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Given a field K, a quadratic extension field L is an extension of K that can be generated from K by

adding a root of a quadratic polynomial with coefficients in K. This paper shows how ACL2(r) can

be used to reason about chains of quadratic extension fields Q = K0 ⊆ K1 ⊆ K2 ⊆ ·· · , where each

Ki+1 is a quadratic extension field of Ki. Moreover, we show that some specific numbers, such as
3
√

2 and cos π

9
, cannot belong to any of the Ki, simply because of the structure of quadratic extension

fields. In particular, this is used to show that
3
√

2 and cos π

9
are not rational.

1 Introduction

A field is a mathematical structure that supports addition, subtraction, multiplication, and division in a

way that satisfies the usual properties of these operations in ordinary arithmetic [1]. Fields can be made

up of complicated objects (e.g., rational functions) with peculiar operations corresponding to addition

and multiplication, but in this paper we are concerned only with numeric fields, in which the objects in

the field are numbers and the operations are the very same ones from ordinary arithmetic. Some common

examples of numeric fields include the rationals Q, the reals R, and the complex numbers C. Notice that

Q ⊆ R ⊆ C, and we say that R is a field extension of Q, and similarly C is a field extension of R (and

Q).

It turns out that there are many field extensions that are intermediate between Q and R. One way to

extend a given field K is to start with a number x1 that is not already in K, then consider the closure of

K ∪{x1} under the typical arithmetic operators; the resulting field is called K(x1), and it is the smallest

numeric field that contains x1 and all the elements of K. For example, we can extend Q by adding the

irrational number
√

2. The resulting field Q(
√

2) contains numbers such as 3, 2/7, and -12 (which were

already in Q),
√

2 (which is explicitly added), and more involved numbers, such as
(3−

√
2)
√

2√
2+5

. It is clear

that Q(Q(
√

2). Although it may not be immediately clear, it is also true that Q(
√

2)(R. For instance,
3
√

2 6∈Q(
√

2).
The process of extending Q by an irrational number can be repeated. Let K0 = Q. Then a field Ki

can be extended by finding a xi+1 that is the root of a quadratic polynomial with coefficients from Ki and

letting Ki+1 = Ki(xi+1). For example, starting with K0 = Q, we can define K1 = K0(
√

2) since
√

2 is a

root of the polynomial x2−2 which has rational coefficients. Then we can define K2 = K1(
√

2+
√

6
2

), since√
2+

√
6

2
is a root of the polynomial x2 −

√
2x−1 with coefficients in K1 =Q(

√
2). Repeating this process

indefinitely results in a tower of quadratic field extensions Q = K0 ( K1 ( K2 ( · · · . The main result in

this paper is a formal proof in ACL2(r) that for any such tower of quadratic field extensions where all the

xi are real, ∪∞

i=0Ki (R. In particular,
3
√

2 6∈ ∪∞

i=0Ki, which immediately shows that
3
√

2 is irrational.

Before proceeding to the details of the ACL2 formalization, it may be helpful to pause and explain our

interest in these towers of field extensions. We are interested in formalizing the impossibility of certain

geometric constructions with straight-edge and compass, such as trisecting an angle. Such constructions
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consist of arbitrarily choosing two points, then drawing lines between points and circles centered about

a point and with a radius defined by the distance between two points, and finding more points by the

intersection of such lines and circles. The original arbitrary point and distance can be called 0 (the

origin) and 1 by fiat. The key to the proof of impossible constructions is that each step in the construction

process discovers a new point by solving a linear or quadratic equation, i.e., the intersection of two lines,

two circles or a line and a circle. So starting with K0, the field generated by 0 and 1 (which happens

to be Q), we can construct a tower of quadratic field extensions Q = K0 ( K1 ( K2 ( · · · . Each step

in a straight-edge and compass construction results in points whose coordinates must be the roots of a

polynomial with coefficients in the previous extension field. For example, starting with Q = K0 which

contains the points 0 and 1, a geometric construction can find a line passing through 1, perpendicular

to the line through 0 and 1, and then a point on that perpendicular that is precisely a unit from 1. In

Cartesian coordinates, the original points are at (0,0) and (0,1), and the newly discovered point is at

(1,1). This defines the length between (0,0) and the new point (1,1), which is easily seen to be
√

2.

Thus,
√

2 can be constructed using straight-edge and compass, and indeed
√

2 ∈ Q(
√

2) which is in a

tower of quadratic extensions of Q. However, since any number that can be constructed using straight-

edge and compass must be in some tower of quadratic extensions, numbers like
3
√

2 which cannot belong

to any such tower also cannot be the result of any straight-edge and compass construction, no matter how

clever. In particular, this shows that it is impossible to “double a cube,” i.e., to construct using only

straight-edge and compass a cube with twice the volume of another cube, since doubling a cube with

volume 1 requires constructing a cube with side
3
√

2, which is impossible from the informal discussion in

this paragraph. Likewise, trisecting an angle is impossible, since trisecting a π

3
angle results in a length

of cos π

9
, which we also show in ACL2 is not constructible; i.e., cos π

9
cannot belong to any tower of

quadratic field extensions1.

The remainder of this paper is structured as follows. Section 2 introduces the basic notion of fields

and towers of fields in ACL2(r). Section 3 shows that the elements in the field K(
√

k) when k ∈ K

but
√

k 6∈ K, can all be written as a+ b
√

k for unique a,b ∈ K. This key property is used to show that

extending a field K simply by using linear combinations involving
√

k and elements of K actually results

in the field K(
√

k). Section 4 introduces polynomials. In particular, it shows that if a+ b
√

k is a root

of a polynomial with coefficients in K, then so is a−b
√

k. That is, roots come in conjugate pairs. This

is then used to show that cubic polynomials with coefficients in a given Ki that have at least one root

in Ki+1 must also have a root in Ki. Thus, cubic polynomials with rational coefficients with a root in

any Ki must also have at least one rational root. This section also shows a proof of the Rational Root

Theorem, which can be used to list all possible rational roots of a polynomial with rational coefficients.

This theorem is then used to show that some rational cubic polynomials cannot have any rational roots

(since none of the finite possible candidate roots are in fact roots of the polynomial), and therefore that

these cubic polynomials cannot have any roots in any tower of quadratic field extensions. Since
3
√

2 and

cos π

9
are roots of such polynomials, they cannot belong to any such tower and must be irrational. Finally,

Section 5 concludes the paper by discussing ongoing and future work.

1Another famous impossible construction is that of squaring a circle, i.e., finding a square with the same area as a given

circle. This can be shown using the fact that π is transcendental and hence not in any tower of field extensions, since the side of

a square with the same area as the unit circle must have length
√

π . We are currently working on formalizing this fact in ACL2.



R. Gamboa, J. Cowles, & W. Gamboa 77

2 Basic Field Properties

We formalize the notion of numeric field in ACL2 with a constrained function number-field-p that

recognizes elements of a (generic) field. The constraints on this function enforce the following:

• Any element of the field is a number, possibly complex.

• Both 0 and 1 must belong to any field.

• The field is closed under arithmetic operations.

There is no need to include the typical “field axioms” for the operations, since numeric fields use the

ordinary arithmetic operators, and ACL2 already knows that the ordinary arithmetic operators always

satisfy the field axioms. We note in passing that it follows directly from these constraints that Q ⊆ K is

true for any numeric field K, and this was easily verified in ACL2.

Consider a field K and its extension by x1. It is in fact the case that all elements in K(x1) can be

written as a+ bx1, for some a,b ∈ K. Now consider extending K(x1) by introducing x2, resulting in

the field K(x1,x2) ) K(x1). As before, an arbitrary element of K(x1,x2) can be written as a′+ b′x2, for

a′,b′ ∈ K(x1). But since both a′ and b′ can be written as a+bx1 for some choice of a,b ∈ K, it follows

that each element of K(x1,x2) can be written as a+bx1 +cx1 +dx1x2 for some a,b,c,d ∈ K. This pattern

continues for extensions by a finite number of points x1, x2, . . . , xn, and we use this pattern to define

towers of extensions, since this definition is much more concrete and amenable to ACL2 than a direct

translation of “all numbers that result from finite applications of the arithmetic operators to the elements

in K ∪{x1}.” For the rest of this paper, the original field K is fixed as Q.

We formalize this in ACL2 with a handful of functions. First is eval-linear-combinationwhich

takes in a set of “coordinates” (e.g., a and b) and a “spanning set” (e.g., 1 and
√

2), and returns their

dot product (i.e., a+ b
√

2). Another useful function is all-products which takes in a list and re-

turns a list of the products of subsets of the original list. For example, if the input list is 〈
√

2,
√

3,
√

5〉,
all-products will return 〈1,

√
5,
√

3,
√

3
√

5,
√

2,
√

2
√

5,
√

2
√

3,
√

2
√

3
√

5〉. Finally, there is the im-

portant function is-linear-combination-p that recognizes members of Q(x1,x2, . . . ,xn). This is

defined in ACL2 as follows:

( defun-sk is-linear-combination-p (x exts)

(exists coords

(and (rational-listp coords)

(equal (len coords) (expt 2 (len exts)))

(equal ( eval-linear-combination coords

(all-products exts))

x))))

We note that the argument exts contains the list of xi extending Q but in reverse order. I.e., to check

whether x ∈Q(x1,x2, . . . ,xn), we would use the ACL2 expression:

• (is-linear-combination-p x ’(x_n ... x_2 x_1))

This reversal of the natural order is common in ACL2 code, because of the asymmetry of list processing

with car, cdr, and cons.

At this point, we have syntax for recognizing members of a quadratic field extension Q(x1,x2, . . . ,xn),
but we have not yet shown that our recognizer actually works correctly, since we are using the indirect

notion of linear combination instead of the direct notion of field extension in the recognizer. It should

be obvious that any element admitted by our recognizer really does belong to Q(x1,x2, . . . ,xn), but it is

possible that not all elements of Q(x1,x2, . . . ,xn) are properly recognized. This issue can be resolved if
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we show that the members recognized by (is-linear-combination-p x exts) form a mathematical

field (with suitable conditions on exts). We do so in the following section.

3 Quadratic Field Extensions Are Field Extensions

Suppose we know that the elements recognized by (is-linear-combination-p x ’(x_n ... x_2

x_1)) correspond to Q(x1,x2, . . . ,xn). We want to consider what happens when we add a new number

xn+1. But first, let’s quickly dispense with the case of removing the point xn. It should be obvious that if

x is a linear combination of the products of 〈x1,x2, . . . ,xn−1〉, then it is also a linear combination of the

products of 〈x1,x2, . . . ,xn〉. In ACL2, we have

(defthm is-linear-combination-is-tower

(implies (consp exts)

(implies (is-linear-combination-p x (cdr exts))

(is-linear-combination-p x exts)))

:hints ...)

This theorem is important, because it establishes the fact that the structure recognized by the predicate

is-linear-combination-p is a tower of enclosing sets. It remains to be shown that it is a tower of

field extensions.

Let Sn be the set recognized by (is-linear-combination-p x ’(x_n ... x_2 x_1)). Note

that if Sn is in fact a field, then it must be the smallest field that contains Q and the elements x1, x2, . . . ,

xn, i.e., it must be Q(x1,x2, . . . ,xn). This is true, since each element in Sn is a linear combination with

rational coefficients of products of the xi, and since addition and multiplication are field operations, each

element of Sn must be in the field Q(x1,x2, . . . ,xn). In other words, Sn ⊂ Q(x1,x2, . . . ,xn). But then,

Q(x1,x2, . . . ,xn) is the smallest field containing all these elements, so if Sn happens to be a field, it must

also be that Q(x1,x2, . . . ,xn) ⊂ Sn. Note that this argument justifies the definition of Q(x1,x2, . . . ,xn) in

ACL2 using is-linear-combination-p. However, this argument is necessarily a paper-and-pencil

proof and not formalized in ACL2, since the set Q(x1,x2, . . . ,xn) is not explicitly defined in ACL2 other

than using is-linear-combination-p.

What is done in ACL2 is to show that the sets Sn do form a numeric field. It is immediately clear that

if the xi are numbers, so is any element of Sn. Moreover, both 0 and 1 (and in fact all rationals) are in Sn.

The only non-trivial property is that Sn is closed under arithmetic operations.

To show that Sn is closed under addition, we need to show that x+ y is a linear combination of a

spanning set, given that both x and y are. This is easily done by considering the component-wise sum of

the coordinates of x and y. In ACL2, we have

(defthm sum-of-linear-combinations

(implies (equal (len coords1) (len coords2))

(equal (eval-linear-combination (add-coords coords1 coords2)

exts)

(+ (eval-linear-combination coords1 exts)

(eval-linear-combination coords2 exts)))))

(defthm is-linear-combination-p-is-closed-addition

(implies (and ( is-linear-combination-p x exts)

( is-linear-combination-p y exts))

(is-linear-combination-p (+ x y) exts))

:hints ...)
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Here add-coords simply adds corresponding coordinates.

Similarly, we can show that Sn is closed under additive inverses by simply negating the coordinates

of x. In ACL2, this results in

(defthm is-linear-combination-p-has-additive-inverse

(implies (is-linear-combination-p x exts)

(is-linear-combination-p (- x) exts))

:hints ...)

These last two theorems are simple, and typical of proofs in ACL2.

Multiplication, however, is more complicated. Conceptually, it is similar to addition and negation,

but the algebra is considerably more complicated. For one thing, in the case of addition the structure

of the spanning set was completely irrelevant. If x = a+ bα and y = c+ dα , then x+ y = (a+ c)+
(b + d)α , regardless of the value of α . But consider x · y = ac + adα + bcα + bdα

2. This cannot

be written in the form A+ Bα unless there is something special about α
2. This is why we need to

have some special requirements on the elements x1, x2, . . . , xn that make up the spanning set exts in

is-linear-combination-p. At a minimum, we should have that x2
n is a linear combination of the

product of the x1, x2, . . . , xn−1; this will take care of the the α
2 term above. It is also helpful to insist

that xn is not a linear combination of the product of the x1, x2, . . . , xn−1. Although this is not strictly

necessary, it means that each extension actually does extend the field in some way. It will also become

important later, when we use it to show that the coordinates of a linear combination are actually unique.

In ACL2, this is captured with the following definition:

(defun quadratic-extensions-p (exts)

(if (consp exts)

(and (acl2-numberp (first exts))

(not ( is-linear-combination-p (first exts) (rest exts)))

(is-linear-combination-p (expt (first exts) 2) (rest exts))

(quadratic-extensions-p (rest exts)))

(equal exts nil)))

It remains only to show how the product of two elements in Q(x1,x2, . . . ,xn) must be in Q(x1,x2, . . . ,xn).
The key fact is that since Q(x1,x2, . . . ,xn) is an extension of Q(x1,x2, . . . ,xn−1), any element in the former

can be written as a+bxn where a,b ∈Q(x1,x2, . . . ,xn−1). So if we have two elements of Q(x1,x2, . . . ,xn)
their product can be written as

(a1 +b1xn)(a2 +b2xn) = a1a2 +a1b2xn +a2b1xn +b1b2x2
n = (a1a2 +b1b2x2

n)+ (a1b2 +a2b1)xn

This is in the form a + bxn since x2
n ∈ Q(x1,x2, . . . ,xn−1), hence so a1a2 + b1b2x2

n. In ACL2, this is

formalized as follows, where the (take ...) and (nthcdr ...) expressions above serve to find the

coefficients ai and bi in ai +bixn:

(defthm eval-linear-combination-product-split-1

(implies (and (equal (len coords1) (expt 2 (len exts)))

( rational-listp coords1)

(equal (len coords2) (expt 2 (len exts)))

( rational-listp coords2)

( acl2-number-listp exts))

(equal (* (eval-linear-combination coords1

(all-products exts))

(eval-linear-combination coords2

(all-products exts)))
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(if (consp exts)

(+ (* (eval-linear-combination

(take (expt 2 (len (rest exts))) coords1)

(all-products (rest exts)))

(eval-linear-combination

(take (expt 2 (len (rest exts))) coords2)

(all-products (rest exts ))))

(* (first exts)

(eval-linear-combination

(take (expt 2 (len (rest exts))) coords1)

(all-products (rest exts)))

(eval-linear-combination

(nthcdr (expt 2 (len (rest exts)))

coords2)

(all-products (rest exts ))))

(* (first exts)

(eval-linear-combination

(take (expt 2 (len (rest exts))) coords2)

(all-products (rest exts)))

(eval-linear-combination

(nthcdr (expt 2 (len (rest exts)))

coords1)

(all-products (rest exts ))))

(* (expt (first exts) 2)

(eval-linear-combination

(nthcdr (expt 2 (len (rest exts)))

coords1)

(all-products (rest exts)))

(eval-linear-combination

(nthcdr (expt 2 (len (rest exts)))

coords2)

(all-products (rest exts )))))

(* (first coords1) (first coords2)))))

:hints ...)

This serves to justify the following function which explicitly finds the coefficients of the linear combina-

tion of the product:

(defun product-coords (coords1 coords2 exts)

(if (consp exts)

(append (add-coords ( product-coords

(take (expt 2 (len (rest exts))) coords1)

(take (expt 2 (len (rest exts))) coords2)

(rest exts))

( product-coords

(is-linear-combination-p-witness

(expt (first exts) 2)

(rest exts))

(product-coords

(nthcdr (expt 2 (len (rest exts)))

coords1)

(nthcdr (expt 2 (len (rest exts)))

coords2)
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(rest exts))

(rest exts)))

(add-coords ( product-coords

(take (expt 2 (len (rest exts))) coords1)

(nthcdr (expt 2 (len (rest exts))) coords2)

(rest exts))

( product-coords

(take (expt 2 (len (rest exts))) coords2)

(nthcdr (expt 2 (len (rest exts))) coords1)

(rest exts))))

(list (* (first coords1) (first coords2)))))

Note how is-linear-combination-p-witness is used in this definition to find the coefficients of x2
n

in Q(x1,x2, . . . ,xn−1).
What follows is a tedious (but not terribly illuminating) algebraic proof that product-coord does

in fact capture the product of its two arguments. This culminates in the following theorem:

(defthm product-of-linear-combinations

(implies (and ( quadratic-extensions-p exts)

(equal (len coords1) (expt 2 (len exts)))

( rational-listp coords1)

(equal (len coords2) (expt 2 (len exts)))

( rational-listp coords2))

(equal (eval-linear-combination (product-coords coords1

coords2

exts)

(all-products exts))

(* (eval-linear-combination coords1

(all-products exts))

(eval-linear-combination coords2

(all-products exts )))))

:instructions ...)

Once this theorem is proven, it is trivial to show that is-linear-combination-p is closed under

multiplication:

(defthm is-linear-combination-p-is-closed-multiplication

(implies (and ( quadratic-extensions-p exts)

( is-linear-combination-p x exts)

( is-linear-combination-p y exts))

(is-linear-combination-p (* x y) exts))

:hints ...)

To show that is-linear-combination-p is also closed under division we continue with the obser-

vation that any element z in Q(x1,x2, . . . ,xn) can be written as z= a+bxn where a,b∈Q(x1,x2, . . . ,xn−1).
The ACL2 functions subfield-part and extension-part extract these coefficients a and b:

(defun subfield-part (x exts)

(if (consp exts)

( eval-linear-combination (take (expt 2 (len (rest exts)))

(is-linear-combination-p-witness

x exts))

(all-products (rest exts)))

(fix x)))
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(defun extension-part (x exts)

(if (consp exts)

( eval-linear-combination (nthcdr (expt 2 (len (rest exts)))

( is-linear-combination-p-witness

x exts))

(all-products (rest exts)))

0))

To find 1
z
= 1

a+bxn
, we employ a strategy common from complex analysis. First we define the conjugate

of z as z = a−bxn. It follows then that zz = (a+bxn)(a−bxn) = a2−b2x2
n must be in Q(x1,x2, . . . ,xn−1),

since all of a, b, and x2
n are. Thus, 1

z
= z

zz
= a−bxn

zz
= a

zz
− b

zz
xn, and this must be in Q(x1,x2, . . . ,xn) since

both a
zz

and −b
zz

are in Q(x1,x2, . . . ,xn−1). There is a nagging detail, however. What if zz = 0, in which

case multiplying by z
z

does not work as expected? It turns out that this is an impossibility, unless z = 0.

That is because z = a− bxn, so this is 0 only when a = bxn, in which case either a = b = 0, so that

z = 0, or b 6= 0 and xn =
a
b
. But this cannot be, since xn 6∈Q(x1,x2, . . . ,xn−1) whereas both a and b are in

Q(x1,x2, . . . ,xn−1).
The proof of this in ACL2 follows this outline, although the algebra is considerably tedious, and

mostly involves reasoning about which expressions are in Q(x1,x2, . . . ,xn−1). The end result is the fol-

lowing theorem, which completes the proof that is-linear-combination-p recognizes a field, which

must be exactly Q(x1,x2, . . . ,xn) :

(defthm is-linear-combination-p-has-multiplicative-inverse

(implies (and ( quadratic-extensions-p exts)

( is-linear-combination-p x exts)

(not (equal x 0)))

(is-linear-combination-p (/ x) exts))

:hints ...)

4 Quadratic Field Extensions and Polynomials

We will now explore how quadratic extension fields relate to roots of certain polynomials, and we begin

this exploration with conjugates. But to fully explore conjugates, it helps to show that the representation

x = a+bω for x ∈ K(ω) where a,b ∈ K but ω 6∈ K is unique.

As is often the case, the key to the uniqueness theorem is to show that 0 is unique. Indeed, if

0 = a+bω , then b must be 0. Otherwise, ω =−a/b ∈ K, which contradicts the assumption that ω 6∈ K.

But then, 0 = a+0ω = 0. Thus a+bω = 0 implies that a = b = 0.

Now suppose that x = a1 +b1ω = a2 +b2ω , where ai,bi ∈ K but ω 6∈ K. Then 0 = a1 −a2 +(b1 −
b2)ω , so a1 = a2 and b1 = b2. In ACL2, we have

( defthmd subfield-extension-parts-unique

(implies (and (consp exts)

( quadratic-extensions-p exts)

( is-linear-combination-p x exts)

( is-linear-combination-p alpha (cdr exts))

( is-linear-combination-p beta (cdr exts))

(equal (+ alpha (* beta (car exts))) x))

(and (equal (subfield-part x exts) alpha)

(equal (extension-part x exts) beta)))

:hints ...)
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Using this uniqueness theorem, it is straightforward to prove many properties of conjugation. For

example, let x1 = a1 + b1ω and x2 = a2 + b2ω . Then x1 + x2 = a1 + a2 + (b1 + b2)ω and x1 + x2 =
a1 + a2 − (b1 + b2)ω = a1 − b1ω + a2 − b2ω = x1 + x2. Similarly, x1 − x2 = x1 − x2. It is also possible

to show that x1 · x2 = x1 · x2, but that is slightly less direct. x1 · x2 = a1b1 + a1b2ω + a2b1ω + a2b2ω
2 =

(a1b1 +a2b2ω
2)+ (a1b2 +a2b1)ω , remembering that ω

2 ∈ K if K(ω) is a quadratic extension (per our

ACL2 definition). But then x1 · x2 = a1b1 − a1b2ω − a2b1ω + a2b2ω
2 = (a1b1 + a2b2ω

2)− (a1b2 +
a2b1)ω = x1 · x2. From this, it also follows that for non-zero x, 1/x = 1/x, since x ·1/x = x ·1/x = 1.

Having proved the product rule for conjugates, a straightforward induction shows that xn = xn. The

product rule again, coupled with the fact that a = a for any constant a ∈ K, can then be used to show that

for any monomial axn = axn. Another induction generalizes to any polynomial P with coefficients in K:

P(x) = P(x). In particular, if x0 is a root of the polynomial P, then so is x0, since P(x0) = P(xo) = 0 = 0.

This important theorem tells us that roots come in conjugate pairs, and it will play a major role in the

sequel. In ACL2, it is written as

( defthmd conjugate-of-root-is-root-of-polynomial

(implies (and ( quadratic-extensions-p exts)

( is-linear-combination-p x exts)

( is-linear-combination-listp poly (rest exts))

(equal (eval-polynomial poly x) 0))

(equal (eval-polynomial poly (qef-conjugate x exts)) 0))

:hints ...)

We now apply this theorem to the special case of cubic polynomials. Fix P(x) = a3x3 +a2x2 +a1x+
a0, where all ai ∈ K and a3 6= 0. Suppose that x0 is a root of P such that x0 ∈ K(ω) but x0 6∈ K. From the

previous theorem, x0 is also a root of P. In fact, with a bit of algebra, P can be factored as

a3x3 +a2x2 +a1x+a0 = a3(x− x0)(x− x0)

(

x+
a2 +a3(x0 + x0)

a3

)

.

This shows that C = − a2+a3(x0+x0)
a3

is the remaining root of the cubic P. But since x0 + x0 ∈ K and all

the coefficients ai ∈ K, this shows that C ∈ K also. In other words, if there is some root of P that is in

the extension field K(α), there must be a (possibly different) root x1 that is in K. In particular, if P has

rational coefficients and there is a root x0 of P such that x0 ∈ Q(x1,x2, . . . ,xn), then there is a (possibly

different) root of P in x0 ∈ Q(x1,x2, . . . ,xn−1), and by induction there must also be a root of P that is

rational. In ACL2, we prove this as follows:

( defthmd

poly-coeffs-in-subfield-and-root-in-field-implies-exists-rational-root

(implies (and ( quadratic-extensions-p exts)

(polynomial-p poly)

( rational-listp poly)

(equal (len poly) 4)

(not (equal (fourth poly) 0))

( exists-root-in-field-extension poly exts))

(exists-rational-root poly))

:hints ...)

Naturally, the exists-* functions are defined using defun-sk, e.g.,

( defun-sk exists-rational-root (poly)

(exists (x)
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(and (equal (eval-polynomial poly x) 0)

(rationalp x))))

Of course, not all polynomials with rational (or even integer) coefficients have rational roots; x2 −2

is a famous counterexample. The Rational Roots Theorem from high school algebra can be used to

enumerate all the possible rational roots of a polynomial with integer coefficients. Although this theorem

applies to arbitrary integer polynomials, we proved it in ACL2 only for cubic polynomials.

In particular, suppose P(x) = a3x3 + a2x2 + a1x+ a0 with ai ∈ Z and P(p/q) = 0 for some rational

p/q in lowest terms. It follows that a3(p/q)3 +a2(p/q)2 +a1(p/q)+a0 = 0, and multiplying both sides

by q2 yields a3

q
p3+a2 p2+a1 pq+a0q2 = 0. Since a2 p2+a1 pq+a0q2 is an integer, this implies that

a3 p3

q

is an integer, so q divides a3 (since p and q were chosen to be relatively prime). Similarly, multiplying

both sides by q3/p gives a3 p2 +a2 pq+a1q2 + a0

p
q3 = 0. Again, this can be used to conclude that a0

p
is

an integer, since all the other terms are2. This is proved in ACL2 with the following theorems:

( defthmd rational-root-theorem-part-1

(implies (and (polynomial-p poly)

(integer-listp poly)

(equal (len poly) 4)

(rationalp x)

(equal (eval-polynomial poly x) 0))

(integerp (/ (fourth poly) (denominator x))))

:hints )

( defthmd rational-root-theorem-part-2

(implies (and (polynomial-p poly)

(integer-listp poly)

(equal (len poly) 4)

(rationalp x)

(equal (eval-polynomial poly x) 0))

(integerp (/ (first poly) (numerator x))))

:hints ...)

What this means is that the only possible rational roots of the polynomial P(x) = a3x3+a2x2 +a1x+
a0 must be of the form p/q where q divides a3 and p divides a0. In other words, factoring a3 and a0

is sufficient to find all possible rationals that could be roots of P(x), and since this is a finite set, we

can systematically consider all possible rational roots of P(x). In some cases, of course, none of the

candidate rational roots will actually be roots of P(x), so we can conclude that P(x) has no rational roots

at all. And using the previous theorem, that also means that P(x) has no roots in any quadratic extension

Q(x1,x2, . . . ,xn).

For example, consider the cubic polynomial x3 −2 with integer coefficients. According to the Ratio-

nal Root Theorem, the only rationals that could be roots of this polynomial are 2, 1, −1, and −2:

( defconst *poly-double-cube* ’(-2 0 0 1))

( defthmd possible-rational-roots-of-double-cube

(implies (and (rationalp x)

(equal (eval-polynomial *poly-double-cube* x) 0))

(or (equal x 2)

(equal x 1)

(equal x -1)

(equal x -2)))

2Careful readers may notice that this makes use of the fact that 0
0 = 0 is well-defined in ACL2.
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:hints ...)

A simple computation suffices to show that none of these candidates are actually roots of the polynomials.

Hence, we can conclude that the polynomial has no rational roots:

(defthm no-rational-roots-of-double-cube

(implies (rationalp x)

(not (equal (eval-polynomial *poly-double-cube* x) 0)))

:hints ...)

Moreover, since this polynomial has no rational roots, it cannot have any roots in any quadratic extension

of Q. In ACL2, this is proved as follows:

( defthmd roots-not-in-quadratic-extension-double-cube

(implies (and ( quadratic-extensions-p exts)

(equal (eval-polynomial *poly-double-cube* x) 0))

(not ( is-linear-combination-p x exts)))

:hints ...)

Of course, the polynomial does have some roots, such as
3
√

2. What this means is that
3
√

2 must not be

rational and cannot belong to any quadratic extension of Q. We proved this in ACL2 as follows:

( defthmd cube-root-of-two-is-root-of-poly-double-cube

(equal (eval-polynomial * poly-double-cube* (raise-to 2 1/3)) 0)

:hints ...)

(defthm cube-root-of-two-is-not-in-quadratic-extension

(implies (quadratic-extensions-p exts)

(not ( is-linear-combination-p (raise-to 2 1/3) exts)))

:hints ...)

(defthm cube-root-of-two-is-irrational

(and (realp (raise-to 2 1/3))

(not (rationalp (raise-to 2 1/3))))

:hints ...)

A similar argument is sufficient to show that cos π

9
is irrational. Specifically, we applied the Rational

Roots Theorem to the polynomial 8x3 − 6x− 1, and found the candidate roots ±1/8, ±1/4, ±1/2, and

±1. None of these are actually roots of the polynomial, so we can conclude that it has no rational

roots or roots in any quadratic extension field of Q. However, using the previously developed library of

trigonometric identities in ACL2, we showed that cos(3x) = 4cos3 x− 3cos(x); hence, 1
2
= cos(3π

9
) =

4cos3 π

9
−3cos π

9
) and cos π

9
is a root of 8x3 −6x−1. Therefore, cos π

9
must be irrational and not in any

quadratic extension field of Q:

( defconst *poly-trisect-angle* ’(-1 -6 0 8))

( defthmd roots-not-in-quadratic-extension-trisect-angle

(implies (and ( quadratic-extensions-p exts)

(equal (eval-polynomial *poly-trisect-angle* x) 0))

(not ( is-linear-combination-p x exts)))

:hints ...)

( defthmd cos-pi /9- is-root-of-trisect-angle

(equal (eval-polynomial * poly-trisect-angle*

(acl2-cosine (/ (acl2-pi) 9)))

0)

:hints ...)

( defthmd cos-pi /9- not-in-quadratic-extension-trisect-angle
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(implies (quadratic-extensions-p exts)

(not ( is-linear-combination-p (acl2-cosine (/ (acl2-pi) 9))

exts)))

:hints ...)

(defthm cos-pi /9-is-irrational

(and (realp (acl2-cosine (/ (acl2-pi) 9)))

(not (rationalp (acl2-cosine (/ (acl2-pi) 9)))))

:hints ...)

5 Conclusions

This paper formalized quadratic field extensions in ACL2, and it showed that certain numbers cannot

belong to any quadratic field extension of Q, which also means those numbers must be irrational. This

is all part of a larger effort to formalize the notion of constructible numbers in ACL2, which leads to the

result that certain straight-edge and compass constructions are impossible. For example, the facts that
3
√

2 and cos π

9
cannot belong to any quadratic field extension are the key to showing the impossibility of

doubling a cube and trisecting an angle, respectively. In the future, we plan to prove in ACL2 that
√

π is

also not constructible, since all constructible numbers are algebraic and
√

π is not. This will be used to

show the impossibility of squaring the circle.
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