline.

3.3.1 fty::defprod

The algebraic datatypes of Z3 correspond directly to fty::defprod. Smtlink simply declares a Z3
datatype with a single constructor whose destructor operators are the field accessors of the product type.
Smtlink requires that the arguments to the fty constructors satisfy the constructors’ guards – otherwise
Gtcp is non-translatable. The only operations on product types are field accessors, i.e. destructors. For
translatable terms, the SMT type has the same construct/destructor theorems as the FTY type. Thus, the
Smtlink translation maintains equivalence constructors and field accessors of product types.

3.3.2 fty::deflist

Lists are essentially a special case of a product type. For example,

Listing 1: ACL2 deflist
(deflist integer-list

:elt-type integerp

:true-listp t)

Listing 2: Z3 Datatype
integer_list= z3.Datatype(’integer_list’)

integer_list.declare(’cons’,

(’car’, _SMT_.IntSort()),

(’cdr’, integer_list))

integer_list.declare(’nil’)

integer_list = integer_list.create()

def integer_list_consp(l):

return Not(l == integer\_list.nil)

ACL2 overloads cons, car, and cdr to apply to any list. In contrast, Z3’s typed logic has a separate
cons, car, cdr functions for each list type. This is why our examples from Section 4 require fixing
functions to convey the type information to the trusted-clause processor. We believe that most of the
users’ burden of typed lists will be removed in a future release by adding type-inference to Smtlink.
There are soundness issues that must be addressed. In ACL2, (equal (car nil) nil). In Z3,

integer_list.car(integer_list.nil)

is an arbitrary integer. To ensure soundness, the trusted-clause processor produces the proof obligation
(consp x) for every occurrence of (car x) that it encounters. Under this precondition, the Z3 transla-
tion preserves the constructor/destructor relationship for lists. Likewise

integer_list.cdr(integer_list.nil)

is an arbitrary integer_list. Thus, Smtlink enforces the :true-listp t declaration for list types.
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Because “arbitrary” includes integer_list.nil in addition to all other integer_lists, these con-
struction ensures that the SMT solver can choose the value for integer_list.cdr(x̃) for Gsmt that
corresponds to the value of (cdr x) for any assignments for Gtcp. The Gsmt is a generalization of Gtcp.

3.3.3 fty::defalist

Smtlink represents alists with SMT arrays. We only support the operations acons and assoc-equal

for alists. Then we have:

(defthm alist-axioms

(implies (not (equal key1 key2))

(and (equal (assoc key1 (acons key1 value alist)) value))

(equal (assoc key1 (acons key2 value alist)) (assoc key1 alist)))

(equal (assoc key1 nil) nil))

The corresponding theorem in the theory of arrays is

(defthm array-axioms

(implies (not (equal addr1 addr2))

(and (equal (load addr1 (store addr1 value array)) value))

(equal (load addr1 (store addr2 value array)) (load addr1 array))))

Note that Smtlink does not support operations such as cdr, nth, member, or delete-assoc that would
“remove” elements from an alist. Also, Z3 arrays are typed.

The key issue in the translation is how to handle the case when a key is not found in the alist
(ACL2) or array (SMT). Our solution is to make the element type of the SMT array be an option
type called keyType_elementType. This type can either be a (key, value) tuple or keyType_-
elementType.nil. Thus, any value returned by assoc-equal with proper alist and key types has a
corresponding keyType_elementType value. Thus, any value for an assoc-equal terms in Gtcp can
be represented in Gsmt.

When applying cdr to a keyType_elementType, we must ensure that the keyType_elementType
value is not nil. This is analogous to the issue with lists: in ACL2, (equal (cdr nil) nil) but in Z3,

keyType_elementType.cdr(keyType_elementType.nil)

is an arbitrary value of elementType. Thus, the trusted-clause processor produces the proof obliga-
tion for ACL2 (not (null x)) for every occurrence of (cdr x) when x is the return value from
assoc-equal. Under this precondition, cdr is only applied to non-nil values from assoc-equal and
we maintain correspondence of values for terms in Gtcp and Gsmt.

By only providing acons and assoc-equal, the Smtlink support for alists is rather limited. Nev-
ertheless, we have found it to be very useful when reasoning about problems where alists are used as
simple dictionaries.

3.3.4 fty::defoption

As is shown in Program 3.3.4, the translation of defoption is straightforward.

Listing 3: ACL2 deflist
(defoption maybe-integer

integerp)

Listing 4: Z3 Datatype
maybe_integer= z3.Datatype(’maybe_integer’)

maybe_integer.declare(’some’, (’val’, IntSort()))

maybe_integer.declare(’nil’)

maybe_integer = maybe_integer.create()
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In this example, the maybe-integer-p recognizer maps to maybe_integer type. The constructor
maybe-integer-some maps to maybe_integer.some. The destructor maybe-integer-some->val
maps to maybe_integer.val. The none type nil maps to maybe_integer.nil. Typical users of
FTY types won’t write maybe-integer-some constructor and maybe-integer-some->val destruc-
tors. They will first check if a term is nil, and then assume the term is an integerp. When a program
returns an integerp, ACL2 knows it is also a maybe-integerp. Due to lack of type inference capabili-
ties, Smtlink currently requires the user to use those constructors, therefore maintaining the option type
through function calls where a maybe-integerp is needed and use the destructors where an integerp

is needed. The constructor function satisfies the same theorems in ACL2 and Z3. Therefore, it’s sound.
For the field-accessor, when trying to access field of a nil, ACL2 returns the fixed default value, while
Z3 will return arbitrary value of that some type. The Z3 values include the ACL2 value. nil is trivially
the same. Thus, the Smtlink translation maintains equivalence of values of terms for constructors and
field accessors of option types.

3.4 Uninterpreted Functions

The user can direct Smtlink to represent some functions as uninterpreted functions in the SMT theories.
Let (f arg1 arg2 ...argk) be a function instance in Gtcp. Smtlink translates this to

f_smt(arg_smt1, arg_smt2, ..., arg_smtk)

The constraints for f_smt are the types of the argument, the type of the result, and any user-specified
constraints. If the function instance in Gtcp violates the argument type constraints, then the term is
untranslatable – currently, Smtlink produces an SMT term that provokes a z3types.Z3exception.
For each function instance in Gtcp that is translated to an uninterpreted function, Smtlink produces a
proof obligation for ACL2 that the function instances in Gtcp satisfy the given type-recognizers. Likewise,
if the user specified any other constraints for this function, they are returned as further ACL2 proof
obligations. Under these preconditions, any value that can be produced by f satisfies the constraints for
f_smt. Thus, we maintain correspondence of values for terms in Gtcp and Gsmt.

4 A Ring Oscillator Example

In order to show the power of Smtlink, especially what benefit FTY types bring us, in this section, we
take a look at how Smtlink can be used in proving an invariant of a small circuit. This example uses
extensively the FTY types, including product types, list types, alist types, and option types. The simple
circuit we want to model is a 3-stage ring oscillator. A ring oscillator is an oscillator circuit consisting of
an odd number of inverters in a ring as is shown in Figure 3. A 3-stage ring oscillator consists of three
inverters. It oscillates to provide a signal of a certain frequency.

inv1 inv3inv2 Q_Freqn1n3 n2

Figure 3: 3-Stage Ring Oscillator

For each inverter in this circuit, we say it is stable if its input is not equal to its output, otherwise, we
say the inverter is ready-to-fire. One interesting invariant of this circuit is defined in Theorem 4.1:
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Theorem 4.1 Starting from a state where there is one and only one inverter ready-to-fire, for all future
states, the ring oscillator will stay in a state where there is only one inverter ready-to-fire.

In order to prove this property of this ring oscillator, we will discuss how we used FTY types exten-
sively for circuit modeling and how Smtlink helped greatly at proving the theorem. To check the details
of the proof, see projects/smtlink/examples/ringosc.lisp

4.1 Circuit and Trace Modeling using FTY Types

We model an inverter gate by defining a product type with two fields – input and output. We then
model the 3-stage ring oscillator using a product type with six fields – three internal nodes n1 through n3
and three submodule inverters inv1 through inv3. We call it ringosc3-p. We then define a connection
function specifying the connections between the upper-level ring oscillator nodes and the lower-level
inverter nodes. This describes the shape of the circuit.

As for modeling the behavior of the circuit, we use traces [7]. We define a circuit state as an alist
mapping from signal names to its values. A trace is a list of circuits states, called any-trace-p. We
define a step recognizer for an inverter. This recognizer function takes two consecutive steps from a
trace as inputs and serves as a constraint function of what are the allowed behaviors in a step for an
inverter. A valid trace for an inverter is defined recursively using the step function. A valid trace for the
3-stage ring oscillator is then defined requiring the trace to be valid for all three inverters. We call the
recognizer function for a valid trace of a ring oscillator, ringosc3-valid.

We define a counting function for an inverter. The counting function returns 1 when an inverter is
ready-to-fire and 0 when it’s stable. Then we define a counting function for the ring oscillator based on
the counting function for an inverter. We say a state of the ring oscillator is one-safe if only one inverter
is ready-to-fire. We call the function ringosc3-one-safe-state. Using this function, we can define
ringosc3-one-safe-trace, which means all states in a trace are one-safe. Theorem 4.1 is defined as
Program 4.1.

Program 4.1 The ringosc3-one-safe theorem

1 (defthm ringosc3-one-safe

2 (implies (and (ringosc3-p r)

3 (any-trace-p tr)

4 (consp tr)

5 (ringosc3-valid r tr)

6 (ringosc3-one-safe-state r (car tr)))

7 (ringosc3-one-safe-trace r tr))

8 :hints (("Goal"

9 :induct (ringosc3-one-safe-trace r tr)

10 :in-theory (e/d (ringosc3-one-safe-trace

11 ringosc3-valid

12 inverter-valid)

13 (ringosc3-one-safe-lemma)))

14 ("Subgoal *1/1.1"

15 :use ((:instance ringosc3-one-safe-lemma

16 (r r)

17 (tr tr)))

18 )))

https://github.com/acl2/acl2/tree/master/books/projects/smtlink/examples
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In this theorem, Smtlink helped to prove the inductive step. Due to space constraints, the details
of ringosc3-one-safe-lemma are elided in this paper.. We note that proving this theorem using just
ACL2 requires proving detailed lemmas about possible transitions of the ring oscillator. More specifi-
cally, our trace model requires asking if a signal exists in the state table, which causes a huge amount of
case splits. However, this has not been a problem for Smtlink and the large amount of cases is handled
efficiently. Using Smtlink, we are able to expand the functions out to proper steps and then prove the
theorem without much human intervention. This demonstrates the potential of applying Smtlink to sys-
tems and proofs about systems. All this is made convenient because of the new theories supported and
the useful user-interface.

5 Related Work

Integrating external procedures like SAT and SMT solvers into ACL2 has been done in several works in
the past. Srinivasan [25] integrated the Yices [8] SMT solver into ACL2 for verifying bit-level pipelined
machines. They use a trusted clause processor with a translation process. They appear to have mostly
used the bit-vector arithmetic and SAT solving capabilities of Yices. Prior to that, in [17], they integrated
a decision procedure called UCLID [16] into ACL2 to solve a similar problem. These are works that
require fully trusting the integration.

A typical way of ensuring soundness and avoiding trusting external procedures is to followed Har-
rison and Théry’s “skeptical” approach [12] and reconstruct proofs in the theorem prover. Recent work
by Luı́s [13] allows refutation proofs of SAT problems to be reconstructed and replayed inside of ACL2.
Their work focused on generating efficient refutation proofs that can be checked by a theorem prover in
a short amount of time. Integrating SMT solvers into theorem provers has been a consistently developing
area in the past decade [18, 11, 4, 19, 6, 5, 1, 10]. Erkök [10] integrated the SMT solver Yices into Is-
abelle/HOL. Similar to Smtlink, they not only have basic theories but also support algebraic datatypes.
They trust Yices as an oracle. Works like [5, 9] do proof reconstruction. Sledgehammer [5, 14] is
a proof assistant that integrates a bunch of SMT solvers into the theorem prover Isabelle/HOL. Proof
reconstruction task is hard, and as pointed out in [14] the reconstruction can fail, and sometimes take
a tremendous amount of time. Armand [1, 9] developed a framework in the theorem prover Coq for
integrating external SMT solver results. They developed a set of “small checkers” that are able to take
a certificate and call corresponding small checker for proof checks and used Coq tactics for automation.
They report having achieved better performance than [5]. Also working on bridging the gap between in-
teractive theorem proving and automated theorem proving (aka solvers), Moura [21] chooses a different
path to build a theorem prover called Lean which also uses Z3, the SMT solver, as a back-end, but also
provides benefits of an interactive theorem prover.

Several papers showed how their methods could be used for the verification of concurrent algorithms
such as clock synchronization [11], and the Bakery and Memoir algorithms [19]. Erkök [10] uses the
integration to prove memory safety of small C programs. [11] used the CVC-Lite [2] SMT solver to
verify properties of simple quadratic inequalities. SMT solvers have drawn interests in the programming
language research where [26] integrates SMT solvers into Haskell for proving refinement types.

Our work is based on our previous work [22]. Previously we showed how the integration of SMT
solvers with theorem provers can help to prove properties of Analog/Mixed-Signal Designs. We used
a single trusted clause-processor like is done in [25]. This paper describes our recent work of re-
architecting Smtlink to verify the majority of it using verified clause-processors, therefore greatly im-
proved soundness. We now depend on a very minimal core in a trusted clause-processor. In addition to
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that, our added support for algebraic datatypes largely broadened the horizon of problems Smtlink is
able to handle.

6 Conclusion and Future Work

In this paper, we discussed an updated Smtlink. Comparing to the previous version, the current Smtlink
has a more compelling argument of soundness, is extensible, and supports more theories. The architec-
ture of Smtlink now clearly separates into verified and trusted parts. We make the trusted core as
small as possible. We outlined an approach for verifying soundness, explaining how the gap is bridged
between logic of ACL2 and the logic of an SMT solver. The new architecture through a sequence of ver-
ified clause-processors makes it extensible and easy to maintain. There are still many aspects we want to
keep working on.

First, we want to use the meta-extract [15] capability introduced in last year’s workshop. We believe
if we can use the meta-extract to fully verify several of our clause-processors, for example, the function
expansion clause processor, then the clause-processor won’t need to return the clause back to ACL2 for
proof. We observe that when projects get larger, the auxiliary clauses can become hard to prove, and
making the clause-processor fully verified will reduce time spent on proving the auxiliary clauses to 0.

Second, given that we have the meta-extract capability, we are wondering if we can make a verified
type inference engine. Currently, Smtlink knows nothing about types of terms and replies on the user
for type instrumentation. Fixing functions have to be added to places where such a type information is
required. For example, when dealing with a nil, which type of nil is it? We would love to deduce the
types of terms and relieve the burden on the users for specifying types.

Third, we sketched a soundness proof in this paper, but this proof is not complete. Specifically we
need to extend the model M′2 as described in Section 3 to a model that satisfies the real-closure axioms
in a many-sorted setting. The current soundness proof sketch works well with ACL2(r) but not ACL2.
We’d like to complete this proof.

Fourth, we want to make all counter-examples evaluable. This will require knowing FTY types and
how to translate their constructors back. We also have to figure out how to translate algebraic numbers.

Fifth, we note Satlink has implemented a proof reconstruction interface that allows proofs to be
returned from an SAT solver and replayed in ACL2. This can make the single trusted clause-processor
goes away and remove all trusts we give to external SMT solvers. Proof reconstruction is an interesting
direction that we might want to research more.

For applications, we believe the current Smtlink have enough capability that it can be applied to
a lot of problems. We have been working on using it to verify properties of an asynchronous FIFO.
The results are promising. In the future, we want to use it to prove timing properties making use of its
arithmetic reasoning ability.
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