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One of the key steps in the proof of the Banach-Tarski Theorem is the introduction of a free group

of rotations. First, a free group of reduced words is generated where each element of the set is

represented as an ACL2 list. Then we demonstrate that there is a one-to-one relation between the

set of reduced words and a set of 3D rotations. In this paper we present a way to generate this set

of reduced words and we prove group properties for this set. Then, we show a way to generate a set

of 3D matrices using the set of reduced words. Finally we show a formalization of 3D rotations and

prove that every element of the 3D matrices set is a rotation.

1 Introduction

The Banach-Tarski theorem [7] states that we can break the unit ball into a finite number of sets, then

rotate the sets to form two identical copies of the unit ball. This seems impossible because it contradicts

our intuition that when we partition the ball into finite sets, the total volume of the pieces must be the same

as the volume of the original ball. This would be the case if all the pieces had a well-defined volume.

The Banach-Tarski theorem is possible because the construction breaks the ball into non-measurable

sets [4], which means they don’t have a well-defined volume. These non-measurable sets are formed by

the introduction of a free group of rotations. Using properties of this free group and with the help of the

Axiom of Choice, the surface of the sphere is broken down into two equivalent sets. This construction is

then extended to the whole unit ball.

The free group of rotations is formed by introducing a free group of reduced words and then showing

one-to-one relation between the set of reduced words and the set of rotations. In section 2, we generate

the set of reduced words using ACL2 lists. In section 3, we show a way to generate a set of 3D matrices

using the set of reduced words. Then we show there is a one-to-one relation between the set of reduced

words and the set of 3D matrices. In section 4, we formalize 3D rotations in ACL2(r) and we show every

element of the 3D matrices set is a rotation thus generating a free group of rotations. Many properties of

matrix algebra [3] and modular arithmetic [2] that are needed for the proof have already been formalized

in ACL2(r). The matrix algebra that is formalized using the ACL2 two dimensional arrays contains

a lot of properties that we need for the proof. For example matrix multiplication, matrix equivalence,

matrix transpose, and properties like associativity of the matrix multiplication and (m1×m2)T =mT
1 ×mT

2

have been formalized. Also, there are properties about dimensions of the matrices. These formalized

properties about matrices made us believe we can use these books and we have been proven correct as

we are able to achieve the goal of generating a free group of rotations of rank 2.
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2 A Free Group of Reduced Words

In this section, we introduce the free group over the letters a and b. This group contains all words that

can be formed from a, b, a−1, and b−1 such that no letter and its inverse appear together. For example,

abba is a member of this free group but abb−1a is not.

We use lists in ACL2(r) to represent words. A weak word is an empty list or a list that has characters

a or a−1 or b or b−1. For example, ’(a b b−1 a−1) is a weak word. In the ACL2(r) source files, we have

defined the functions wa, wa-inv, wb and wb-inv which return the ACL2(r) characters #\a, #\b, #\c,

and #\d respectively. e.g., (wa)=#\a. We use the ACL2(r) characters #\a, #\b, #\c, and #\d to represent

a, a−1, b, and b−1 respectively, but in this paper we will simply refer to a, a−1, b, and b−1 to avoid

confusion. The predicate weak-wordp recognizes elements of the set of weak words, as shown below.

Since ACL2(r) does not have support for infinite sets, such as a set of weak words, we represent these

sets implicitly using recognizers for their elements.

(defun weak-wordp (w)

(cond ((atom w) (equal w nil))

(t (and (or (equal (first w) (wa))

(equal (first w) (wa-inv ))

(equal (first w) (wb))

(equal (first w) (wb-inv )))

(weak-wordp (rest w))))))

A reduced word is a weak word such that character a−1 does not appear beside the character a and

character b−1 does not appear beside the character b in the list. For instance, ’(a b a−1) is a reduced word

and ’(a a−1 b) is not a reduced word. The predicates a-wordp, a-inv-wordp, b-wordp, and b-inv-wordp

represent the set of reduced words that start with characters a, a−1, b, and b−1 respectively. The predicate

reducedwordp, as shown below, represents the set of all reduced words. reducedwordp returns true if the

argument belongs to the set a-wordp or a-inv-wordp or b-wordp or b-inv-wordp or if it is an empty list.

(defun reducedwordp (x)

(or (a-wordp x)

(a-inv-wordp x)

(b-wordp x)

(b-inv-wordp x)

(equal x ’())))

The function word-inverse finds the inverse of a reduced word. If the argument is a weak word, word-

inverse flips each character in the list to its inverse and then reverses the list, e.g., word-inverse(’(a a−1

b−1)) = ’(b a a−1). Below are the definitions of the flip function and the inverse function.

;; Definition of the flip function

(defun word-flip (x)

(cond ((atom x) nil)

(( equal (car x) (wa)) (cons (wa-inv) (word-flip (cdr x))))

(( equal (car x) (wa-inv )) (cons (wa) (word-flip (cdr x))))

(( equal (car x) (wb)) (cons (wb-inv) (word-flip (cdr x))))

(( equal (car x) (wb-inv )) (cons (wb) (word-flip (cdr x))))))

;; Definition of the Inverse operation

(defun word-inverse (x)

(rev (word-flip x)))
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The group operation compose takes two arguments. If the arguments are weak words, then the compose

function first appends the two lists and then “fixes” the result by deleting any letter and its inverse that

appear beside each other. Thus, the final result of compose is always a reduced word. E.g., compose(’(a

b b), ’(b−1)) = ’(a b). Below are the definitions of the fixing function and the group operation compose.

;; Definition of the fixing function

(defun word-fix (w)

(if (atom w)

nil

(let ((fixword (word-fix (cdr w))))

(let ((w (cons (car w) fixword)))

(cond ((equal fixword nil)

(list (car w)))

((equal (car (cdr w)) (wa))

(if (equal (car w) (wa-inv ))

(cdr (cdr w))

w))

((equal (car (cdr w)) (wa-inv ))

(if (equal (car w) (wa))

(cdr (cdr w))

w))

((equal (car (cdr w)) (wb))

(if (equal (car w) (wb-inv ))

(cdr (cdr w))

w))

((equal (car (cdr w)) (wb-inv ))

(if (equal (car w) (wb))

(cdr (cdr w))

w)))))))

(defun compose (x y)

(word-fix (append x y)))

If we denote the set of reduced words by W (a,b), the set of reduced words starting with character a

by W (a), and similarly for W (a−1), W (b), and W (b−1), then

W (a,b) = ’() ∪ W (a) ∪ W (a−1) ∪W (b) ∪ W (b−1)

Considering the empty list as the identity element, we show below the group properties of the set of

reduced words.

2.1 Closure Property

If x and y are reduced words, then (append x y) is a weak word as shown below by the lemma closure-

lemma. If x is a weak word, then word-fix(x) returns a reduced word as shown below by the weak-wordp-

equivalent lemma. So, compose(x,y) = word-fix(append x y) is a reduced word. This establishes that

compose is closed over the set of reduced words as shown below by the lemma closure-prop.

(defthmd closure-lemma

(implies (and (reducedwordp x)

(reducedwordp y))

(weak-wordp (append x y))))
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(defthmd weak-wordp-equivalent

(implies (weak-wordp x)

(reducedwordp (word-fix x))))

(defthmd closure-prop

(implies (and (reducedwordp x)

(reducedwordp y))

(reducedwordp (compose x y))))

2.2 Associative Property

By the definition, word-fix ”fixes” a weak word recursively starting from the tail of the list; i.e if x, y,

z are weak words, then (word-fix (append x (word-fix (append y z)))) is equal to (word-fix (append x y

z)) as shown below by the lemma compose-assoc-lemma1. Another key lemma required to prove that

the set W (a,b) satisfies the associative property is that if x is a reduced word, then word-fix(rev(x)) =

(rev(word-fix(x))), which we proved by induction on x.

(defthm compose-assoc-lemma1

(implies (and (weak-wordp x)

(weak-wordp y)

(weak-wordp z))

(equal (word-fix (append x (word-fix (append y z))))

(word-fix (append x y z))))

:hints ...)

The other two lemmas required to prove the associative property which are already proved in ACL2,

are: if x and y are lists, then rev(rev x) = x and rev(append x y) = (append (rev y) (rev x)). Using these

lemmas, below is the derivation of the associative property of the compose function with respect to the

set of reduced words. If x, y, z are reduced words, then

(compose (compose x y) z) = (word-fix (append (word-fix (append x y)) z))

= (rev (rev (word-fix (append (word-fix (append x y)) z))))

= (rev (word-fix (rev (append (word-fix (append x y)) z))))

= (rev (word-fix (append (rev z) (rev (word-fix (append x y))))))

= (rev (word-fix (append (rev z) (word-fix (rev (append x y))))))

= (rev (word-fix (append (rev z) (word-fix (append (rev y) (rev x))))))

= (rev (word-fix (append (rev z) (rev y) (rev x))))

= (word-fix (rev (append (rev z) (rev y) (rev x))))

= (word-fix (append x y z))

= (word-fix (append x (word-fix (append y z))))

= (compose x (compose y z))

2.3 Inverse Property

By induction on x, first we show if x is a reduced word, then (rev x) and (word-flip x) are reduced words

and thus (word-inverse x) is a reduced word. Now since (word-inverse x) is a reduced word, using the
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associative property and by induction on x, (compose x (word-inverse x)) results in an empty list as

shown below by the reduced-inverse lemma below. This proves that right inverse of the reduced word

x is (word-inverse x). To prove the left inverse of x is also equal to (word-inverse x), we can use the

reduced-inverse lemma. In the reduced-inverse lemma in place of x if we have (word-inverse x) and if

(word-inverse (word-inverse x)) is equal to x, then (word-inverse x) becomes the left inverse of x. We

have proved (word-inverse (word-inverse x)) is equal to x by functionally instantiating the equal-by-nths

[1] lemma. We have functionally instantiated the equal-by-nths lemma with the hypothesis being x a

weak word, left hand side of the equivalence being (word-inverse (word-inverse x)) and the right hand

side of the equivalence being just x. To finish the proof, we needed proofs that both the lists (word-inverse

(word-inverse x)) and x have same characters at any specified index and they both have the same length.

Thus we have proved that for every element x in the reduced word set there exists an inverse of x which

is equal to (word-inverse x).

(defthmd reduced-inverse

(implies (reducedwordp x)

(equal (compose x (word-inverse x)) ’()))

:hints ...)

3 A Free Group of 3D Matrices

Matrices in ACL2 are represented with the data structure array2p. We define a predicate r3-matrixp

that recognizes the set of 3D matrices: r3-matrixp returns true if the argument is of type array2p, if its

dimensions are 3×3, and if each element of the matrix is a real number.

We now define the four matrices A+, A−, B+, and B− as

A± =







1 0 0

0 1
3

∓ 2
√

2
3

0 ± 2
√

2
3

1
3






B± =







1
3

∓ 2
√

2
3

0

± 2
√

2
3

1
3

0

0 0 1







and we associate these matrices with the letters a, a−1, b, and b−1 from the free group respectively.

Moreover, we associate a list (x1,x2, . . . ,xn) ∈ W (a,b) with the matrix X1 × X2 × ·· · × Xn, where ×
denotes matrix multiplication, and Xi is the matrix associated with letter xi. The recursive function

rotation performs this mapping from words in the free group to 3D matrices. If we denote the resulting

set as R(a,b), then R(a,b) = {rotation(w) | w ∈ W (a,b)}. By induction, it is easy to verify that every

element of the set R(a,b) belongs to r3-matrixp.

To show the set R(a,b) is a free group homomorphic to W (a,b), we show that if w ∈W (a,b) and w

is not the empty list, then rotation(w) is not equal to I, the identity matrix. Equivalently, we show that

(rotation(w))(0,1,0) 6= (0,1,0), unless w is the empty list.

To do this, suppose that w ∈ R(a,b), and consider the rotation R(w). In particular, suppose that R(w)
transposes the point (0,1,0) to (x′,y′,z′). Define (x,y,z) as

(x,y,z) = 3n

(

x′√
2
,y′,

z′√
2

)

where n = |w|. Using induction, we show x, y, and z are integers.

So now suppose that (rotation(w))(0,1,0) = (0,1,0) for some non-empty word w. It follows that

(x,y,z) = (0,3n,0), where n = |w| > 0, thus x ≡ y ≡ z ≡ 0 (mod 3). But this cannot be the case. If
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|w| = 1, then rotation(w) is one of A± or B±, and considering each of the four cases by brute force,

it is clear that (x,y,z) 6≡ (0,0,0) (mod 3). Using induction, there are 16 cases to consider, but in all

of these cases we can again conclude that (x,y,z) 6≡ (0,0,0) (mod 3). This shows that if |w| > 0, then

rotation(w) is not the identity matrix.

Here we want to mention two key lemmas needed to prove the one-to-one relation between the set

of 3D matrices and the set of reduced words. First, if w1,w2 ∈W (a,b), then by the definition of rotation

and compose, rotation(w1)× rotation(w2) = rotation(compose(w1,w2)). Second, if r ∈ R(a,b), then

∃w ∈ W (a,b) such that r = rotation(w), and by the previous lemma, r−1 = rotation(w−1). Moreover,

since w−1 ∈ W (a,b), r−1 ∈ R(a,b). Now, if w1,w2 ∈ W (a,b) and w1 6= w2 and r1 = rotation(w1) and

r2 = rotation(w2), then using the proof that, if |w|> 0, then rotation(w) 6= I, r1 × r−1
2 6= I, which implies

r1 6= r2. This proves there is a one-to-one relation between the set R(a,b) and the set W (a,b). So

defining R(a) = {rotation(w) | w ∈W (a)}, R(a−1) = {rotation(w) | w ∈W (a−1)}, R(b) = {rotation(w) |
w∈W (b)}, and R(b−1) = {rotation(w) |w∈W (b−1)}, then the set of rotations R(a,b) can be partitioned

as

R(a,b) = I ∪ R(a) ∪ R(a−1) ∪R(b) ∪R(b−1).

4 A Free Group of Rotations of Rank 2

In this section we formalize 3D rotations and prove every element of the 3D matrices set is a rotation.

As discussed previously, the matrix transpose operation (m-trans) was formalized in prior work [3], and

as part of that, it was shown that (A×B)T = BT ×AT .

We extended that formalization by introducing the function r3-m-determinant that computes the

determinant of a matrix, the function r3-m-inverse that computes the inverse of a 3D matrix (when

possible). Using these functions, we defined the predicate r3-rotationp that recognizes rotations in R
3.

A matrix M is a rotation matrix if it satisfies these conditions [6]:

• M is a 3D matrix,

• M−1 = MT , and

• det(M) = 1.

Another important detail is that every element of R(a,b) must be a rotation of R3. Given the corre-

spondence between R(a,b) and W (a,b) established in section 3, what we need to show is that for any

w ∈W (a,b), rotation(w) satisfies the axioms of a rotation. This was done using induction on the list w.

It is easy to verify that the base cases are rotations; i.e., I, A+, A−, B and B− are all rotation matrices.

For the induction to go through, the lemma we need to prove rotation(xw) is a rotation in R
3 given that

rotation(w) is a rotation, is that the product of two rotation matrices M1 and M2 is also a rotation matrix.

Below is the the proof of this lemma, and some other lemmas from matrix algebra that we proved in

ACL2(r).

• r3-matrixp(m1)∧ r3-matrixp(m2) =⇒ r3-matrixp(m1 ×m2)

• r3-matrixp(m1)∧ r3-matrixp(m2) =⇒ det(m1 ×m2) = det(m1) ·det(m2)

• r3-matrixp(m) =⇒ m× I = I ×m = m

• r3-matrixp(m)∧det(m) 6= 0 =⇒ m×m−1 = m−1 ×m = I

• r3-matrixp(m1)∧det(m1) 6= 0∧ r3-matrixp(m2)∧det(m2) 6= 0

=⇒ (m1 ×m2)
−1 = m−1

2 ×m−1
1
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• r3-rotationp(m1)∧ r3-rotationp(m2) =⇒ r3-rotationp(m1 ×m2)

• r3-rotationp(m) =⇒ r3-rotationp(m−1)

• Rotations preserve distances [5]. Let p1 = (x1,y1,z1) and R be a rotation matrix, and consider

p2 = Rp1 = (x2,y2,z2). Using the previous lemmas,

x2
1 + y2

1 + z2
1 = pT

1 × p1

= pT
1 × (I× p1)

= pT
1 × ((R−1 ×R)× p1)

= pT
1 × ((RT ×R)× p1)

= (pT
1 ×RT )× (R× p1)

= (R× p1)
T × (R× p1)

= pT
2 × p2

= x2
2 + y2

2 + z2
2.

5 Conclusion

In this paper we presented a way to generate the free group of reduced words using ACL2 lists. Using

this set we have generated a free group of 3D matrices. Then we have shown a formalization of 3D

rotations in ACL2(r) and we proved that every element of the 3D matrices set is a 3D rotation. When

we apply these rotations on S2, then with the help of the Axiom of Choice we can form two copies of

S2 minus the set of the poles of the rotations. This is called the Hausdorff’s Paradox which is the next

step in the proof of the Banach-Tarski theorem. We are currently working to formalize the Hausdorff’s

paradox, and then we will prove the Banach-Tarski theorem.
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