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If p is a prime, then the numbers 1,2, . . . , p− 1 form a group under multiplication modulo p. A
number g that generates this group is called a primitive root of p; i.e., g is such that every number
between 1 and p−1 can be written as a power of g modulo p. Building on prior work in the ACL2
community, this paper describes a constructive proof that every prime number has a primitive root.

1 Introduction

This paper describes a proof in ACL2 of the fact that all prime numbers have primitive roots. A primitive
root of a prime number p is a number g such that all the numbers 1,2, . . . , p−1 can be written as gn mod p
for some value of n. For example, if p = 5, then g = 2 is a primitive root of p since 1 = 24 mod 5,
2 = 21 mod 5, 3 = 23 mod 5, and 4 = 22 mod 5. However, for p = 7, the number 2 is not a primitive root
of 7, because 2n mod 7 is always one of 2, 4, or 1. In particular, 2 does not generate 3 mod 7. So not all
numbers in 1,2, . . . , p−1 are powers of 2. The reader can easily verify that 3 is a primitive root of 7, so
the theorem holds in this case.

More formally, if p is a prime it is well known that the set of numbers modulo p, written Z/pZ, forms
a field. This occurs because when p is prime and for non-zero a ∈ Z/pZ, a always has a multiplicative
inverse, i.e., a number b ∈ Z/pZ such that ab≡ 1 (mod p). (Actually, inverses exist whenever a and p
have no common factors, but this is guaranteed for all non-zero a when p is prime.)

The multiplicative group of this field, denoted by (Z/pZ)∗, contains the elements 1,2, . . . , p−1 and
g is a primitive root of p precisely when g generates (in the sense of group theory) this group. So the fact
that prime numbers have primitive roots actually tells us something very interesting about the structure of
the group (Z/pZ)∗; it is a cyclic group, so it has the simplest possible structure. Primitive roots also have
applications to fast arithmetic modulo p, similar to the way logarithms can be used to turn multiplication
to addition over the reals [5].

The ACL2 formalization of this result follows the hand proof presented in [3]. The proof itself
builds on two significant forays into number theory in ACL2. First is Russinoff’s proof of quadratic
reciprocity, which also defined the foundational notions of divides, primep, and useful lemmas such
as that prime fields are integral domains (if ab = 0 then either a = 0 or b = 0), and an important lemma
due to Euclid (if p divides ab, then either p divides a or p divides b) [4, 7]. We also built on top of
Kestrel’s formalization of prime fields, which includes definitions for the various field operations and
their various arithmetic properties [6]. As this brief list of prior results indicates, many basic facts from
number theory have already been formalized in ACL2, but unfortunately the results are scattered in
several places in the community books. This is unfortunate, because number theory is a very practical
branch of mathematics, e.g., with applications to cryptography. One thing we learned from this project
is that it is time to collect these various results under a common branch of the community books, so that
future projects can more easily build on top of the foundations that have already been implemented.
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The rest of this paper is organized as follows. In Sect. 2, we present some of the basic mathematical
definitions in ACL2 of standard concepts from number (and group) theory, like the order of a group
element. These are actually useful formalizations that could be used in other projects, not just as part of
this effort. Then in Sect. 3 we discuss polynomial congruences, and in particular we prove that a special
family of polynomials have the greatest possible number of distinct roots. This seemingly unrelated fact
turns out to be a key technical lemma that is used in Sect. 4 to construct elements that have a desired
order. The proof of the main theorem follows from these constructions, and it is shown in Sect. 5. We
conclude the paper in Sect. 6 and give some ideas for future work.

2 Mathematical Background

In this section, we discuss some mathematical foundations that are needed to prove that all prime numbers
have primitive roots. The definitions and proofs in this section are very general and not solely for the
purpose of our desired theorem. In other words, these should be part of a global library of ACL2 books
formalizing number theory.

The first important concept is that of the order of an element of a group. If a ∈ (Z/pZ)∗, the order
of a, denoted as ord(a), is the least positive integer k such that ak ≡ 1 (mod p).

The notion of order does not appear to be well-defined, since it seems possible that ak 6≡ 1 (mod p)
for all positive integers k. But when p is prime, an important theorem of Fermat’s says that this cannot
be the case.

Theorem 1 (Fermat’s Little Theorem). If p is a prime number, and a∈ (Z/pZ)∗, then ap−1≡ 1 (mod p).

This theorem, formalized in ACL2 as part of [4, 7], immediately shows that ord(a) ≤ p− 1. We
used this to define order in ACL2. First, the function (all-powers a p) generates the list [a1 mod
p,a2 mod p, . . . ,ak mod p] such that k ≤ p− 1 and if 1 ≤ i < k, then ai mod p 6= 1. Clearly, the length
of (all-powers a p) is between 1 and p− 1, inclusive, and when the length is less than p− 1 the
last element must be equal to 1. Using Fermat’s Little Theorem, it is easy to show that even when the
length is exactly equal to p− 1, the last element is equal to 1. Then (order a p) is defined as (len
(all-powers a p)), and it follows that aord(a) ≡ 1 (mod p).

Another important theorem about order is that if n is a positive integer such that an (mod p) = 1 and
there does not exist a smaller positive integer m such that am (mod p) = 1, then in fact ord(a) = n. We
capture this theorem in ACL2 as

(defthmd smallest-pow-eq-1-is-order

(implies (and (fep a p)

(not (equal 0 a))

(primep p)

(posp n)

(equal (pow a n p) 1)

(not (exists-smaller-power-eq-1 a p n)))

(equal (order a p) n))

:hints ...)

We include the ACL2 source of that theorem here, only to familiarize the reader with the functions fep
which recognizes elements of the field Z/pZ, primep which recognizes primes, pow which performs
exponentiation in the field, and its friends add, mul, inv, etc., which perform the other arithmetic oper-
ations in the field—all of these were previously defined in the ACL2 Community Books.
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An important fact about order is that for any element a, ord(a) divides p− 1, which we will write
in the usual notation as ord(a) | p− 1. This follows because if ord(a) = n, then the list Ln = [a1 mod
p,a2 mod p, . . . ,an mod p] ends in 1, and 1 does not appear anywhere inside the list. But then an+k ≡
anak ≡ ak (mod n), so L2n = [a1 mod p,a2 mod p, . . . ,a2n mod p] is simply two copies of Ln; i.e., L2n =
app(Ln,Ln). That means that L2n ends in 1, and the only ones are an mod p and a2n mod p. This is easily
extended to any multiple of n, and since we know that ap−1 mod p = 1, it follows (almost) immediately
that p−1 must be a multiple of ord(a), i.e., ord(a) | p−1. This is actually a special case of Lagrange’s
theorem for groups, but specialized for (Z/pZ)∗.

Another fact about order that is important to our proof is that the order of an inverse is the same
as the order of the element. I.e., ord(a−1) = ord(a). We proved this equality by showing that both
inequalities hold, and we used Lagrange’s theorem to establish the inequalities. The end result in ACL2
is as follows

(defthmd order-inv

(implies (and (fep a p)

(not (equal 0 a))

(primep p))

(equal (order (inv a p) p)

(order a p)))

:hints ...)

We end this section by mentioning that the proof uses many facts about divides and the greatest
common divisor of two integers, formalized as divides and g-c-d in [4, 7]. And it also depends on
many facts about the arithmetic functions in Z/pZ, which were formalized in [6]. While we needed to
prove a handful of additional properties about many of these these functions, the existing formalizations
had already established most of the foundational results, so this was mostly a matter of engineering the
lemmas needed for our proof.

3 A Special Polynomial Congruence

In this section, we take an aside to consider polynomials modulo p. That is, we explore the roots of
polynomial congruences, such as

a0 +a1x+ · · ·+an−1xn−1 +anxn ≡ 0 (mod p).

The reason that polynomials pop up on a paper about prime numbers, is that polynomials can be used
as an alternative language to describe properties of congruences. For example, Fermat’s Little Theorem
can be restated by saying that the polynomial congruence

−1+ xp−1 ≡ 0 (mod p)

has exactly p−1 distinct roots in (Z/pZ)∗.
Polynomials in ACL2 were formalized in [2] (among possibly many others), but there are significant

differences between polynomials and polynomial congruences. For example, the polynomial x2 +2 has
no roots among the reals, but the similar polynomial congruence x2 + 2 does have a root in Z/11Z,
because when x = 3, x2 + 2 = 32 + 2 = 11 ≡ 0 (mod 11). So many of the properties of polynomials
could not be trivially transferred to polynomial congruences, and they had to be reproved from first
principles.
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One important lemma is that if x is a root of the product of polynomials poly1 and poly2, then
x must be a root of at least one of those polynomials. This result depends crucially on the fact that
(Z/pZ)∗ is an integral domain when p is prime; i.e., if ab ≡ 0 (mod p) then either a ≡ 0 (mod p) or
b ≡ 0 (mod p). This lemma has a (mostly) immediate corollary, that the number of distinct roots of
the product of poly1 and poly2 is at most the number of distinct roots of poly1 plus the number of
distinct roots of poly2. Note that all the roots must be in (Z/pZ)∗, so the number of distinct roots of
any polynomial is at most p−1. This also means that it is possible to find a root methodically, by testing
if 1 is a root, or 2 is a root, an so on. So if we know that a polynomial has a root, finding that root is
guaranteed.

As a special case, consider a linear polynomial of the form a0 +a1x, where a1 6≡ 0 (mod p). Then a
is a root of this polynomial congruence if and only if a =−a0/a1 mod p, or in ACL2

(defthm root-of-linear-pfield-polynomial

(implies (and (primep p)

(non-trivial-pfield-polynomial-p poly p)

(equal (len poly) 2)

(fep a p))

(equal (pfield-polynomial-root-p poly a p)

(equal a (neg (div (first poly)

(second poly)

p)

p))))

:hints ...)

In particular, since the arithmetic operations return a single value, this also shows that a non-trivial linear
polynomial has exactly one root, where by “non-trivial” we mean that a1 6≡ 0 (mod p).

Now consider a general polynomial P(x) = a0 + a1x+ · · ·+ an−1xn−1 + anxn with an 6≡ 0 (mod p).
Suppose that a is a root of this polynomial. Then using the long-division algorithm for polynomials, we
can factor P(x) into P(x) = (x− a)Q(x) where Q(x) = b0 + b1x+ · · ·+ bn−2xn−2 + bn−1xn−1, for some
suitable choice of bi.

(defthm eval-poly-with-root

(implies (and (integer-polynomial-p poly)

(primep p)

(integerp a)

(fep x p)

(pfield-polynomial-root-p poly a p))

(equal (eval-pfield-polynomial poly x p)

(mul (eval-pfield-polynomial

‘(,(- a) 1)

x p)

(eval-pfield-polynomial

(cdr (divide-polynomial-with-remainder-by-x+a

poly

(- a)))

x p)

p)))

:hints ...)

This also shows that if b is a root of P(x), then either b = a or b is a root of Q(x). In other words, the
number of distinct roots of P(x) is at most 1 more than the number of distinct roots of Q(x). If n = 1,
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we’ve already seen that P(x) has exactly one root in (Z/pZ)∗. So by induction, the number of roots of
P(x) is at most n.

(defthm num-roots-of-poly-upper-bound

(implies (and (primep p)

(non-trivial-pfield-polynomial-p poly p)

(<= 2 (len poly )))

(<= (pfield-polynomial-num-roots poly p)

(len (cdr poly ))))

:hints ...)

This is, of course, a familiar and expected result for polynomials over the reals, but it is somewhat
surprising over Z/pZ, since it is possible that P(a) 6= 0 but that P(a) ≡ 0 (mod p). I.e., it is possible
that a is a root of the congruence, but not of the polynomial over the reals. Nevertheless, the total number
of roots for the congruence is still bounded by n.

Now we introduce a special class of polynomials, which we call Fermat polynomials. The function
(fermat-poly n) constructs the polynomial −1+ xn. Now suppose that n = p− 1. From Fermat’s
Little Theorem, it follows that this polynomial has exactly n = p−1 roots.

(defthm num-roots-of-fermat-poly

(implies (primep p)

(equal (pfield-polynomial-num-roots (fermat-poly (1- p)) p)

(1- p)))

:hints ...)

Now, suppose that n is a composite that can be written as n = cd, and again consider the polynomial
−1+ xn. We observe that this polynomial can always be factored as

−1+ xn =−1+ xcd = (−1+ xd)(1+ xd + x2d + · · ·+ x(c−1)d). (1)

This result is easily proved on paper by expanding the right-hand side and matching up exponents. In
ACL2, this is a more technical proof that is really more about list manipulation. In particular, notice
that the second polynomial on the right-hand side consists of c−1 copies of the polynomial xd and that
multiplying is by xd (and taking into account the leading 1) results in c copies of xd with a leading 0
consed in front. Summing the negated polynomial then cancels all but the last copy of xd , so the result is
−1+ xcd . We found it convenient that reasoning about exponents was reduced to reasoning about cons
and append k times, at which ACL2 excels.

Looking at Eqn. 1, we see that the left-hand side has exactly n roots when n = p−1 since p is prime.
But the right-hand side has at most d+(c−1)d distinct roots. Since d+(c−1)d = d+cd−d = cd = n,
we conclude that both polynomials in the product of the right-hand side must have the maximum number
of distinct roots. In particular, the polynomial −1+ xd must have exactly d distinct roots. Recall that
the only thing special about d is that is divides n, so we have proved the following important technical
lemma:

(defthm num-roots-fermat-poly-divisor-implicit

(implies (and (posp d)

(primep p)

(divides d (1- p)))

(equal (pfield-polynomial-num-roots (fermat-poly d) p) d))

:hints ...)

We will use this lemma in the next section.
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4 Constructing Elements of Given Order in (Z/pZ)∗

In this section, we show how we can construct an element that has a desired order in (Z/pZ)∗, possibly
by using other elements with known smaller order.

For starters, suppose that a has order m and b has order n. What is the order of ab? In general, there’s
not much we can say; e.g., if b = a−1 then ab = 1 so its order is 1. But when m and n are relatively
prime, that is gcd(m,n) = 1, it turns out that the order of ab is equal to mn.

To see this, observe that (ab)mn ≡ 1 (mod p). This follows because

(ab)mn ≡ ((ab)m)n

≡ (ambm)n

≡ (1bm)n

≡ (bm)n

≡ bmn

≡ (bn)m

≡ 1m

≡ 1 (mod p).

As seen in Sect. 2, this implies that ord(ab) | mn, which means ord(ab) ≤ mn. That is, ord(ab) ≤
ord(a)ord(b).

Now, suppose that k is such that (ab)k ≡ 1 (mod p). It follows that ak ≡ b−k ≡ (b−1)k (mod p).
Raising both sides to the power n, we have that ank ≡ (b−1)nk. Since ord(b−1) = ord(b) = n, (b−1)nk ≡ 1
(mod p), so ank ≡ 1 (mod p) as well. This means that ord(ak) |m and ord(ak) | n, and since gcd(m,n) =
1 this means that the only possible value of ord(ak) is 1.

All that is to show that ak ≡ bk ≡ 1 (mod p). but that means that m | k and n | k. Again, since
gcd(m,n) = 1 this means that mn | k. The only constraint on k is that (ab)k ≡ 1 (mod p), so ord(ab) is
such a k. This means that ord(a)ord(b) | ord(ab), so ord(a)ord(b)≤ ord(ab). Combined with the earlier
inequality this shows that ord(ab) = ord(a)ord(b). In particular, given a and b with orders m and n that
are relatively prime, this shows that we can construct an element with order mn:

(defthm construct-product-order

(implies (and (primep p)

(fep a p)

(not (equal 0 a))

(fep b p)

(not (equal 0 b))

(relatively-primep (order a p) (order b p)))

(equal (order (mul a b p) p)

(* (order a p) (order b p))))

:hints ...)

We now show how to construct an element that has a different special order. In particular, we wish to
show that if p and q are primes and qk | n = p−1, then there is some element gqk of (Z/pZ)∗ with order
qk.

We define the function (number-of-powers x q) which returns the largest power k such that qk | x.
For instance, (number-of-powers 40 2) is 3, since 40 = 23 · 5. Now suppose that x divides a prime
power qn. Then in fact, x must be one of 1, q, q2, . . . , qn. In particular, x = qk where k is the number of
powers of q in x (and note that k ≤ n):
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(defthm factors-of-prime-powers

(implies (and (primep q)

(posp x)

(natp n)

(divides x (expt q n)))

(equal x (expt q (number-of-powers x q))))

:hints ...)

So suppose that x is such that xqn ≡ 1 (mod p), assuming for now that such an x exists. Then clearly
ord(x) | qn, which means that ord(qn) must be one of 1, q, q2, . . . , qn. Now suppose also that the order of
x is qi where i < n. Then xqi ≡ 1 (mod p), so xq j ≡ 1 (mod p) for any j > i. This follows because

xq j ≡ xqi+ j−i

≡ xqiq j−i

≡
(

xqi
)q j−i

≡ 1q j−i

≡ 1 (mod p)

In particular, if the order of x is qi where i < n, it must be the case that xqn−1 ≡ 1 (mod p).

(defthm order-is-prime-power-lemma

(implies (and (primep p)

(primep q)

(<= q p)

(fep a p)

(not (= 0 a))

(natp n)

(= (pow a (expt q n) p) 1)

(not (= (pow a (expt q (- n 1)) p) 1)))

(equal (order a p) (expt q n)))

:hints ...)

Now we address the question of whether such an x exists. I.e., is there an x such that both of these
equations hold:

xqn ≡ 1 (mod p) (2)

xqn−1 6≡ 1 (mod p) (3)

Note that for such an x, ord(x) is necessarily equal to qn.
This is where the theorems about polynomials proved in Sect. 3 come into play. Eqn. 2 holds pre-

cisely when x is a root of the polynomial congruence xqn−1≡ 0 (mod p), and the theorem from Sect. 3
guarantees that there are precisely qn distinct roots of this polynomial congruence, as long as qn | p−1.
So there are qn values of x that satisfy Eqn. 2. Similarly, there are qn−1 values of x that satisfy Eqn. 3,
again under the assumption that qn−1 | p− 1, which is guaranteed when qn | p− 1. Since qn > qn−1,
there must be at least one x that satisfies Eqn. 2 but not Eqn. 3. It follows, then that ord(x) = qn for this
particular x. Moreover, as observed earlier, the roots of any non-trivial polynomial congruence must be
one of 1, 2, . . . , p−1, so it is possible to find an appropriate value of x by searching.
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(defthm order-is-prime-power

(implies (and (primep p)

(primep q)

(natp n)

(divides (expt q n) (1- p)))

(and (fep (witness-with-order-q^n q n p) p)

(not (= 0 (witness-with-order-q^n q n p)))

(equal (order (witness-with-order-q^n q n p) p)

(expt q n))))

:hints ...)

Using the two theorems proved in this section, we will show in the next how to find an element with
order p−1, i.e., a primitive root of p.

5 A Primitive Root of p

Using the results proved in Sect. 4, it is straightforward to prove that all prime numbers have primitive
roots. The typical pen-and-paper proof goes like this. Suppose that p is an odd prime. (If p = 2, it is
obvious that 1 is a primitive root.) Factor the number p−1 as a product of prime powers, as in

p−1 = q1
k1 ·q2

k2 · · · · ·qm
km .

Now, for each term qi
ki , there is an element ci of order qi

ki . Note that all the qi are primes distinct from
one another, so the gcd of any qi

ki and any product of other q j
k j must be 1. So the ci are numbers of order

qi
ki which are relatively prime. So c = c1 · c2 · · · · · cm must have order q1

k1 ·q2
k2 · · · · ·qm

km = p−1. Thus
c is a primitive root of p.

We could have followed this approach in ACL2, and in fact prime factorization has been formalized
in ACL2 and NQTHM numerous times, e.g., in [1]. But this turned out not to be very helpful for two
reasons. First, the formalization in [1] uses a different (albeit equivalent) definition of “prime.” This is a
common situation in the ACL2 formalizations of number theory, and it is something that we would like to
see addressed. Second, the result about primitive roots does not depend on the full Fundamental Theorem
of Arithmetic; i.e., what we need is that the number p−1 can be decomposed into prime powers, but we
do not need that the decomposition is unique. Naturally, the uniqueness property is the hardest part of
the proof. So simply proving a weak version of prime factorization would be easy and effective for our
purposes.

In fact, it’s possible to decompose p−1 into powers of primes and compute the primitive root c at the
same time. The first step is to define the function (primitive-root-aux k p) that finds an element
of order k:

(defun primitive-root-aux (k p)

(if (or (zp k) (= 1 k))

1

(let* ((q (least-divisor 2 k))

(n (number-of-powers k q))

(k1 (/ k (expt q n))))

(mul (witness-with-order-q^n q n p)

(primitive-root-aux k1 p)

p))))
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The difficult part is helping ACL2 admit this function by proving that it always terminates. The function
least-divisor, defined in [4, 7], finds the smallest divisor (starting at 2) of k. For k ≥ 2, it is shown
in [4, 7] that this number is always a prime less than or equal to k. Then the function number-of-powers
finds the corresponding exponent in the prime decomposition of k. Using those facts, we proved that k/qn

is a natural number that is smaller than k, thus proving the termination of the function.
By inspection, it is easy to see that this function does return the primitive root c described in the hand

proof. We proved that in ACL2 using an induction suggested by the function primitive-root-aux to
prove the following key theorem:

(defthm primes-have-primitive-roots-aux

(implies (and (primep p)

(natp k)

(divides k (1- p)))

(equal (order (primitive-root-aux k p) p)

k))

:hints ...)

In order for this to work, we had to prove a number of technical lemmas. For starters, since we’re using
induction as suggested by primitive-root-aux we have to show that k/qn is a natural that divides
p− 1 whenever k is a natural that divides p− 1. And we also had to show that the two terms mul-
tiplied in primitive-root-aux satisfy the conditions of the theorems construct-product-order

and order-is-prime-power that are used to create the element of order k. The most interesting are

• the functions return elements in the multiplicative group (Z/pZ)∗,
• in particular the result of those operations is never 0,

• the number k/qn divides p−1 if k divides p−1,

• and the gcd of qn and k/qn is 1.

Once that is done, the primitive root of p can be defined and shown to be a primitive root as follows:

(defund primitive-root (p)

(primitive-root-aux (1- p) p))

(defthm primes-have-primitive-roots

(implies (primep p)

(equal (order (primitive-root p) p)

(1- p)))

:hints ...)

6 Conclusion

In this paper, we presented a proof that all prime numbers have at least one primitive root. In fact, the
number of primitive roots of p can be shown to be φ(p− 1) where φ is Euler’s totient function (the
number of positive integers up to n that are relatively prime to n). Proving that would be a nice extension
to this work that could happen in the future.

The proof relied on prior work on number theory, but our experience suggests that the prior work is
scattered across many directories in the community books. Moreover, many foundational results needed
to be proved to complement the existing foundations. This reflects the fact that the development of
number theory in ACL2 has been driven by specific results, so the foundations developed in each project
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are tailored to support the needs of those specific projects. Given the importance of number theory in
areas such as cryptography, as well as the suitability of ACL2 to reason effectively about this branch
of mathematics, we think is would be a great time to consolidate these formalizations in ACL2 under
a common location in the community books. Recent discussions in the ACL2 mailing list suggest that
there is enough momentum to carry out this project.
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