
Rob Sumners, Cuong Chau (Eds.): 17th ACL2 Workshop (ACL2 2022)

EPTCS 359, 2022, pp. 33–47, doi:10.4204/EPTCS.359.5

© Greve, Davis & Humphrey

This work is licensed under the

Creative Commons Attribution License.

A Mechanized Proof of Bounded Convergence Time

for the Distributed Perimeter Surveillance System (DPSS)

Algorithm A

David Greve

Collins Aerospace

Jennifer Davis

Collins Aerospace

Laura Humphrey

Air Force Research Laboratory

The decentralized perimeter surveillance system (DPSS) seeks to provide a decentralized protocol

for evenly distributing surveillance of a perimeter over time across an ensemble of unmanned aerial

vehicles (UAVs) whose members may communicate only when in close proximity to each other. The

protocol must also converge to an even distribution of the perimeter in bounded time. Two versions

of the DPSS protocol presented in [5] seem to converge in bounded time but only informal proofs

and arguments are given. A later application of model checking to these protocols found an error in

one of the key lemmas, invalidating the informal proof for one and casting doubt on the other [2].

Therefore, a new hand proof of the convergence time for the simpler version of the DPSS protocol

or algorithm, Algorithm A or DPSS-A, was developed by Jeremy Avigad and Floris van Doorn [1].

This paper describes a mechanization of that hand proof in the logic of ACL2 and discusses three

specific ACL2 utilities that proved useful for expressing and reasoning about the DPSS model.

1 Introduction

The decentralized perimeter surveillance system (DPSS) seeks to provide a decentralized protocol for

evenly distributing surveillance of a perimeter over time across an ensemble of unmanned aerial vehicles

(UAVs) whose members may communicate only when in close proximity with each other. The protocol

must also converge to an even distribution of the perimeter in bounded time. The original DPSS paper

presents two protocols or algorithms for solving this problem: Algorithm A and Algorithm B. Algorithm

B is the more general algorithm, supporting perimeters whose lengths may change and ensembles of

UAVs that may add or lose members over time. Algorithm A is much simpler, assuming that the perime-

ter and the number of UAVs is fixed. This work focuses almost exclusively on DPSS Algorithm-A, which

we refer to as DPSS-A.

In general, designing protocols for multi-agent interaction that achieve the desired behavior is a chal-

lenging and error-prone process. A common practice, as in the original work on DPSS, is to manually

develop non-mechanized proofs of protocol correctness that rely on human intuition and require signif-

icant effort to develop. However, even given a high level of effort, such proofs can have mistakes that

may go unnoticed after peer review, modeling and simulation, and testing, motivating the need for proof

mechanization.

Indeed, previous efforts to formally verify bounds on DPSS convergence have already realized the

benefits of proof mechanization. In [2], Davis and Humphrey mechanized proofs of convergence for

concrete instances of the DPSS algorithm using the AGREE model checker. The original conjecture was

published nearly ten years prior, had received close to 200 citations, and provided a compelling “proof” of

correctness backed by extensive simulation results. Mechanized analysis by the model checker, however,

found a counterexample to a key lemma that demonstrated that the earlier “proof” of correctness was, in

fact, incorrect. The counterexample revealed a key intuition that was missing and identified a corner

http://dx.doi.org/10.4204/EPTCS.359.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


34 DPSS-A Convergence

case in an assumption about the initial conditions that invalidated the proof of Algorithm B, which

also cast doubt on the correctness of the proof of Algorithm A. Overall, the model checking results

suggest that both algorithms converge in bounded time. However, while model checking can analyze

individual instantiations of the system, i.e. ensembles with a specified number of UAVs, it cannot verify

convergence times for an arbitrary number of UAVs. For this we need the expressiveness of a theorem

prover.

This report focuses on efforts to mechanize, in the logic of the ACL2 theorem prover, a new hand

proof developed by Jeremy Avigad and Floris van Doorn that bounds the convergence time of DPSS-A

for an arbitrary number of UAVs. Our mechanized proof provides assurance that there are no unfounded

intuitions in the hand proof and provides confidence that we have captured and addressed all essential

assumptions and corner cases related to the DPSS algorithm. Furthermore, for each of the two essential

invariants employed in the hand proof, we provide concise, useful specifications relative to a concrete

formalization of the DPSS-A algorithm. Finally, we discuss three ACL2 utilities that proved useful in

formalizing and reasoning about our DPSS model.

2 DPSS Overview

The problem underlying DPSS is as follows. Suppose you have a perimeter mapped to a line segment and

an ensemble of UAVs that surveil the perimeter as they move along it, each moving at the same uniform

speed. Suppose that the perimeter endpoints and members of the UAV ensemble are fixed. Suppose

UAVs communicate with each other if and only if they are in close proximity, reduced to the extreme

case of being co-located (modulo altitude deconfliction). Finally, suppose UAVs are able to detect the

perimeter endpoints. Define the optimal surveillance pattern as one in which the perimeter is divided

into segments of equal length, with one UAV surveilling each segment, and with each UAV arriving

at the endpoint of its segment at the same time as its neighbor in a synchronized and periodic manner.

Then the question is whether there is a decentralized protocol whose steady-state behavior converges to

this optimal surveillance pattern in bounded time. The motivation for bounded time convergence is to

make the system robust to changes in the perimeter and UAV ensemble. That is, if the protocol can be

guaranteed to re-converge within a relatively short time bound for a fixed perimeter and UAV ensemble,

and if changes to the perimeter and UAV ensemble are relatively infrequent, then the system will often

be in the optimal surveillance pattern.

The original work on DPSS [5] proposes a general protocol or algorithm to solve this problem.

Let us refer to the endpoints of the perimeter as left and right. Let us assign sequentially increasing

IDs to the UAVs starting with the leftmost UAV, assuming UAVs do not start as co-located or there

is some mechanism to break ties if they do. Recall the assumptions that UAVs all move at the same

uniform speed, communicate if and only if they are co-located, and can detect when they have reached

the perimeter endpoints. In the proposed algorithm, each UAV has set of left and right coordination

variables whose values reflect the UAV’s current beliefs about how far it is to the perimeter’s left and

right endpoints and how many UAVs are to its left and right. Initially these may be incorrect. However,

once a UAV reaches the left perimeter endpoint, it knows its distance to the left endpoint is 0 and the

number of UAVs to its left is also 0, and it updates its left coordination variables to the correct values and

changes direction, updating its distance to the perimeter endpoint as it moves. An analogous situation

holds for the right. When two UAVs become co-located or meet, they exchange information, and the

left UAV updates its right coordination variables based on those of the right UAV and vice versa. After

meeting, the two UAVs compute where they believe the shared boundary of their segments is, escort



Greve, Davis & Humphrey 35

each other to that point if they are not already there, then separate and move along their own segments.

Note that the only conditions under which a UAV is allowed to change direction are those previously

mentioned: when it reaches a perimeter endpoint, when it starts escorting another UAV to their shared

segment boundary, or when it separates from its neighbor at a shared segment boundary.

Intuitively, the escort part of the protocol ensures that UAVs remain sequentially ordered and arrive

at their shared segment boundaries at the same time, and information exchanges about coordination

variables eventually propagate correct values for these variables across all UAVs. From an arbitrary initial

state, the behavior of this algorithm may appear chaotic, with some UAVs traversing large portions of the

perimeter before interacting with another UAV. As time progresses, however, regular patterns begin to

emerge. The claim is that after a finite number of information exchanges and escorts, the UAVs achieve

consensus on correct coordination variable values and also eventually achieve synchronous and periodic

arrival at their shared segment boundaries, causing each to be confined to its own segment. In other

words, the UAVs achieve the optimal surveillance pattern in bounded time.

For analysis and proof purposes, the original work on DPSS distinguishes between two phases of

the protocol or algorithm. Algorithm A assumes that UAVs start with correct coordination variables,

whereas Algorithm B does not. In other words, Algorithm B is the general algorithm, and it reduces to

Algorithm A once all UAVs have correct values for their coordination variable. This paper focuses on

Algorithm A, which we refer to as DPSS-A, and which is shown in Figure 1.

Algorithm 1 DPSS-A

if UAV i meets with neighbor j then

Travel with neighbor j to shared segment position

Set direction to monitor own segment

else if reached perimeter endpoint then

Reverse direction

else

Continue in current direction

end if

Note that in the original paper, Algorithm A includes a vestigial step in which UAVs exchange in-

formation on coordination variables, even though all UAVs are assumed to already agree on the correct

values. For the purpose of establishing the convergence of DPSS-A, therefore, the exchange of coordi-

nation variables is irrelevant. Consequently, we do not include coordination variables in our UAV model,

and the code for the coordination variable consensus is omitted from our formalization of the DPSS-A

algorithm.

2.1 Fundamental Data Structures

The base DPSS-A model provides the mathematical foundation upon which the Jeremy Avigad and

Floris van Doorn (AvD) proof is built. We endeavored to make the base model as simple as possible

while still being able to specify the relevant behaviors of DPSS-A. Our model describes a perimeter of

a fixed length and a UAV ensemble consisting of a fixed but arbitrary number UAVs on that perimeter.

In our model, constrained functions are used as theory parameters. This approach allows us to avoid

explicitly threading the global model parameters through every relevant function. ACL2 supports func-

tional instantiation, which would allow the resulting theorems to be instantiated for specific values of the



36 DPSS-A Convergence

theory parameters. The length of the perimeter is modeled using a nullary function (P) constrained to

return a non-zero real (rational) value. The number of UAVs is also represented as a nullary function (N)

that is constrained to be an integer greater than or equal to 1. The length of each segment is defined such

that (S) = (P)/(N). Time and UAV velocity are normalized so that a UAV may traverse one segment

length in one unit of time. The value of T (in the original paper) is the time required for a UAV to traverse

the entire perimeter. Relative to our model, therefore, T = (N).

A well-formed UAV ensemble is modeled as a list that contains (N) UAVs. Each UAV has a unique

identifier which is a natural number in the range 0 to (N)-1 inclusive as well as a position (on the

perimeter) and a direction of travel. The UAV identifiers increase sequentially from left to right. The

UAVs are assumed to be ordered on the perimeter such that if (i < j) then the location of UAV i is

always less than or equal to that of UAV j. A well-formed UAV ensemble is recognized by the predicate

(wf-ensemble ens) which appears as a hypothesis in many of our proofs. Finally, we say that the

segment of the perimeter assigned to UAV i starts at location i∗ (S) and ends at (i+1)∗ (S).

2.2 DPSS-A Event Based Simulator

We model the behavior of the UAV ensemble using an event-based simulation of the DPSS algorithm.

In this simulation, time advances continuously by stepping from one event to the next, though reasoning

about the state of the system between events is supported. All events in the simulation correspond to

changes in at least one UAV’s direction as described by the DPSS algorithm, which for brevity we will

refer to as flips. After an event, consisting of one or more UAV flips, the location of all the UAVs are

updated based on their direction of motion and the amount of continuous time before the next event. The

top-level DPSS-A simulator (step-time dt ens) allows this process to be repeated for an arbitrary

length of time.

The function (event-for-uav i ens) takes the index of a UAV and an ensemble and returns true

if the UAV is currently experiencing an event. The function (flip-on-events ens) flips the direction

of any UAV in the ensemble currently experiencing an event. An important property of flip-on-events

is that, once all of the UAVs with events have been flipped, there won’t be any remaining events at

that instance in time. This property relies on an appropriate definition of event-for-uav. Note that

the DPSS-A model assumes UAVs can change direction instantaneously, as assumed in [5]. This is

convenient in that there is no need to budget for turning UAVs in the convergence time bound. One

fall-out of this decision, however, is that a UAV’s direction is discontinuous during events. For example,

the statement “if we have an event and the UAV is moving left” can be both true and false at the same

instant in time. This impacts the formalization of certain properties. It also introduces corner cases that

we might otherwise intuitively dismiss, but which must be addressed in the proof in order to ensure that

we are consistent with the assumptions we are making about the behavior of the system.

The predicate (impending-impact-event-for-uav i ens) recognizes the conditions under which

the time to the next impact event for the given UAV can be computed given only the state of its im-

mediate neighbors and, for the outermost UAVs, the perimeter endpoints. If no impact event is im-

pending, then the UAV must be chasing one of its neighbors and it won’t actually have an event until

after that neighbor experiences an event and changes direction. An impact event is defined as either

an actual event-for-uav or an escort event. On an actual event-for-uav, UAV i will change di-

rections. For an escort event, UAV i will not change directions, but one of its neighbors will (and

UAV i will escort it back to their shared segment boundary). Note that if an impact event is impend-

ing for UAV i, then an actual event is impending for some UAV, either UAV i or one of its neighbors.

The function (min-time-to-impact-for-uav i ens) computes the minimum time before an im-



Greve, Davis & Humphrey 37

pact might take place for the i’th UAV based only on the state of its immediate neighbors and the

endpoints. If an impact event is impending for UAV i, then event-for-uav will be true in exactly

min-time-to-impact-for-uav time increments.

The function (always-smallest-min-time-to-impending-impact ens) takes an ensemble

and returns the smallest rational time increment that will result in an actual event for some UAV. An

early DPSS model used the smallest min-time-to-impact-for-uav regardless of whether an actual

event was impending for that UAV. While this ensured that the time increment was less than or equal to

any time to impact, it did not ensure useful progress. This, in turn, complicated subsequent high-level

proofs. By requiring that the simulator advance to the next actual event we complicated some low-level

proofs (for instance, we were required to prove that, in any ensemble configuration, there is always at

least one UAV with an impending event) but we ultimately simplified the high-level proofs which, in our

estimation, was a good trade-off.

The function (update-location-all dt ens) takes a time increment and an ensemble and re-

turns the ensemble state after advancing time by the specified time increment. The function (next-step

dt ens) takes a requested time increment and an ensemble. First it applies flip-on-events. It then

compares the requested time increment with the always-smallest-min-time-to-impending-impact

and performs an update-location-allwith the lesser of the two, returning the difference between the

requested time increment and the applied time increment along with the new ensemble.

The top-level simulator function is (step-time dt ens). It takes a requested time increment and

an ensemble. If the requested time increment is zero, it returns the ensemble. If it is non-zero, it calls

next-step to compute a new (smaller) time increment and an updated ensemble state and calls itself

recursively. An important property of step-time is that stepping time by A and then stepping time by

B is the same as stepping time by A+B.

3 AvD Proof

In [1] Jeremy Avigad and Floris van Doorn (AvD) provide a hand proof of bounded convergence time

for DPSS-A. The formalism used in the AvD proof differs from our base model primarily in the fact that

the AvD UAV index ranges between 1 and N inclusive (as in the original paper) and the UAV velocity is

normalized to cover the entire perimeter in one unit of time. The convergence time for Algorithm A is

expressed in the AvD paper as 2−1/N units of time, improving on the previously reported convergence

time bound of 2, where the improvement can be traced to a more precise notion of convergence. Our

formalism defines T as the time required for a UAV to traverse the entire perimeter. Thus, we express

the final bound on convergence time as 2∗T −1.

The AvD proof employs 7 lemmas that hinge on two fundamental concepts: have met and synchro-

nized. The definition of these concepts, as they appear in the hand proof, are:

Have Met “We say that two [UAVs] have met by time t if either they started together, moving in the

same direction, or they have been involved in a meet or bounce event.”

Synchronized “A [UAV] is left/right synchronized at time t if beyond that point it never goes to the

left/right of its left/right [segment] endpoint.”

Essentially the claims are that a) all UAVs will have met after time T and b) once all of the UAVs

have met, they will all be synchronized within T − 1 time increments and c) the synchronization of the

entire ensemble is equivalent to convergence of the algorithm. The proof is presented in terms of the

more refined concepts of have met (left) and left synchronized and an argument is then made that the

right version of the proof follows by symmetry.



38 DPSS-A Convergence

One important contribution of our effort was the development of precise formalizations of the con-

cepts of have met and synchronized that are expressed relative to a concrete model of the DPSS algorithm

and formulated in a manner amenable to proof mechanization. Expressing these concepts relative to a

concrete model forced us to consider subtle corner cases. For example, the fact that a UAV may have

two different directions in the same instant of time required some care when formulating predicates that

remained invariant when UAVs changed direction. Such corner cases would be easy to overlook outside

the context of a mechanized proof.

Regarding mechanization, it is easier to reason about concepts that can be expressed locally in terms

of both time and space. In terms of time, we are looking for predicates that take a current state and

recognize interesting behaviors, hopefully enabling us to then make predictions about the behavior of

future states. In terms of space, we want predicates that speak of UAVs in isolation or, when necessary,

the relationships between a given UAV and a finite number of neighbors (i.e., the adjacent UAVs). The

impending-impact-event-for-uav predicate, for example, is expressed only in terms of the given

UAV and its neighbors and the endpoints for the outermost UAVs.

Early attempts to formalize have met and synchronized, however, appealed to either a history of DPSS

execution steps or an extrapolation of execution steps into the future or were expressed non-locally in

terms of the states of an arbitrary number of adjacent UAVs. While not incorrect, such formalisms a)

tend to draw heavily on human intuition about system behavior and b) are often difficult to work with

in a mechanized proof. After extended discussions with Avigad and van Doorn we were finally able to

articulate refined notions of these concepts that a) capture the author’s intent b) offer simple, localizable

predicates over an arbitrary ensemble of UAVs and c) are provably invariant relative to the DPSS-A

algorithm. Our formalization of the left version of have met is shown below1.

(def::un have-met-Left-p (i ens)

(declare (xargs :fty ((uav-id uav-list) bool)))

(let ((uavi (ith-uav i ens))

(right (ith-uav (+ i 1) ens)))

(implies

(and

(< i (+ -1 (N)))

(< (UAV->direction uavi) 0))

(and

(implies

(< (UAV-right-boundary uavi) (UAV->location uavi))

(and

(< (UAV->direction right) 0)

(equal (UAV->location uavi) (UAV->location right))))

(implies

(and (<= (UAV->location uavi) (UAV-right-boundary uavi))

(< (UAV-left-boundary uavi) (UAV->location uavi)))

(and

(implies

(< (UAV->location uavi) (UAV-right-boundary uavi))

(< 0 (UAV->direction right)))

1The def::un macro is simply a defun wrapper provided by the the coi libraries that supports the specification of function

signatures via the xargs keyword :fty and is available via (include-book "coi/util/defun" :dir :system)



Greve, Davis & Humphrey 39

(equal (average (UAV->location uavi) (UAV->location right))

(UAV-right-boundary uavi))))

))))

In English this says that the rightmost UAV has met (left), as has any UAV moving to the right. For

any other UAV that is moving to the left, if it is right of its rightmost segment boundary, the UAV to

its right is escorting it back to their shared boundary. If the UAV is in its segment but not on the left

boundary, then the UAV is the same distance from its right segment boundary as the UAV to its right and,

if it is left of its right boundary, then the UAV is moving to the right.

Our formalization of the left version of synchronized is shown below.

(def::un left-synchronized-p (j ens)

(declare (xargs :fty ((uav-id uav-list) bool)))

(implies

(< 0 j)

(and

(<= (UAV-left-boundary (ith-uav j ens))

(average (UAV->location (ith-uav (+ -1 j) ens))

(UAV->location (ith-uav j ens))))

(implies

(and

(< (UAV->direction (ith-uav j ens)) 0)

(not (equal (UAV->location (ith-uav j ens))

(UAV->location (ith-uav (+ -1 j) ens)))))

(< 0 (UAV->direction (ith-uav (+ -1 j) ens)))))))

In English this says that the leftmost UAV is left synchronized and, for any other UAV, the average of

its location with its left neighbor’s location is not less than its left segment boundary. Additionally, if it

is moving left and it is not co-incident with its left neighbor, then its left neighbor is moving right.

3.1 Proof Overview

After defining have met (left) and left synchronized we establish that these predicates are invariant over

step-time. While the invariance of have met (left) is straightforward, the invariance of left synchronized

depends on have met (left). We prove that, for a given UAV, have met (left) will be true after that UAV has

experienced an event. We then establish that every UAV will experience an event within a time increment

of T . Consequently, after T time increments, all UAVs will have met (left). We then show that, if the

i’th UAV’s left neighbor is left synchronized, the i’th UAV will be left synchronized in 1 time increment

or less. Armed with this fact, and the fact the leftmost UAV is always left synchronized, we prove by

induction that all of the UAVs in the ensemble will be left synchronized within (N)−1 time increments.

Combining the time to have met (left) with the time to left synchronized gives us 2 ∗ T − 1 steps to

left synchronization. The proof for have met (right) and right synchronized follows from a symmetric

argument. Once we know that a UAV satisfies both have met and synchronized (both left and right), we

can show that its behavior will be forever periodic, establishing the convergence of the algorithm.

3.2 Top-Level Theorem

The top-level convergence theorem asserts that DPSS-A converges after 2∗T −1 time increments. Recall

that the optimal surveillance pattern requires that each UAV remain in its own segment. This follows



40 DPSS-A Convergence

almost immediately from the left and right synchronized predicates. The optimal pattern also requires

that a UAV arrive at its segment boundary at the same time as its neighbor (modulo perimeter endpoints).

This follows from the synchronization predicates and the fact that UAVs can only turn around when

they meet other UAVs (or reach a perimeter endpoint) and all UAVs travel at the same uniform speed.

Our top-level theorem combines the concepts of bounded range of motion and of synchronicity into a

statement about the periodicity of an arbitrary UAV. It states that, following convergence, each UAV will

forever return to the same location in space every 2 time increments (since time is normalized so that

one time increment is the amount of time it takes to traverse a segment once). The following predicate

captures this notion of convergence, where one is a normalized time increment.

(defun-sk dpss-location-convergence (ens)

(forall (i)

(equal (UAV->location (ith-uav i (step-time (* 2 (one)) ens)))

(UAV->location (ith-uav i ens)))))

Our top-level theorem says that, after 2∗T −1 time increments, the behavior of the ensemble satis-

fies our convergence predicate, where the wf-ensemble hypothesis captures our notion of a well-formed

UAV ensemble, (e.g., UAVs are sequentially ordered and on the perimeter). We use (TEE) in our for-

malization because T is a reserved symbol in the ACL2 package.

(defthm dpss-location-convergence-after-2T-1

(implies

(and

(wf-ensemble ens)

(step-time-always-terminates))

(dpss-location-convergence (step-time (- (* 2 (TEE)) (ONE)) ens)))

:hints (("Goal" :in-theory ’(dpss-location-convergence-after-2T-1-helper))))

The DPSS-A formalism consists of about 11K lines of ACL2 source code and the complete proof of

convergence requires about 30 minutes on a standard laptop.

4 ACL2 Proof Utilities

The mechanization of the DPSS-A convergence proof was relatively straightforward. Every large proof

effort, however, stresses existing proof infrastructure. Fortunately, ACL2 offers a number user pro-

grammable techniques for tailoring and extending its automation to address challenges in new domains.

Here we discuss three specific ACL2 utilities, def::ung, pattern::hint, and def::linear, that

proved useful for specifying and reasoning about the DPSS model. While the def::ung facility has

been described before in [4], the pattern::hint and def::linear utility are unique contributions of

this work.

4.1 def::ung

ACL2’s definitional principle requires a proof of termination for all recursive functions. Note that the

top-level DPSS-A simulator step-time is a recursive function that steps the DPSS system forward by

a specified quantity of time by taking some number of smaller steps, each of which advances the system

from one event to the next. Technically, however, the time between events could be arbitrarily small. In



Greve, Davis & Humphrey 41

other words: it could take an infinite number of events to consume any given finite amount of time. This

observation highlights a challenge in proving the termination of the step-time function.

One might argue that this scenario can’t happen. While some events may happen arbitrarily close

to one another, it would be impossible to have more than a finite number of events in an arbitrarily

small quantity of time. For example, if all the UAVs were clustered together, very close, on one end

of the perimeter, it could result in a sequence of vanishingly small steps. However, the ensemble will

eventually end up going in the other direction, toward the other end of the perimeter, resulting a series

much longer steps between events. Since there are a finite number of UAVs all traveling at the same

uniform speed and only able to turn around at a perimeter endpoint, when meeting a neighbor, or when

ending an escort, we would expect this to happen after no more than a finite number of small events,

likely bounded by the number of UAVs (N).

Based on the above argument, we believe that there is a proof that step-time always terminates.

However, the proof is likely to be ugly and time consuming and it is unlikely that it will reveal anything

of interest about the DPSS algorithm or its convergence bound. Consequently, it is unlikely that this

proof would be of interest to anyone studying DPSS. In some sense, the need for this proof is simply an

artifact of the way we chose to model the behavior of the system.

Fortunately, it is possible to delay termination proofs for recursive functions by admitting them using

the def::ung macro [4]. This macro enables the admission of partial recursive functions (recursive

functions that may not terminate on all inputs) by extending the proposed bodies of such functions with

an additional domain check. The domain check is a predicate which, if true, ensures that the function

terminates. If the domain check fails, the modified function returns a default value. Otherwise, the

body of the proposed recursive function is evaluated. Under the assumption that the function always

terminates (the domain check is always true), the function admitted by def::ung is exactly the same

as the proposed recursive function. Better yet, the induction scheme it suggests is also the same! This

means that any property that we might expect to prove about the proposed recursive function can also

be proved about the function admitted by def::ung. Finally, we can formalize our assumption that

the function always terminates by simply defining a universally quantified version of the domain check

predicate generated by def::ung.

Currently the assumption that step-time-always-terminates appears as an explicit hypothesis

in proofs about its behavior, including the final proof of convergence. Of course, given sufficient interest

and resources, a proper measure for step-time could be developed and used to dispatch this assumption,

further strengthening our results. In the meantime, however, it has been useful to have a means of soundly

postponing the termination proof so that we could focus our efforts on the aspects of the proof of most

interest to the DPSS community.

4.2 pattern::hint

The ACL2’s proof philosophy emphasizes automation. From induction to rewriting, forward-chaining,

and linear reasoning, ACL2 provides automated support for proof steps that must be performed manually

in many other theorem proving systems. Some reasoning steps, however, are difficult to automate, even

given ACL2’s diverse set of capabilities. Fortunately, even when explicit user hints are necessary, ACL2’s

computed hint facility provides a mechanism to automate that as well.

Our DPSS model contains several lemmas and complex, quantified formulae that can’t be expressed

efficiently as rewrite, linear, or forward-chaining rules. Some properties involve quantified relations over

more than one UAV. Attempting to express the consequences of such properties would, at best, involve

expensive free variable matching. Making use of these lemmas, therefore, required us to instantiate them



42 DPSS-A Convergence

by hand. But the appropriate instantiations were often unwieldy, difficult to predict, time-consuming to

formulate, and, of course, fragile and sensitive to change.

To address this issue, we developed the pattern::hint facility. This facility extends ACL2’s com-

puted hints with a pattern matching expression language that is evaluated against sub-goals. For each

pattern match found, the resulting bindings are used to instantiate hints that are passed to the theorem

prover[3]. The bindings are then cached to avoid generating duplicate hints and a computed hint re-

placement allows the process to continue to subsequent sub-goals. Here is a simple example of a pattern

match hint:

:hints ((pattern::hint (<= x y) :use ((:instance helpful-lemma (a x) (b y)))))

This hint will search each sub-goal for instances of (<= x y) (yes, even though <= is a macro) and,

for each such instance, will generate an instance of helpful-lemma with a bound to x and b bound to

y. Evaluating this pattern hint against the following sub-goal:

(implies (and (< (foo x) 7) (<= x (foo x))) (< (foo a) (foo 7)))

Would result in a hint with two instances of helpful-lemma:

:use ((:instance helpful-lemma (a x) (b (foo x)))

(:instance helpful-lemma (a (foo 7)) (b (foo a))))

The pattern::hint framework helps to streamline and automate the process of computing hints

as a function of the goal. In addition to :use hints, pattern hints also support lemma restrictions, case

splitting, function expansion, and theory manipulation. The framework features support for:

1. Expressing patterns as untranslated terms, i.e., users don’t need to worry about quoting constants

or translating macros.

2. Effectively matching against terms in the printed sub-goals (not the clause), i.e., the logical sense

of the pattern matches that of the printed sub-goals, not the negated terms found in translated

clauses.

3. A variety of useful, composable pattern matching primitives.

4. Instantiating hints with matched terms.

5. Defining reusable, parameterized pattern functions and calling them by name.

6. Defining and invoking reusable pattern hints by name.

The following table provides a notional grammar for the supported pattern expressions:

expr Behavior

(:and . expr-list) Return the intersection of the bindings com-

puted for expr-list, i.e., the returned bindings

reflect a match for every element of expr-list.

(:or . expr-list) Return the union of the bindings computed for

expr-list, i.e., the returned bindings reflect a

match for at least one element of expr-list.

(:first . expr-list) Return the first binding found for expr-list.



Greve, Davis & Humphrey 43

(:match term expr) Instantiate term and pattern match it against

expr.

(:either term) Match either true or negated versions of term

in the sub-goal.

(:term term) Match term against any sub-term of the sub-

goal.

(:commutes expr symbol-alist) Match the expression and then treat the pairs

of symbols in symbol-alist as commuting vari-

ables and compute a binding that reflects every

possible commutation.

(:replicate expr symbol-alist) Match the expression and then compute a

Cartesian product binding for each pair of sym-

bols in symbol-alist.

(:not expr) If expr does not match and produce a binding,

continue.

(:If expr expr expr) If the first pattern matches, continue with the

second, else evaluate the third.

(:implies expr expr) If the first pattern matches, continue with the

second else fail.

(:call (fn . term-list) symbol-list) Instantiate each term in term-list from the cur-

rent binding, call the specified pattern function,

and bind each symbol in symbol-list to the re-

turned values.

(:syntaxp term) Instantiate and evaluate the lisp term. If not nil,

continue.

(:equal . term-list) If all instantiated terms are syntactically equal,

continue.

(:bind-free term symbol-list) Instantiate and evaluate the lisp term. Bind

each symbol in symbol-list to the values re-

turned. Technically, term is expected to pro-

duce a list of bindings.

(:bind . term-alist) Bind each symbol to its associated instantiated

term. (May overwrite existing bindings.)

(:literally . symbol-list) Bind each symbol in the list to it’s literal self.

(:keep . symbol-list) Filter the current binding, keep only the sym-

bols in symbol-list.

(:check term) Instantiate term and call the simplifier. If term

simplifies to true, continue.

(:pass) Continue.

term Instantiate term, treat it as a pattern, and match

it against top-level terms in the sub-goal.

Some unique features of the pattern language include conditional matching and meta-function sup-



44 DPSS-A Convergence

port. The conditional operators supported by the language include: (:not x), (:if a b c), and

(:implies x y). When we speak of conditions what we really mean is: did we find a match to the

pattern? The (:not x) directive says, essentially, continue if no match was found. The (:if x y z)

directive says, if x matches, then proceed matching with y, else proceed matching with z. The pattern

language also supports the (:syntaxp ) and (:bind-free ) directives which enable the user to call-

out to arbitrary ACL2 functions to perform arbitrary computations on matched terms. The behavior of

these operations is analogous to the behavior of the related syntaxp and bind-free functions in ACL2

except that they don’t support free variables like mfc or state. If the :syntaxp expression evaluates to

nil, it acts as if no binding was found. A function called within a :bind-free expression is expected

to return a list of bindings.

Performance was an issue with the DPSS proofs. Most of the proofs naturally involve many case

splits. Early attempts at automating lemma instantiation often led to additional (unnecessary) case split-

ting. For example, we might have a lemma with a hypothesis like (< x y). However, the current

clause might not know anything about the relationship between the given instances of x and y. As a

result, ACL2 would case-split (often unnecessarily) into (< x y) and (not (< x y)). To avoid this

we wanted some assurance, before instantiating such a lemma, that we could establish (< x y). We

initially tried calling the theorem prover via (:check (< x y)) but we found this to be very expen-

sive. In the end, we were able to use our pattern matching language to codify enough meta-reasoning to

establish such properties with high confidence. For example, if we could establish that x is of the form

(+ -3 base) and that y is of the form (+ 2 base), then we could safely conclude (< x y).

The framework also supports the definition of reusable, parameterized pattern functions. Such func-

tions are defined using the def::pattern-functionmacro. Here we define a simple pattern function,

lte-match, that takes no arguments and binds two variables, a and b, such that, if successful, a is known

to be less than or equal to b.

(def::pattern-function lte-match () (:or (< a b) (<= a b)) :returns (a b))

This pattern function can then be used in other patterns via (:call):

(:call (lte-match) (x y))

It is also possible to define reusable named hints via def::pattern-hint:

(def::pattern-hint lte-hint

(:call (lte-match) (x y))

:use ((:instance linear-helper-lemma (a x) (b y))))

Such hints can then be referenced by name:

(defthm test (< (foo x) (goo y)) :hints ((pattern::hint lte-hint)))

Using named hints allowed us to define a handful of patterned hints that could be used to properly

instantiate several key lemmas. Nearly all the interesting DPSS proofs involve one or more pattern hints

and each pattern hint generates dozens to hundreds of instances of the key lemmas over the course of each

proof. In total, pattern hints fired 986 times over the course of the entire proof and generated 1353 lemma

instances (not all pattern hints instantiate lemmas and some may instantiate more than one lemma).



Greve, Davis & Humphrey 45

4.3 def::linear

ACL2 incorporates specialized solvers for both linear and non-linear arithmetic that enable it to decide

many questions involving linear relations over the standard arithmetic operations. ACL2 also allows the

user to classify certain kinds of rules as :linear rules, extending ACL2’s linear reasoning capability to

include user-defined functions. ACL2 employs linear rules to automatically add information to the so-

called linear pot; the data structure employed by the specialized linear solvers. Tight integration between

the linear solvers and the rewriter is a crucial aspect of ACL2’s automated reasoning capabilities.

For example, a property such as:

(implies (< 0 x) (< (f x) x))

Could be designated as a linear rule and ACL2 would apply it automatically to prove

(implies (< 0 x) (< (* 2 (f x)) (* 3 x)))

One of the properties of a well-formed DPSS ensemble is the fact that the UAV locations are ordered.

In other words: a UAV with a lower ID will never be located to the right of a UAV with a larger ID.

Formally, we would express this as:

(implies (< (UAV->id x) (UAV->id y)) (<= (UAV->location x) (UAV->location y))

Nearly every DPSS proof relies on this property at some point. At first blush, this property might

appear to be an ideal candidate for a :linear rule. The behavior we would want is, given two in-

stances, (UAV->location x) and (UAV->location y), ACL2 should try to establish (< (UAV->id

x) (UAV->id y)) and, if successful, add (<= (UAV->location x) (UAV->location y)) to the

linear pot. However, while ACL2 will accept this as a linear rule, it generates an ominous warning about

free variables. If we dissect this warning we learn that ACL2 intends to apply this rule by first trig-

gering on an instance of (UAV->location x) and then searching the type-alist for a term of the form

(< (UAV->id x) (UAV->id y)) in hopes of finding a suitable binding for y. While this may work in

some situations, it really isn’t how we wanted this rule to be applied!

Early in our development of the DPSS proofs, we solved this problem by using pattern::hint

to simply instantiate our ordering lemmas as needed. This worked well enough, but was intellectually

unsatisfying. Our ordering properties look like linear rules, we should be able to use them as such!

To finally assuage our frustration, we developed a macro that massages a proposed linear rule of the

general form (implies (< x y) (< (f x) (f y))) into a form that works as a linear rule in the

manner a user would most likely expect. The key insight was an observation by Matt Kaufmann that

bind-free could be used in linear rules (just like with rewrite rules) to compute bindings for free

variables. Consequently, a def::linear event of the form:

(def::linear f-linear (implies (< x y) (< (f x) (f y)))

produces the following corollary:



46 DPSS-A Convergence

(implies

(and (bind-free (linear-binder ((f y)) (y) mfc state) (y))

(< x y))

(< (f x) (f y)))

:trigger-terms ((f x))

ACL2 will trigger this rule on an instance of (f x). In the bind-free hypothesis, the function

linear-binder will then search the linear pot for terms that match the pattern (f y) and return a

list of candidate bindings. ACL2 then considers each binding in turn and, if it can establish (< x y), it

adds (< (f x) (f y)) to the linear pot.

This def::linear macro was developed late in the process of formalizing the DPSS proofs. We

had already been using pattern::hint to find relevant instantiations of the ordering property based on

terms appearing in the clause. While the def::linear rules provide a more automated solution, this

automation comes at a cost. In our experiments, the def::linear rules were noticeably more expensive

than the pattern::hint solution. This is likely because the pattern::hint rules fire late in the proof

process, when the clause is stable and, crucially, only when needed. The def::linear rules, however,

fire throughout the course of the proof, even when unneeded. The final proof actually uses a mix of

pattern::hint and def::linear, favoring the former when performance is an issue and the latter for

simplicity. The def::linear and pattern::hintmacros can be found in the standard ACL2 books in

the files coi/util/linear.lisp and coi/util/pattern-hint/pattern-hint.lisp respectively.

5 Conclusions and Future Work

This report focused on efforts to mechanize in the logic of the ACL2 theorem prover a hand proof

developed by Jeremy Avigad and Floris van Doorn that bounds the convergence time of DPSS-A for

an arbitrary number of UAVs. Our mechanized proof provides assurance that there are no unfounded

intuitions in the hand proof and provides confidence that we have captured and addressed all essential

assumptions and corner cases related to the DPSS algorithm. Furthermore, for each of the two essential

invariants employed in the hand proof, i.e. have met and synchronized, we provide concise, useful

specifications relative to a concrete formalization of the DPSS-A algorithm. Finally, we discussed three

ACL2 utilities that proved useful in formalizing and reasoning about our DPSS model.

The DPSS proof scripts for the AvD proof are available as part of the standard ACL2 books under

projects/dpss/. Prior to learning of the AvD proof, Collins was developing a proof of DPSS-A

convergence that employed several layers of abstraction and relied on the characterization of certain

emergent behaviors. An incomplete version of that proof has been released along with the AvD proof

in the hope that the abstract proof can be completed as well. Our motivation for pursuing a second,

redundant proof is the hope that some of the techniques it employs may eventually prove useful in

analyzing the more general DPSS Algorithm B (DPSS-B) which currently lacks a tight convergence

bound.



Greve, Davis & Humphrey 47

References

[1] J. Avigad & F. van Doorn (2021): Progress on a Perimeter Surveillance Problem. IEEE International Confer-

ence on Autonomous Systems (ICAS), pp. 1–5, doi:10.1109/ICAS49788.2021.9551119.

[2] J.A. Davis, L.R. Humphrey & D.B. Kingston (2019): When Human Intuition Fails: Using Formal Methods to

Find an Error in the Proof of a Multi-agent Protocol. Computer Aided Verification (CAV) 11561, pp. 366–375,

doi:10.1007/978-3-030-25540-4 20.

[3] D. Greve (2009): Automated Reasoning with Quantified Formulae. Proceedings of the Eight International

Workshop on the ACL2 Theorem Prover and its Applications, pp. 110–113, doi:10.1145/1637837.1637855.

[4] D. Greve & K. Slind (2013): A Step-Indexing Approach to Partial Functions. Electronic Proceedings in

Theoretical Computer Science 114, pp. 42–53, doi:10.4204/EPTCS.114.4.

[5] D.B. Kingston, R.W. Beard & R.S. Holt (2008): Decentralized Perimeter Surveillance Using a Team of UAVs.

IEEE Transactions on Robotics 24(6), pp. 1394–1404, doi:10.1109/TRO.2008.2007935.

http://dx.doi.org/10.1109/ICAS49788.2021.9551119
http://dx.doi.org/10.1007/978-3-030-25540-4_20
http://dx.doi.org/10.1145/1637837.1637855
http://dx.doi.org/10.4204/EPTCS.114.4
http://dx.doi.org/10.1109/TRO.2008.2007935

	1 Introduction
	2 DPSS Overview
	2.1 Fundamental Data Structures
	2.2 DPSS-A Event Based Simulator

	3 AvD Proof
	3.1 Proof Overview
	3.2 Top-Level Theorem

	4 ACL2 Proof Utilities
	4.1 def::ung
	4.2 pattern::hint
	4.3 def::linear

	5 Conclusions and Future Work

