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This paper describes a C code generator for ACL2 that recognizes ACL2 representations of C con-
structs, according to a shallow embedding of C in ACL2, and translates those representations to the
represented C constructs. The code generator also generates ACL2 theorems asserting the correct-
ness of the C code with respect to the ACL2 code. The code generator currently supports a limited
but growing subset of C that already suffices for some interesting programs. This paper also offers a
general perspective on language embedding and code generation.

1 Introduction

Several theorem provers (e.g. Coq, Isabelle, PVS) include facilities to generate code in various program-
ming languages (e.g. C, Clean, Haskell, Lisp, Ocaml, Scala, Scheme, SML) from executable subsets of
the provers’ logical languages. That way, code written in a prover’s language, possibly verified to satisfy
properties of interest, can be run as code in a conventional programming language; verifying the cor-
rectness of the generated code with respect to the prover’s code is a separable problem, akin to compiler
verification. When carrying out formal program synthesis by stepwise refinement [1, 21, 12, 15] in a
prover to derive an implementation from a high-level specification, a code generator can translate the
low-level (i.e. fully refined) specification to the final program.

ACL2’s tight integration with the underlying Lisp platform may obviate the need for code generation,
because executable ACL2 code can run efficiently as Lisp. An APT program derivation [14, 5, 6] may
end with an implementation in executable ACL2 that runs as Lisp. However, some applications require
code in other languages, such as C for embedded systems or device drivers. To synthesize this kind of
code via an APT derivation, a code generator for ACL2 can be used, such as ATJ [3, 4] [22, java::atj]
(for Java).

A typical code generator for a prover can be viewed as a reification of a shallow embedding of the
prover’s (executable) language in the programming language: constructs of the prover’s language are
rendered as suitably equivalent constructs of the programming language. The translation is centered on,
and driven by, the prover’s language, which is mimicked in the programming language. Therefore, unless
the prover’s language and the programming languages are sufficiently similar, the generated code may
not be very efficient (in time and space) and idiomatic; this could be an issue for the aforementioned
example applications.

This paper proposes an approach to turn the focus on the generated code, and to exert direct con-
trol over it, by flipping the direction of the embedding: (i) a shallow embedding of the programming
language in the prover’s language defines representations of program constructs in the prover; and (ii)
a code generator recognizes these representations and translates them to the represented code. This is
code generation by inverse shallow embedding: the embedding is a (not necessarily reified) translation
from the programming language to the prover’s language, and the code generator is the (reified) inverse
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186 C Code Generation

translation. In contrast, code generation by direct shallow embedding is the more typical approach where
the code generator translates the prover’s language to the programming language, the translation being a
shallow embedding of the former in the latter.

The program constructs shallowly embedded in the prover are oriented towards the programming
language, and thus may not be idiomatic formulations in the prover’s language. This new code generation
approach is designed for program synthesis by stepwise refinement, where the final refinement steps turn
idiomatic code in the prover’s language into provably equivalent shallowly embedded program code.
These final refinement steps, carried out under user guidance, afford fine-grained control on the exact
form of the final program.

This new code generation approach is realized in ATC (ACL2 To C) [22, c::atc], the C code
generator for ACL2 described in this paper. ATC is designed for use with the aforementioned APT: the
final steps of an APT derivation turn ACL2 code into C code shallowly embedded in ACL2, which ATC
turns into actual C code. These final derivation steps take place within the ACL2 language, and their
verification involves only the ACL2 language; these steps may be carried out via proof-generating APT
transformations, including ones tailored to ATC that have been and are being developed at Kestrel. These
APT transformations are not discussed further in this paper, which concentrates on ATC.

Besides the C code, ATC also generates ACL2 proofs of the correctness of the C code with respect
to the ACL2 code. The proofs are based on a formalization of the needed subset of C in ACL2. Together
with the ACL2-to-ACL2 proofs in an APT derivation, the ACL2-to-C proof generated by ATC provides
an end-to-end correctness proof of the synthesized C code that ends the derivation with respect to the
high-level specification that starts the derivation.

ATC supports a limited subset of C18 [11], which includes integer types, operations and conversions
on them, integer arrays with read and (destructive) write access, local variable declarations and assign-
ments, loops of certain forms, conditional expressions and statements, and functions that may affect
arrays. Despite its limitations, this set suffices for some interesting programs. ATC has been and is being
used in a growing number of applications at Kestrel, supporting the viability of the approach.

Section 2 offers a perhaps original perspective on how different kinds of language embedding corre-
spond to different code generation approaches. Section 3 describes the shallow embedding of C in ACL2
and how ATC uses it to generate C code. Section 4 describes the formalization (i.e. deep embedding) of
C in ACL2 and how ATC uses it to generate proofs. Section 5 discusses future work. Section 6 surveys
related work. In this paper, ‘fixtype’ refers to a type defined using the FTY library [22, fty].

2 Perspective on Language Embedding and Code Generation

An embedding of a language L in a language L ′ is a representation of L in L ′. In a deep embedding,
the syntax of L is represented via L ′ values that capture L constructs, and the semantics of L is
represented via L ′ operations over those values; the representation is explicit. In a shallow embedding,
the syntax of L is represented via a translation of L constructs to L ′ constructs, and the semantics of
L is represented via the L ′ semantics of the L ′ counterparts of the L constructs; the representation
is implicit.1 An embedding may apply to a subset of L . The features of an embedding depend on the
nature of L and L ′, in particular whether each one is a logical language or a programming language.

Given a logical language A (e.g. ACL2) and a programming language P (e.g. C or Java), there are
four possible kinds of embedding, based on direction and depth: (i) shallow embedding of A in P; (ii)

1Although representations are conceivable that blur the line between deep and shallow embedding, the distinction remains
generally useful, and is commonly found in the literature and used in technical discourse.
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deep embedding of A in P; (iii) shallow embedding of P in A ; and (iv) deep embedding of P in A .
Each kind corresponds to a different approach to generate P code from A , particularly for the first three
kinds, with the fourth kind being a little different. In addition, the fourth kind plays a role in establishing
the correctness of the generated code for all four approaches.

2.1 Direct Shallow Embedding

A shallow embedding of A in P is a translation of constructs in (an executable subset of) A to suitably
equivalent constructs in P . The translation can be used to generate P from A . The code generator
reifies the embedding; embedding and code generation go in the same direction—hence ‘direct’.

This is a typical code generation approach. The constructs of A are rendered in P: the data types
of A are mapped to data types of P , the operations of A are mapped to operations of P , and so on. If
P lacks suitable built-in counterparts for certain A constructs, such counterparts are defined in P (e.g.
as libraries) and used as code generation targets.

This translation is centered on, and driven by, A , which is mimicked in P . Unless P is sufficiently
similar to A , the generated code may look more like “A written in P” than like idiomatic P; it may
not be as efficient (in time and space) as the original A code or as a handcrafted port to P . In some
applications, the readability of the generated code may be unimportant, and its efficiency adequate; but
other applications, e.g. for resource-constrained systems, may have more stringent requirements.

A realization of this code generation approach is ATJ in shallow embedding mode [22, java::atj],
which generates Java code from ACL2. It relies on AIJ [22, java::aij], which implements ACL2 data
types and operations in Java. ACL2 functions are translated to Java static methods, organized in Java
classes corresponding to the ACL2 packages. ACL2 let bindings are translated to Java local variable
declarations and assignments. And so on; see the references for more details.

2.2 Direct Deep Embedding

A deep embedding of A in P is an interpreter of (an executable subset of) A written in P . This
enables a simple code generation approach: the code generator translates A constructs to their deeply
embedded counterparts in P , which the interpreter executes in P , possibly via a thin wrapper produced
by the code generator. The interpreter reifies the embedding; embedding and code generator go in the
same direction—hence ‘direct’.

This is an unconventional code generation approach, but is a conceptually simple way to run A in
P . The interpreter includes representations of the abstract syntax of A , the values and computation
states of A , the basic operations of A , and so on. The translation carried out by the code generator
is straightforward. The P code resulting from this code generation approach is even less idiomatic
and efficient than discussed in Section 2.1, but it may be adequate for certain applications; due to its
simplicity, it is also fairly high-assurance (relevant if formal proofs are absent).

A realization of this code generation approach is ATJ in deep embedding mode [22, java::atj],
which generates Java code from ACL2. The interpreter is AIJ [22, java::aij], part of which is the Java
implementation of the ACL2 data types and operations mentioned in Section 2.1.

This code generation approach could become more interesting by accompanying it with partial eval-
uation. According to the first Futamura projection [13], partially evaluating an interpreter with respect
to a program amounts to compiling the program to the language that the interpreter is written in. Thus,
a partial evaluator for P can be used to partially evaluate the A interpreter (written in P) with respect
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to (the P representation of) the A code. For the aforementioned ATJ, a partial evaluator for Java would
be needed; the partial evaluator may be written in any language, including ACL2.

2.3 Inverse Shallow Embedding

A shallow embedding of P in A is a translation of constructs in (a subset of) P to suitably equivalent
constructs in A . The inverse of this translation can be used to generate P from A , recognizing the P
constructs shallowly embedded in A (i.e. recognizing the image of the embedding) and turning them into
the actual P constructs. The code generator reifies the inverse of the embedding, while the embedding
does not have to be reified; embedding and code generator go in opposite directions—hence ‘inverse’.

This appears to be a novel code generation approach. It is centered on, and driven by, P rather than
A : it enables users to specify the generated code exactly, making it as idiomatic and efficient as desired,
and fit for the more demanding applications mentioned in Section 2.1.

While the generated P code can be idiomatic, its A representation may look more like “P written
in A ” than like idiomatic A code, and may be burdensome to write directly. Thus, this code generation
approach is designed for program synthesis by stepwise refinement, where the final refinement steps turn
idiomatic A into the form required by the code generator, i.e. into something in the image of the shallow
embedding. These refinement steps, carried out under user guidance, afford fine-grained control on the
exact form of the final program. Since the code generator merely turns P code shallowly embedded in
A into actual P code, the readability and the efficiency (in space and time) of the code do not depend on
the code generator: they are the responsibility of the aforementioned final refinement steps; shifting this
responsibility from the code generator to the stepwise refinement derivation is a deliberate and distinctive
aspect of this code generation approach.

A realization of this code generation approach is ATC, described in this paper, which generates C
code from ACL2. ATC is designed for use with APT, whose transformations (some tailored to ATC) can
be used to turn idiomatic ACL2 code into the form required by ATC.

2.4 Inverse Deep Embedding

A deep embedding of P in A is a formalization of (a subset of) P in A . Thus, it is the basis for formal
correctness proofs of P code generated from A via any of the three approaches described above, playing
a role alongside the three other kinds of embedding. The formalization reifies the deep embedding.

Furthermore, this kind of embedding can be used in a pop-refinement derivation [2], where: (i) the
initial specification is a predicate over P programs that characterizes the possible implementations; and
(ii) the final specification is a singleton predicate that selects one P implementation in explicit syntactic
form, from which the actual code is readily obtained. All the specifications in the derivation, from initial
to final, are written in A , but their formulation requires a formalization of P , i.e. the deep embedding.
There is no code generator as such, other than a simple obtainment of the implementation from the final
specification predicate where it is deeply embedded. Embedding and refinement to code go in opposite
directions—hence ‘inverse’.

For this code generation approach to be practical, techniques must be developed to make deeply
embedded P constructs “emerge” within A via suitable refinement steps. An idea worth pursuing
is whether the kind of code generator described in Section 2.3 could be realized as one or more such
refinement steps, to automatically turn shallowly embedded P constructs into deeply embedded ones.

The proofs generated by ATC are based on a formalization of C in ACL2, which is a deep embedding
of C in ACL2. ATC uses the code generation approach described in Section 2.3, not the pop-refinement
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approach sketched above.

3 C Shallow Embedding and Code Generation

ATC generates C code from ACL2 according to the inverse shallow embedding approach explained in
Section 2.3. ATC relies on the definition of a shallow embedding of C in ACL2, whose image ATC
recognizes in ACL2 code and translates to actual C code.

3.1 Shallow Embedding of C in ACL2

The shallow embedding of C in ACL2 relied on by ATC consists of (i) an ACL2 model of C integers and
arrays and (ii) a definition of how C expressions, statements, and functions are represented as ACL2 terms
and functions. The latter is embodied in the ATC user documentation, which spells out the representation
in an almost formal way. There is currently no implemented translation from C to ACL2.

3.1.1 Integers

The model includes all the C18 standard integer types except _Bool, namely char, short, int, long,
and long long, both signed (the default) and unsigned (but not the plain char type); 10 types in total.
The model includes unary integer operations (+, -, ~, !; 4 in total), binary integer operations (+, -, *, /,
%, &, |, ˆ, <<, >>, <, >, <=, >=, ==, !=; 16 in total),2 and integer type conversions (90 in total).

The exact format of the C integer types is implementation-dependent. The model assumes two’s
complement without padding bits (as prevalent), and has ACL2 nullary functions for the sizes of the
different types; these nullary functions are referenced in other parts of the model to avoid hardwiring as-
sumptions on sizes, which vary across popular C implementations. These nullary functions are currently
defined (to common values), but they are planned to be made constrained instead (see Section 5). The C
integer values are represented as ACL2 integers in appropriate ranges (defined via the nullary functions),
tagged with an indication of their type. The model has a fixtype for each C integer type.

The C integer operations and conversions are modeled as ACL2 functions, whose guards capture the
conditions under which the results are well-defined in C18. For example, int addition is modeled as
follows:

(defun add-sint-sint (x y) ; addition of signed int and signed int
(declare (xargs :guard (and (sintp x) (sintp y) (add-sint-sint-okp x y))))
(sint (+ (sint->get x) (sint->get y))))

(defun add-sint-sint-okp (x y) ; well-definedness condition
(declare (xargs :guard (and (sintp x) (sintp y))))
(sint-integerp (+ (sint->get x) (sint->get y))))

Two int values, recognized by sintp, are added by taking the underlying ACL2 integers via sint->get,
adding them via ACL2’s addition +, and turning the result into an int value via sint, provided that the
result is representable as an int, whose range is recognized by sint-integerp.3

C unary and binary integer operations apply to any combination of operand types and have fairly
complex rules about operand type conversions and result types; the rules are not uniform across the

2The non-strict operations && and || are represented differently, as described later.
3In C18, signed integer arithmetic operations are well-defined only if the true result of the operation can be represented in

the type of the result of the operation (which is determined from the types of the operands). C implementations may extend this
well-definedness, e.g. as two’s complement wrap-around.
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different types. The model has versions of the integer operations for all possible combinations of operand
types, whose definitions capture those rules. There are thousands of such functions,4 generated via
macros that exploit their available uniformity.

3.1.2 Arrays

The model includes monodimensional arrays of the above integer types, with read and write access.
A C array is modeled as a non-empty list of C integer values, tagged with an indication of its type.

The model has a fixtype for each C array integer type.
Read and write access is modeled via ACL2 functions to read and write arrays. The read functions

return an array element from an array and an index; the write functions return a new array from an old
array, an index, and a value for the element. These functions have guards requiring the index to be within
the array bounds. Since an array may be indexed with any integer type in C, there are versions of these
functions for all combinations of array and index types. There are hundreds of such functions,5 generated
via macros that exploit their uniformity.

Arrays are not first-class entities in C, but mere juxtapositions of their elements. Although the model
just described appears to treat arrays as first-class entities, their use in the shallowly embedded C code is
restricted in ways that make this modeling adequate; see also Section 4.1.

3.1.3 Expressions, Statements, and Functions

C functions are represented as ACL2 functions that operate on (the ACL2 model of) C values. Consider
the following C function:

int f(int x, int y, int z) {
return (x + y) * (z - 3);

}

This is represented as follows in ACL2 (where the ellipsis in the guard is explained later):
(defun |f| (|x| |y| |z|)
(declare (xargs :guard (and (sintp |x|) (sintp |y|) (sintp |z|) ...)))
(mul-sint-sint (add-sint-sint |x| |y|)

(sub-sint-sint |z| (sint-dec-const 3))))

The reason for the vertical bars around the ACL2 symbols is that a C identifier is represented as an
ACL2 symbol whose symbol-name is the identifier; if f were used as the ACL2 function name instead
of |f|, it would represent a C function named F. The correspondence between the body of |f| and the
return expression of f is clear: the ACL2 functions that model arithmetic operations have been explained
earlier; the int decimal (i.e. in base 10) constant 3 is represented via sint-dec-const, which is part of
the model. The input and output types of f are represented by the corresponding guard conjuncts of |f|
and the fact that the body of |f| returns sintp (via mul-sint-sint); see also Section 3.2.

Besides C expressions as exemplified above, ACL2 terms of certain forms represent C statements,
which may contain blocks with local variable declarations. Consider the following C function:

unsigned int g(unsigned int x, unsigned int y) {
unsigned int z = 1U;
if (x < y) { z = z + x; } else { z = z + y; }
return 2U * z;

}

4(4 unary operations × 10 types) + (16 binary operations × 100 type combinations) = 1,640 functions.
5(2 read or write operations) × (10 array types) × (10 index types) = 200 functions.
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This is represented as follows in ACL2:
(defun |g| (|x| |y|)
(declare (xargs :guard (and (uintp |x|) (uintp |y|))))
(let ((|z| (declar (uint-dec-const 1))))
(let ((|z| (if (boolean-from-sint (lt-uint-uint |x| |y|))

(let ((|z| (assign (add-uint-uint |z| |x|))))
|z|)

(let ((|z| (assign (add-uint-uint |z| |y|))))
|z|))))

(mul-uint-uint (uint-dec-const 2) |z|))))

Local variable declarations and assignments are both represented via let bindings; the two cases are
distinguished by the declar and assign wrappers, which are defined as identity functions. Statements,
like the if statement above, that affect variables and are followed by more code are represented via let
bindings without any wrappers; both branches of the if term in ACL2 must end with (the latest values
of) the affected variables. If multiple variables were affected, mv-let would be used to bind them to
the if term, whose branches would have to end with an mv of the variables. Since ACL2 is functional,
variable updates are explicated. Function boolean-from-sint converts the int returned by the less-
than operation to a boolean, as needed for if tests in ACL2; the conversion is not reflected in the C code,
which uses scalars (including integers) in if tests.

C loops are represented as tail-recursive ACL2 functions. Consider the following modular factorial:
unsigned int h(unsigned int n) {

unsigned int r = 1U;
while (n != 0U) { r = r * n; n = n - 1U; }
return r;

}

This is represented as follows in ACL2:
(defun |h$loop| (|n| |r|) ; representation of the loop of h
(declare (xargs :guard (and (uintp |n|) (uintp |r|))))
(if (boolean-from-sint (ne-uint-uint |n| (uint-dec-const 0)))

(let* ((|r| (assign (mul-uint-uint |r| |n|)))
(|n| (assign (sub-uint-uint |n| (uint-dec-const 1)))))

(|h$loop| |n| |r|))
(mv |n| |r|)))

(defun |h| (|n|) ; representation of the function h
(declare (xargs :guard (uintp |n|)))
(let ((|r| (declar (uint-dec-const 1))))
(mv-let (|n| |r|)
(|h$loop| |n| |r|)
(declare (ignore |n|)) ; because n is not used after the loop
|r|)))

Since the loop function does not represent a C function, its name does not have to be a legal C identifier.
In |h|, the two variables are mv-let-bound to the loop function call, because the loop affects both. Loop
functions may have a more elaborate structure than above, but every control path must end either with
a recursive call on the formal parameters (which must therefore be updated before the call) or with (the
subset of) the formal parameters affected by the loop.

C arrays are passed around as wholes in functional ACL2, but they are passed around as pointers in
C. The ACL2 representation is correct so long as the arrays are treated in a stobj-like [22, stobj] single-
threaded way, which is required in this shallowly embedded representation. Consider the following C
function:

http://acl2.org/manual?topic=ACL2____STOBJ
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void i(unsigned char *a, int x, int y) {
a[x] = (unsigned char) 1;
a[y] = (unsigned char) 2;

}

This is represented as follows in ACL2 (where the ellipsis in the guard is explained later):
(defun |i| (|a| |x| |y|)
(declare (xargs :guard (and (uchar-arrayp |a|) (sintp |x|) (sintp |y|) ...)))
(let* ((|a| (uchar-array-write-sint |a| |x| (uchar-from-sint (sint-dec-const 1))))

(|a| (uchar-array-write-sint |a| |y| (uchar-from-sint (sint-dec-const 2)))))
|a|))

Array writes are represented as let bindings of the array variables to calls of the array write functions.
The C function returns nothing (i.e. void), but since it affects the array, the ACL2 function returns the
updated array. If multiple arrays were updated, they would all be returned via mv, while the C function
would still return nothing. If the C function returned a result besides affecting arrays, the ACL2 function
would return the result and the updated arrays via mv. Arrays may be updated in loops; in general, ACL2
loop functions return affected variables and arrays, while ACL2 non-loop functions return affected arrays
and optionally a result.

The non-strict C operations && and || are represented via ACL2’s and and or macros, which are
non-strict because they are defined in terms of if. Representing && and || via strict ACL2 functions
would require the evaluation of their second operand to be well-defined (i.e. require its guards in ACL2
to be verified) regardless of the value of the first operand, which would be too restrictive, preventing
many valid and useful C programs from being represented. Functions like boolean-from-sint shown
earlier, as well as inverses like sint-from-boolean that are part of the shallow embedding, are used to
convert between ACL2 booleans and C integers in the representation of C expressions involving && and
||.

The above is just an overview of the supported representations of C in ACL2. The ATC reference
documentation [22, c::atc] spells out the supported representations in full detail.

3.2 C Code Generation

ATC is invoked on a list of ACL2 functions that represent C functions and C loops. If an ACL2 function
is not recursive, it represents a C function; if it is recursive, it represents a C loop. The ACL2 functions
must be listed in bottom-up order (i.e. each function may call the preceding ones or itself, but not the
subsequent ones); the C functions are generated in the same order, currently in a single .c file. The above
requirements imply that recursive C functions cannot be generated currently.

ATC requires all the ACL2 functions to be defined, in logic mode, and guard-verified. This is critical
for proof generation (see Section 4.2). The fact that the loop functions are in logic mode means that the
loops must terminate under the guards, which may be added to the termination conditions via mbt, which
ATC ignores as far as the representation of C code goes. The fact that the functions are guard-verified
means that all arrays are always accessed within their bounds (avoiding well-known problems in C),
and that all arithmetic operations always have well-defined results according to C18. The ellipses in the
guards of some of the examples in Section 3.1 include conditions needed for guard verification, namely
that the parameters of |f| are in certain ranges and that the index parameters of |i| are non-negative
and less than the array’s length.6

6No additional conditions are needed in the guards of |g| and |h| (and |h$loop|), because unsigned arithmetic is always
well-defined as wrap-around in C18.

http://acl2.org/manual?topic=C____ATC
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ATC checks that the names of the non-loop functions, and the names of the parameters of both loop
and non-loop functions, are valid C ASCII identifiers. The input types of the C functions are determined
from the guards, which must include explicit conjuncts like the ones in the examples in Section 3.1. ATC
operates on the unnormalized bodies of the ACL2 functions [22, function-definedness]: it checks
that they contain supported representations of C code, i.e. that they are in the image of the shallow
embedding. In the process, ATC performs C-like type checking, to determine the types of let-bound
variables with declar, to determine the output types of the C functions, and to ensure that the generated
C code is acceptable to C compilers; the latter is not always ensured by guard verification, specifically
when there is dead code under the guards (by user mistake), which C compilers do not regard as dead.

While this translation of ACL2 to C is conceptually relatively simple, its implementation is more
complicated than anticipated. There are a lot of detailed cases to consider and to check. Giving informa-
tive error messages when the checks fail takes some effort; the current implementation may be improved
in this respect. The ATC code responsible for the checks and translation consists of a few thousand lines
(including documentation and blanks).

ATC generates C code via an abstract syntax of (a sufficient subset of) C, defined via algebraic
fixtypes. The C file is generated via a pretty-printer, which minimizes parentheses in expressions by
considering the relative precedence of the C expression constructs.

ATC generates the C code, as well as the associated ACL2 proof events, very quickly for all the
examples tried so far (which are admittedly not very large). This is expected, as ATC does a linear pass
on the ACL2 code that does not perform particularly intensive computations. However, the processing
of the proof events by ACL2 is not always quick; see Section 4.2.

4 C Deep Embedding and Proof Generation

Besides C code, ATC also generates ACL2 theorems asserting the correctness of the C code with respect
to the ACL2 code. These assertions rely on a formalization in ACL2 of the syntax and semantics of (a
sufficient subset of) C, i.e. a deep embedding of C in ACL2, which plays a role alongside the shallow
embedding (see Section 2.4). This formalization is more general than ATC, and is of independent interest.

4.1 Deep Embedding of C in ACL2

The formalization of C in ACL2 consists of (i) an abstract syntax, (ii) a static semantics, and (iii) a
dynamic semantics. Both static and dynamic semantics are defined over the abstract syntax.

4.1.1 Syntax

The abstract syntax is currently the same one used for code generation (see Section 3.2). It captures the
syntax of C after preprocessing.

Future versions of ATC may likely generate C code with at least some preprocessing directives,
which would be convenient to incorporate into the abstract syntax used for code generation; in this case,
the abstract syntax would capture the syntax of C before preprocessing. Thus, at some point it may be
appropriate for the C formalization to use its own separate abstract syntax, and in fact to have one for
the C syntax before preprocessing and one for the C syntax after preprocessing, to model more faithfully
C18’s translation phases.

Currently the formalization does not include the C concrete syntax. Since ATC’s generated proofs
currently apply to abstract syntax, there is no immediate need to formalize concrete syntax.

http://acl2.org/manual?topic=ACL2____FUNCTION-DEFINEDNESS
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4.1.2 Static Semantics

The static semantics of C consists of decidable requirements that must be satisfied by C code to be
compiled and executed: every referenced variable and function is in scope; every operation is applied to
operands of appropriate types; and so on. These are described informally in the C18 standard.

These requirements are formalized via (executable) ACL2 code that checks whether the C abstract
syntax satisfies those requirements, analogously to what C compilers do. The checking code makes use
of symbol tables, i.e. data structures that capture which C symbols (e.g. function and variable names)
are in scope and what their types are. If an abstract syntax entity violates any requirement, the checking
code returns an error result; otherwise, it returns a non-error result that may include inferred information
about the checked abstract syntax entity. In particular, the successful checking of an expression yields
the (non-void) C type of the expression, and the successful checking of a statement yields a non-empty
finite set of C types, corresponding to the possible values that may be returned (including void for code
that completes execution without a return or with one without expression); the latter set is used to check
that the body of a function always returns something consistent with the function’s return type.

4.1.3 Dynamic Semantics

The dynamic semantics of C is the execution behavior of C code (that satisfies the static semantic require-
ments), i.e. how the execution of expressions, statements, etc. manipulates values and memory. While
this behavior is normally realized by compiling C code to machine code and running the latter, it can be
described, as the C18 standard does, in terms of an abstract machine that directly executes C.

This abstract machine is formalized via fixtypes that capture the machine states and via (executable)
ACL2 code that manipulates machine states according to the C expressions, statements, etc.

The model of machine states starts with the model of C integers and arrays described in Section
3.1, which is shared by deep and shallow embedding. C values are defined to consist of integers and
pointers (for arrays); a pointer consists of a type and an optional address (absent for null pointers), where
an address is a natural number that is treated opaquely.7 Importantly, in this model the C values carry
information about their types, which is used in the defensive checks described later. The state of the
variables in scope is a stack (i.e. list) of finite maps from identifiers to values: the stack corresponds to
the nested C scopes, and each finite map consists of the variables in the same scope. A frame consists of
a function name and a stack of variable scopes of the kind just described. A computation state consists of
a stack (i.e. list) of frames, which captures the call stack, and a heap, which is a finite map from addresses
(the ones used in non-null pointers) to arrays (the ones shared with the shallow embedding). The current
model of the heap is simple, with arrays treated as wholes and accessed exclusively via their addresses.

The next component of the formalized dynamic semantics of C consists of ACL2 functions that
perform basic operations on computation states. These include operations to: push and pop frames, and
get the top frame; push and pop scopes (in the top frame); create variables (in the top scope in the top
frame), and read and write variables (in some scope, looked up from innermost to outermost, in the top
frame); read and write arrays (in the heap). There are no operations to create or destroy arrays; the read
and write operations apply to externally created arrays.

The C functions in scope are captured via a function environment, which is a finite map from identi-
fiers (function names) to information about the function (typed parameters, return type, and body). The

7These addresses are just used to identify arrays. They do not represent actual addresses in memory. The formalization
performs no arithmetic on them. Other kinds of entities, e.g. strings, could be used instead.
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function environment for a C program is built by collecting all the C functions that form the program; it
never changes during execution.

The C18 standard does not prescribe the order of expression evaluation; since C expressions may
have side effects, different orders of evaluation may lead to different outcomes, which complicates formal
modeling. The formal model manages this complexity by partitioning expressions into pure ones (i.e.
free of side effects) and non-pure ones (i.e. with possible side effects). While the pure ones may be freely
nested (because their order of evaluation does not matter), the non-pure ones may only appear in certain
positions of the code that force a unique order of evaluation: specifically, assignments may only appear
as expression statements. These restrictions, which are not required in C18, are enforced in the subset of
C covered by the formal model.

The last component of the formalized dynamic semantics of C consists of ACL2 functions to execute
expressions, statements, etc. These functions are defensive, i.e. they do not assume that the code satisfies
the static semantic requirements, and instead independently check those requirements on the dynamic
data, i.e. that a referenced variable is in the current frame, that the values that an operation is applied to
have appropriate types (recall the note above about values carrying type information), and so on; if any
of these checks fails, the execution functions return an error indication.8 The ACL2 execution functions
also check that the results of integer operations and conversions are well-defined and that arrays are
read and written within their bounds; if any of these checks fails, the execution functions return an error
indication. Importantly, this means that the dynamic semantics returns an error indication if the C code
attempts an unsafe array access.

The ACL2 function to execute a pure expression takes an expression and a computation state as
inputs, and returns either a value or an error indication as output. Executing a non-pure expression
may involve executing a function call, which involves executing the statements in the function, and so
on. Thus, the ACL2 functions to execute non-pure expressions, statements, functions, etc. are mutually
recursive. Besides the syntactic entities they execute (statements etc.), these functions take a computation
state and a function environment as inputs (the latter is used to look up called functions), and they return
a possibly updated computation state as output, along with a result (e.g. an optional value for a statement)
or an error indication of the kind explained above.

These mutually recursive functions, together with the functions to execute pure expressions and lists
thereof, formalize an (interpretive) big-step operational semantics: each function executes its syntactic
construct to completion, by recursively executing the sub-constructs and combining their outcomes to
yield the final outcome.9 Since C code may not terminate in general, the mutual recursion may not
terminate, which makes it problematic to define in a theorem prover like ACL2. This is solved by adding
an artificial counter that limits the depth of the mutual recursion: the counter is decremented by 1 at
each recursive call, and used as the measure of the mutual recursion, whose termination proof is thus
straightforward. This does not sweep issues of (non-)termination under the rug: see Section 4.2.

The ACL2 execution functions for (pure and non-pure) expressions, statements, etc. use the opera-
tions and conversions on integers discussed in Section 3.1, which are shared between deep and shallow
embedding. They also use the operations on computation states discussed above.

8It remains to be formally proved that the static semantics is sound with respect to the dynamic semantics, namely that no
such error indications are returned when executing code that satisfies the static requirements. The proofs generated by ATC do
not rely on this property, but its proof would provide a major validation of this formalization of C in ACL2.

9In contrast, a small-step operational semantics would only execute part of a construct at each step. This requires keeping
track of which parts of a construct have been already executed and which parts must be executed next. This is more complicated
than just executing each construct to completion. An example of small-step operational semantics, for the ACL2 programming
language (but still illustrating the point), is in the Community Books [22, acl2pl::acl2-programming-language].

http://acl2.org/manual?topic=ACL2PL____ACL2-PROGRAMMING-LANGUAGE
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4.2 C Proof Generation

Although ATC’s translation from the shallowly embedded C code in ACL2 to the actual C code is concep-
tually simple by design, generating ACL2 proofs of their equivalence is more laborious than anticipated.
These proofs consist of ACL2 events that ATC builds and then submits to ACL2 via make-event.

4.2.1 Code Constant

As ATC computes the abstract syntax of the generated C code and pretty-prints it to a .c file (see Section
3.2), it also generates a defconst event that defines a named constant for the C code, which is a single
translation unit in C18 terminology:10

(defconst *program* ; default name, customizable by the user
'(:transunit ...) ; fixtype value of translation unit

The other generated events refer to this constant to assert properties of the generated C code.

4.2.2 Static Correctness

ATC generates a defthm event asserting that the top-level checking function of the C static semantics
succeeds on the named constant described above:

(defthm *program*-well-formed
(equal (check-transunit *program*) ; top-level static checking function

:wellformed))

Since this is a ground theorem, it is proved by execution: ATC generates hints to prove it in the theory
consisting of exactly the executable counterpart of that top-level checking function. This proof is very
quick for all the examples tried so far.

This establishes that the C code satisfies all the static semantic requirements, and can be therefore
successfully compiled by C compilers. This property is not always implied by the dynamic correctness
theorems, in the presence of dead code under guards as briefly discussed in Section 3.2.

4.2.3 Dynamic Correctness

ATC generates defthm events asserting that, roughly speaking, executing each C function according to
the dynamic semantics yields the same outcome as the representing ACL2 function. The proofs are
carried out via a symbolic execution of the C code (which is constant in the proofs, i.e. *program*) that
turns the execution functions applied to the deeply embedded C code into a form that can be matched
with the shallowly embedded C code that forms the ACL2 functions.

The general formulation is illustrated by the theorem for function |f| in Section 3.1:
(defthm *program*-|f|-correct
(implies (and (compustatep compst)

(equal fenv (init-fun-env *program*))
(integerp limit)
(>= limit ...) ; constant lower bound calculated by ATC
(and (sintp |x|) (sintp |y|) (sintp |z|) ...)) ; guard of |f|

(equal (exec-fun (ident "f") (list |x| |y| |z|) compst fenv limit)
(b* ((result (|f| |x| |y| |z|)))
(mv result compst)))))

10In the future, this may be generalized to a collection of translation units that forms a generated program. Each translation
unit is in a .c or .h file.
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It says that executing the C function whose name is the identifier f on int inputs |x|, |y|, |z| satisfying
the guard of |f|, on an arbitrary computation state compst, with the function environment fenv for
the program, with a sufficiently large recursion limit limit, yields the same result (value) as |f| on
the same inputs, and does not change the computation state. The hypothesis on the limit ensures that
execution does not stop prematurely; the lower bound, which is constant in this case, is calculated by
ATC as it generates function f, because it knows how much recursion depth the execution of its body
needs. ATC generates hints (not shown) to prove this theorem, mainly consisting of a large theory for
symbolically executing the C code in ACL2, along with a lemma instance for the guard theorem of
|f|, which steers the symbolic execution away from returning error indications due to non-well-defined
arithmetic operations, since they are all well-defined under the guard. The fact that |f| never returns
error indications and that the execution result of f is equal to that, means that execution never returns error
indications: in general, this means that the C code generated by ATC always has a well-defined behavior,
including always accessing arrays safely. This theorem also implicitly asserts that f terminates: it is
always possible to find a value of limit that satisfies the inequality hypothesis.

To prove the theorem above, ATC also generates a local theorem11 saying that |f| returns an int;
this local theorem is referenced in the generated hints for the above theorem. An analogous local theorem
is generated by ATC for each ACL2 function, with the applicable type(s).

ATC generates a correctness theorem for each C function. If the C function affects arrays, the for-
mulation is more complicated. This is illustrated by the theorem for function |i| in Section 3.1:

(defthm *program*-|i|-correct
(b* ((|a| (read-array (pointer->address |a|-ptr) compst)))
(implies (and (compustatep compst)

(equal fenv (init-fun-env *program*))
(integerp limit)
(>= limit ...) ; constant lower bound calculated by ATC
(pointerp |a|-ptr)
(not (pointer-nullp |a|-ptr))
(equal (pointer->reftype |a|-ptr) (type-uchar))
(and (uchar-arrayp |a|) ...)) ; guard of |i|

(equal (exec-fun (ident "i") (list |a|-ptr |x| |y|) compst fenv limit)
(b* ((|a|-new (|i| |a| |x| |y|)))
(mv nil (write-array (pointer->address |a|-ptr) |a|-new compst))))))

Since C arrays are manipulated as wholes in ACL2 but via pointers in C, a variable |a|-ptr is introduced
for the pointer to the array, while the array |a| is the result of read-array: the call of exec-fun takes
|a|-ptr; the call of |i| takes |a|. The hypotheses on |a|-ptr say that it is a non-null pointer of the
right type; the guard hypothesis saying that |a| is an array also implicitly says that |a|-ptr points to
an existing array, because read-array returns an error indication if that is not the case. This hypothesis
constrains the computation state to contain that array, which is thus no longer unconstrained as in the
correctness theorem for |f|. Also unlike the correctness theorem for |f|, here the computation state is
updated by the execution of i: the new array, returned by |i|, is |a|-new; the new computation state
is obtained by replacing the array |a| pointed by |a|-ptr with |a|-new. The nil that precedes the
updated computation state refers to the fact that i returns no result. The generated hints for this theorem
are similar to the ones for the correctness theorem for |f|.

ATC also generates a correctness theorem for each C loop, relating its execution to the ACL2 function
that represents it. This is illustrated by the theorem for function |h$loop| in Section 3.1:

11Here ‘local’ refers to the encapsulate with the ATC-generated events, only a few of which are exported, free of hints.
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(defthm *program*-|h$loop|-correct
(b* ((|n| (read-var (ident "n") compst))

(|r| (read-var (ident "r") compst)))
(implies (and (compustatep compst)

(not (equal (compustate-frames-number compst) 0))
(equal fenv (init-fun-env *program*))
(integerp limit)
(>= limit ...) ; non-constant lower bound calculated by ATC
(and (uintp |n|) (uintp |r|))) ; guard of |h$loop|

(equal (exec-stmt-while
'... ; test of the loop
'... ; body of the loop
compst fenv limit)
(b* (((mv |n|-new |r|-new) (|h$loop| |n| |r|)))
(mv nil

(write-var (ident "n")
|n|-new
(write-var (ident "r")

|r|-new
compst))))))))

The computation state is constrained to have at least one frame (i.e. the number of frames is not 0) and
two variables n and r in the top frame (i.e. the variables accessed by the loop); |n| and |r| are bound
to those variables’ values. The guard hypothesis saying that |n| and |r| are unsigned int values also
implicitly says that the variables exist, because read-var returns an error indication if that is not the case.
The lower bound in the hypothesis on limit is not constant here: it is a symbolic term that references
the measure of |h$loop|, because the measure is related to the recursion limit needed to execute the
loop; ATC calculates this symbolic term as it generates the loop’s code. The exec-stmt-while function
is called on the quoted test and body of the loop, making this theorem applicable as a rewrite rule in
the proof of the correctness theorem for |h| (more on this below). Since C loops affect variables (and
possibly arrays) but do not return results, the right side of the equality whose left side is the exec-stmt
call has a form similar to the correctness theorem for function |i| above, except that variables instead
of arrays are updated in the computation state. This theorem is proved by induction; the generated hints
make use of the termination theorem of |h$loop|, as well as of some local functions and theorems not
discussed here.

If a C loop affects arrays besides variables, its correctness theorem combines characteristics of the
correctness theorems for |h$loop| and for |i|. The theorem starts with b* bindings for both variables
and arrays. Variables for the pointers to the arrays are introduced. The final computation state updates
both variables and arrays, via nested write-var and write-array calls.

If a C function or C loop affects multiple arrays, the generated correctness theorem includes hypothe-
ses saying that the arrays are all at different addresses. Since the representing ACL2 function treats the
arrays as wholes, updating one leaves the others unchanged in the ACL2 representation. In the C code,
where the arrays are handled via pointers, updates would not be independent if two pointers pointed to
the same array. The absence of aliasing is therefore a critical hypothesis in the correctness theorems.

The correctness theorem for a C loop is used as a rewrite rule in the symbolic execution of the
correctness theorem for the C function that contains the loop. Similarly, the correctness theorem for a C
function is used as a rewrite rule in the symbolic execution of another C function that calls it. In other
words, the generated correctness proofs build upon each other, according to the call graph of the ACL2
functions that represent the C functions and loops. For this to work, the theorems are formulated so that



A. Coglio 199

the left sides of the rewrite rules match the terms that arise during symbolic execution. In particular, the
recursion limit is a variable, limit, which the hypotheses constrain with a lower bound: this ensures
that any actual limit term that arises during the symbolic expression is matched by the variable, and that
the inequality hypothesis can be discharged. ATC calculates the lower bound terms by considering not
only the code generated for the C function or loop, but also the lower bound terms previously calculated
for all the C functions and loops that may be executed; the more complex the call graph of the ACL2
functions, the more complex the resulting lower bound terms.

The above is just an overview of how ATC generates dynamic correctness proofs. There are several
other complexities involved, such as canonical forms of the symbolic computation states, which are
defined via slightly modified operations on computation states, and achieved via appropriate sets of
rewrite rules. The implementation of ATC includes documentation for all the details of proof generation.

Some correctness theorems are processed quickly by ACL2, e.g. in less than 0.1 seconds. Other
correctness theorems take several minutes. The slow times seem mainly due to case splits that occur when
dealing with code with several conditionals. The granularity of the correctness proofs generated by ATC
is at the function and loop level, i.e. there is one theorem per C function or loop, proved by symbolically
executing the function or loop as a whole, and matching that with the representing C functions. This
process may be slow even for relatively small C functions and loops, if they have enough conditionals.
An approach to overcome this problem is discussed in Section 5.

The hypotheses in the correctness theorems generated by ATC must be fulfilled by external C code
that calls the generated C code, for the correctness guarantees to hold. This does not apply to the limit
hypotheses, which just serve to show that execution terminates, and which are easily satisfied with suf-
ficiently large values of limit, which are not part of the data manipulated by the C code (they are an
artifact of the model). The satisfaction of the hypotheses about the types of the inputs may be checked
by C compilers. Satisfying the remaining hypotheses is the responsibility of the calling code; these are
the non-type portions of the guards (e.g. that certain values are in certain ranges), and the fact that all
the arrays are disjoint. Even though the formal model puts all the arrays in the heap, the arrays passed to
the C functions generated by ATC could be allocated in the stack (by the callers) as well; the heap of the
formal model more generally represents externally allocated memory.

5 Future Work

An obvious direction of future work is to add support for increasingly larger subsets of C. Although
the current subset can represent some interesting programs, many other interesting programs cannot be
represented. Work is underway to add support for structures, which are commonly used in C. The main
challenge in supporting additional C features is perhaps the definition of their representations in the
shallow embedding. Given that ACL2 is a very different language from C, defining such representations
may require some thought. In particular, representing aliasing may involve some complexity, because
of the likely need to explicate some graph structure that captures aliased data and that is passed through
the ACL2 functions. Handling tree-shaped data without aliasing is comparatively simple, along the lines
of the current treatment of arrays, which may be generalized to includes structures, possibly mutually
nested with arrays.

Both shallow and deep embedding currently comply to the C18 standard. However, some C imple-
mentations may extend the well-definedness of C constructs (e.g. they may ensure that signed arithmetic
is always well-defined, as two’s complement wrap-around as in the x86 processor), and some applica-
tions may rely on this extended well-definedness. The plan is to parameterize both shallow and deep
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embedding over certain implementation-defined characteristics, captured via ACL2 constrained func-
tions; different instantiations of these parameters can be captured via hypotheses over these constrained
functions, and these hypotheses can be used in the applications that require them. In particular, the be-
havior of an arithmetic operation over operands of certain types whose exact result is not representable
in the result type can be captured via a constrained function. For C code strictly compliant to the C18
standard, this constrained function can be hypothesized to return an error indication; for C code tailored
to an implementation based on x86 as above, this constrained function can be hypothesized to return the
two’s complement wrapped-around result. The same approach is planned for the sizes of integer types,
as alluded to in Section 3.1.

The proof (in)efficiency issues discussed in Section 4.2 must be addressed soon. While there may
be ways to mitigate the case splits by tweaking the symbolic execution, a more promising approach
is to generate finer-grained proofs, at the level of blocks, or even statements and expressions, as ATC
generates these syntactic entities. The finer-grained proofs will still use symbolic execution, but in a
more controlled and efficient way, avoiding case splits. It should be possible to generate finer-grained
proofs that are processed in linear time over the size of the C code.

ATC could be extended with code generation modes based on direct shallow embedding and direct
deep embedding, analogously to ATJ [3, 4] [22, java::atj]. This may require the use of a garbage
collector for C.

6 Related Work

ATC’s shallow embedding of C in ACL2 is similar to the shallow embedding of RAC (Restricted Al-
gorithmic C) in ACL2 [19, Chapter 15]. Despite their different purposes (code generation vs. code
verification), they share the concern of representing C or RAC code in ACL2.

ATJ [3, 4] [22, java::atj] is a Java code generator for ACL2 primarily based on direct deep embed-
ding and direct shallow embedding. It also features partial support for inverse shallow embedding, which
was in fact pioneered in ATJ, and then developed in full in ATC. While ATJ does not generate proofs yet,
ATC has been generating them from the outset. While ATC requires the ACL2 code translated to C to be
in a very restricted form, ATJ translates to Java a much larger subset of ACL2.

Several other theorem provers include code generation facilities [7, 9, 20]. These are based on direct
shallow embedding, which is quite different from ATC’s inverse shallow embedding. Furthermore, the
ACL2 language is quite different from those provers’ languages, which are higher-order and strongly
typed. Thus, not many of the ideas from those provers’ code generation facilities may be relevant to
ATC. The C code generator for PVS [20] may contain the most relevant ideas for ATC, but likely more
for a future code generation mode based on direct shallow embedding.

Several formalizations of C exist [10, 16, 17, 8, 18]. These may contain ideas relevant to extending
and improving the formalization of C in ACL2 described in this paper, which the proofs generated by
ATC are based on.
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