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A (closed) dynamical system is a notion of how things can be, together with a notion of how they
may change given how they are. The idea and mathematics of closed dynamical systems has proven
incredibly useful in those sciences that can isolate their object of study from its environment. But
many changing situations in the world cannot be meaningfully isolated from their environment – a
cell will die if it is removed from everything beyond its walls. To study systems that interact with
their environment, and to design such systems in a modular way, we need a robust theory of open
dynamical systems.

In this extended abstract, we put forward a general definition of open dynamical system. We
define two general sorts of morphisms between these systems: covariant morphisms which include
trajectories, steady states, and periodic orbits; and contravariant morphisms which allow for plugging
variables of some systems into parameters of other systems. We define an indexed double category
of open dynamical systems indexed by their interface and use a double Grothendieck construction to
construct a double category of open dynamical systems.

In our main theorem, we construct covariantly representable indexed double functors from the
indexed double category of dynamical systems to an indexed double category of spans. This shows
that all covariantly representable structures of dynamical systems — including trajectories, steady
states, and periodic orbits — compose according to the laws of matrix arithmetic.

1 Open Dynamical Systems

The notion of a dynamical system pervades mathematical modeling in the sciences. A dynamical system
consists of a way things might be, and a way things might change given how they are. There are many
doctrines in which this notion may be interpreted:

• In a discrete dynamical system, we have a set S of states and an update function u : S→ S which
assigns to the current state s ∈ S of the system the next state u(s) ∈ S.

• In a Markov model, we have an n-element set S of states, and an n×n stochastic matrix U whose
(i, j) entry Ui j is the probability that state i will transition to state j. We can also see this as a
function u : S→ DS, where DS is the set of probability distributions on S by the relation u(i) j :=
Ui j.

• A continuous-time dynamical system is often given by a system of differential equations. We have
a manifold S of states (often Rn, where n is the number of state variables), and a vector field
u : S→ T S giving the differential equation

ds
dt

= u(s).

These systems are all closed in the sense that they do not depend on external parameters. However,
real-world systems are seldom closed, and our models of them often depend on external parameters.

http://dx.doi.org/10.4204/EPTCS.333.11
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Furthermore, these parameters may themselves depend on certain variables which are exposed by other
dynamical systems.

An open dynamical system is a system whose dynamics may depend on external parameters (which
we will call inputs) and which exposes some variables of its states (which we will call outputs). The
above examples of closed dynamical systems have open analogues:

• A deterministic automaton consists of an input alphabet I, an output alphabet O, a set of states S,
a readout function r : S→ O which exposes the output symbol r(s) of the state s, and an update
function u : S× I → S which takes the current state s and an input symbol i and yields the state
u(s, i) that the automaton will transition into when reading i in state s.

• A Markov decision process consists of a set S of states, a set O of orientations the agent may take
in the environment, a set of actions I, a readout function r : S→ O which extracts the orientation
of the agent in a given state, and a stochastic update function u : S× I → DS which, for every
action i and state s gives a probability distribution u(s, i) on the states of S representing the likely
transitions of the system given that action i is taken in state s. Often one includes an expected
reward, so that u instead has signature S× I→ D(R×S).

• An open continuous-time dynamical system (see [4]) corresponds to a family of differential equa-
tions

ds
dt

= u(s, i)

concerning a variable state s ∈ S varying with a choice of parameter i ∈ I, and exposing a variable
r(s) ∈ O.

These various sorts of dynamical systems have in common the following general form:

• They involve a notion of state space S which takes place in a category that also contains their
output space O so that the readout r : S→ O can be a morphism in this category. In the examples
of deterministic automata and Markov decision processes, the state and output spaces are sets;
for a continuous-time dynamical system, they are differentiable manifolds. We will refer to these
spaces in general as contexts, and so we will begin with a category C of contexts.

• They involve a notion of bundle over the state space, or of contextualized maps between contexts.
That is, to every context C, there is a category Bun(C) of actions possible in the context C. We see
that not only is the space of possible changes in a given state T S ∈ Bun(S) a bundle in this sense,
but also the inputs I ∈ Bun(O) are a bundle over the outputs.
In order for the update function to map from I to T S in Bun(S), we must be able to recontextualize
(or pull back) bundles along maps of contexts. Therefore, we will ask that Bun : C op→Cat be an
indexed category. We see then that we can pull back the inputs I along r : S→O so that the update
u may have signature u : r∗I→ T S.

• For every context S, we must have a canonical bundle T S ∈ Bun(S) of changes possible in each
state. We want T to covary with states, so that we may pushforward changes alongs maps between
state spaces. Therefore, we ask that T be a section of the indexed category Bun : C op→ Cat

We refer to the data of an indexed category Bun : C op→ C with a section T collectively as a dynam-
ical system doctrine, or just doctrine.

Definition 1.1. A dynamical system doctrine is an indexed category Bun : C op→ Cat with a section T
of its Grothendieck construction.

Motivated by the examples above, we define a (Bun,T )-dynamical system to consist of:
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• A space S ∈ C of states.

• A space O ∈ C of outputs or orientations.

• A bundle I ∈ Bun(O) giving the inputs or parameters valid in a given orientation.

• A readout map r : S→ O extracting the orientation of the system in a given state.

• An update function r∗I → T S in Bun(S) which sends each input valid in a given state to the
resulting change in the system in Bun(S).

The above open dynamical systems arise for various choices of doctrine. Namely:

• Deterministic automata arise by taking Bun(C) := CoKleisli(C×−), the coKleisli category for
the comonad C×−, together with the section C 7→ C. We will refer to this as the deterministic
doctrine.

• Markov decision process arise by taking Bun(C) := BiKleisli(C×−,D), the biKleisli category of
the comonad C×− distributing over the strong monad of probability distributions D. Any strong
monad will work here1, for example, the monad D(R×−) which keeps track of an expected R-
valued reward, or the powerset monad which allows for non-determinism. We will refer to this as
the monadic doctrine.

• Continous-time dynamical systems arise by taking Bun(C) := Subm(C) to be the category of
submersions M→C, with section T given by taking the tangent bundle. We will refer to this as
the continuous doctrine.

Acknowledgements. The author would like to thank David Spivak, Emily Riehl, and Sophie Libkind
for fruitful conversation and comments during drafting. The author also appreciates support from the
National Science Foundation grant DMS-1652600.

2 Contravariant Morphisms: Plugging Variables into Parameters

We may plug the variables exposed by one dynamical system into the parameters of other dynamical
systems to create a more complex dynamical system. For example, consider a rabbit population r which
reproduces at a rate α and is eaten by a predator at a rate β :

dr
dt

= αr−β r.

If we have a population of foxes f which reproduce at a rate γ and die at a rate δ :

d f
dt

= γ f −δ f ,

we may want to say that the rate β at which rabbits are eaten is proportional to the population of foxes,
and the rate at which foxes breed depends on how many rabbits they eat:

β = c f

γ = dr

1A commutative monad is necessary for the monoidal structure.
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Making this substitution, we get the final system of equations, usually known as the “Lotka-Volterra
predator-prey model”:

dr
dt

= αr− c f r

d f
dt

= dr f −δ f .
(1)

This sort of “plugging in” of the exposed variables of one system into the parameters of another
is governed by lens composition in general. In special cases, lens composition can be described by an
algebra of wiring diagrams [4].

In the general setting of an indexed category Bun : C op→ Cat, we use the notion of a generalized
lens due to Spivak [5] to govern this sort of “plugging in” operation.

Definition 2.1. Given an indexed category Bun : C op → Cat, the category of Bun-lenses is the con-
travariant Grothendieck construction of the pointwise opposite of Bun.

LensBun :=
∫

C:C
Bun(C) op .

We denote an object of the category of lenses by
(

A
C

)
where C ∈ C and A ∈ Bun(C), and we write

a morphism in the category of lenses (itself called a lens) as(
f ]

f

)
:
(

A
C

)
�

(
A′

C′

)
where f : C→C′ and f ] : f ∗A′→ A.

We can see open dynamical systems as particular sorts of generalized lenses, and they may therefore
be acted upon by generalized lenses via composition. The data of a (Bun,T )-dynamical system can be
described as a Bun-lens (

u
r

)
:
(

T S
S

)
�

(
I
O

)
.

Therefore, given any lens
(

f ]

f

)
:
(

I
O

)
�

(
I′

O′

)
, we may compose to get a new dynamical system

(
f ]

f

)
◦
(

u
r

)
:
(

T S
S

)
�

(
I′

O′

)
.

In particular, we can formalize the Lotka-Volterra system as follows. The rabbit system may be described
as having

• state space R,

• output space R, with readout id : R→ R,

• input bundle R×R2→ R, and

• update u : R×R2→ T R given by

u(r,(α,β )) := (αr−β r)
d
dr

.
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The fox system is defined in the same way. We may then form the product system by taking the cartesian
product of all the data involved.2 This gives us, in total, a generalized lens(

T (R×R)
R×R

)
�

(
(R×R)× (R2×R2)

R×R

)

We now consider the lens
(

e]

e

)
:
(
(R×R)× (R2×R2)

R×R

)
�

(
(R×R)× (R2×R2)

R×R

)
given by

e(r, f ) = (r, f )

e]((r, f ),((α,c),(d,δ ))) = ((r, f ),((α,c f ),(dr,δ )))

The composite (
T (R×R)
R×R

)
�

(
(R×R)× (R2×R2)

R×R

)
�

(
(R×R)× (R2×R2)

R×R

)
is then the combined system of Eqn 1. This general way of combining open continuous-time dynamical
systems was explored in [4]. These contravariant morphisms will form the vertical morphisms in our
double categories of dynamical systems.

We will see this system of “plugging in” equations via lens composition as a contravariant morphism
between open dynamical systems. Other examples of contravariant morphisms of open dynamical sys-
tems include the cascade products of automata important for Kohn-Rhodes theory [1]3, and hierarchical
planning schemes for Markov decision processes [6].

3 Covariant Morphisms: Trajectories, Steady States, and Periodic Orbits

In addition to contravariant morphisms of open dynamical systems, there are also the covariant mor-
phisms by which one system is directly mapped onto another. These include trajectories, steady states,
and periodic orbits. For example, consider the continuous-time dynamical system( d

ds
id

)
:
(

T R
R

)
�

(
R
R

)
.

This system represents the very simple differential equation

ds
dt

= 1.

Despite its simplicity, it is of crucial importance for the study of continuous-time differential equations

because of what it represents: the notion of trajectory. It is the “walking trajectory”. Namely, let
(

u
id

)
:

2Though for reasons of space we will not dwell on the issue in this extended abstract, all of our constructions can be carried
out on a monoidal indexed category with a pseudo-monoidal section, yielding a monoidal structure on the double category of
open dynamical systems. This monoidal structure is important: it is the way we combine systems disjointly in preparation to
plug in the variables of some into the parameters of others. Our covariantly representable indexed double functors of Section 6
are also lax monoidal with repespect to this monoidal structure.

3The author would like to thank Sophie Libkind for pointing out the relationship between contravariant morphisms and
cascade products
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(
T S
S

)
�

(
S× I

S

)
be the Lotka-Volterra model, and consider a smooth map (r, f ) : R→ S together with

a bundle morphism

R S× I

R S

((α,c),(d,δ ))

(r, f )

subject to the relation that

u((r, f ),((α,c),(d,δ ))) =
dr
dt

d
dr

+
d f
dt

d
d f

.

Or, in other words, functions r, f ,α,c,d,δ : R→ R so that Eqn 1 is satisfied for all t ∈ R:

dr
dt

(t) = α(t)r(t)− c(t) f (t)r(t)

d f
dt

(t) = d(t)r(t) f (t)−δ (t) f (t).

This is a solution to the system of equations, given a choice of parameter for all times t.
Another example of a covariant morphism is a steady state. We recall from [7] the definition of

steady state for a deterministic automaton:

Definition 3.1 (Definition 2.4 of [7]). Let
(

u
r

)
:
(

S
S

)
�

(
I
O

)
be a deterministic automaton. For o ∈ O

and i ∈ I, an (i,o)-steady state is a state s ∈ S such that r(s) = o and u(s, i) = s.

Consider the trivial deterministic automaton
(
id
id

)
:
(
∗
∗

)
�

(
∗
∗

)
. Note that we may see a state s ∈ S

of a deterministic automaton
(

u
r

)
as a map from the states of

(
id
id

)
to the states of

(
u
r

)
, and similarly

an output o ∈ O and an input i ∈ I as maps from the outputs and inputs of
(
id
id

)
respectively. If we

require these to satisfy the laws:

r(s) = o

u(s, i) = s

then we will have a steady state of
(

u
r

)
.

These sorts of maps are instances of covariant morphisms of dynamical systems. The general re-
lations that such morphisms must satisfy involve commutation between lenses and bundle maps. We
will therefore work with a double category whose vertical morphisms are lenses and whose horizontal
morphisms are bundle maps. The construction of this double category is quite general; we refer to it as
the Grothendieck double construction.
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4 The Double Category of Interfaces

We can make a double category whose vertical morphisms are lenses and whose horizontal morphisms
are bundle morphisms. We call this construction the Grothendieck double construction, and refer to the
resulting double category as the double category of interfaces.

Definition 4.1. Let Bun : C op → Cat be an indexed category. Its Grothendieck double construction,
which we will refer to as the double category Interface of interfaces, is the double category with:

• Objects pairs
(

A
C

)
with C ∈ C and A ∈ Bun(C).

• Vertical morphisms
(

f ]

f

)
:
(

A
C

)
�

(
A′

C′

)
are Bun-lenses, that is, morphisms in the Grothendieck

construction
∫
Bun op of the pointwise opposite of Bun, namely pairs f : C→C′ and f ] : f ∗A′→ A.

• Horizontal morphisms
(

g]
g

)
:
(

A
C

)
⇒

(
A′

C′

)
are Bun-maps, that is, morphisms in the Grothendick

construction
∫
Bun of Bun, namely pairs g : C→C′ and g] : A→ g∗A′.

• There is a square

(
A1
C1

) (
A2
C2

)

(
A3
C3

) (
A4
C4

)

g1]

g1


 f ]1

f1

  f ]2
f2


g2]

g2


if and only if the following diagrams commute:

C1 C2 f ∗1 A3 A1

C3 C4 f ∗1 g∗2A4 g∗1 f ∗2 A4 g∗1A2

g1

f1 f2

f ]1

f ∗1 g2] g1]

g2 g∗1 f ]2

We will call the squares in the Grothendieck double construction commuting squares, since they
represent the proposition that the “lower” and “upper” squares appearing in their boundary com-
mute.

Note that the horizontal category of the double category of interfaces is the category of bundles and
bundle maps — the Grothendieck construction of Bun — while the vertical category is the category of
lenses — the Grothendieck construction of the pointwise opposite Bun(−) op.

We can in fact express the double category of interfaces solely in terms of the vertical/cartesian fac-
torization system on the category

∫
Bun of bundles. This perspective is taken in the author’s forthcoming

[2].

Proposition 4.2 ([2]). Let Bun : C op→Cat be an indexed category. The Grothendieck double construc-
tion of Bun is equivalent to the double category defined by:
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• Its horizontal category is the Grothendieck construction
∫
Bun of Bun.

• A vertical morphism is a span

(
f ∗A′

C

)

(
A
C

) (
A′

C′

)
id

f

 f ]

id



whose left leg is vertical and whose right leg is cartesian. These are composed by pullback in the
usual way.

• A square is a map of spans in
∫
Bun in the usual sense.

5 The Indexed Double Category of Dynamical Systems

In this section, we define the indexed double category of (Bun,T )-dynamical systems associated to the
dynamical system doctrine (Bun,T ) given by an indexed category Bun : C op → Cat equipped with a
section T : C →

∫
Bun.

Definition 5.1. A (covariantly) indexed double category is a lax double functor F : D → Cat from a
double category D to the double category of categories, functors (vertical), and profunctors (horizontal).

Definition 5.2. The indexed double category of (Bun,T )-dynamical systems Dyn : Interface→ Cat is
the lax double functor acting as:

• Dyn

(
I
O

)
is the category of

(
I
O

)
-dynamical systems. Namely, this is the category whose objects

are dynamical systems (
u
r

)
:
(

T S
S

)
�

(
I
O

)
with morphisms given by squares

(
T S
S

) (
T S′

S′

)

(
I
O

) (
I
O

)

T ϕ

ϕ


u

r

 u′

r′



and composed via horizontal composition in the double category of interfaces.
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• A lens (vertical morphism)
(

f ]

f

)
:
(

I
O

)
�

(
I′

O′

)
gives a functor Dyn

(
I
O

)
→ Dyn

(
I′

O′

)
by

vertical composition:

(
T S
S

) (
T S′

S′

)

(
I
O

) (
I
O

)

(
I′

O′

) (
I′

O′

)

T ϕ

ϕ


u

r

 u′

r′



 f ]

f

  f ]

f



• A bundle map
(

g]
g

)
:
(

I
O

)
⇒

(
I′

O′

)
gives a profunctor Dyn

(
I
O

)
op×Dyn

(
I′

O′

)
→ Set sending

dynamical systems
(

u
r

)
:
(

T S
S

)
�

(
I
O

)
and

(
u′

r′

)
:
(

T S′

S′

)
�

(
I′

O′

)
to the set of squares:



(
T S
S

) (
T S′

S′

)

(
I
O

) (
I′

O′

)

T ϕ

ϕ


u

r

 u′

r′


g]

g




and acting on the left and right via horizontal composition. The laxator and unitor are given by
horizontal composition and identity respectively.

• A square gets sent to the morphism of profunctors given by composing with that square

We may take a double Grothendieck construction (not to be confused with the earlier Grothendieck
double construction) to get the double category of open dynamical systems with variable interface.

Definition 5.3. Let E : D →Cat be an indexed double category. The double Grothendieck construction∫∫
E is the double category with:

• Objects pairs (D,A) with D ∈D and A ∈ E (D).

• Vertical morphisms pairs ( f , f]) : (D,A)→ (D′,A′) with f : D→D′ vertical in D and f] : f∗(A)→
A′ in E (D′).

• Horizontal morphisms (g,g]) : (D,A)−7−→ (D′,A′) are pairs g : D−7−→ D′ and g] ∈ E (g)(A,A′).
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• Squares

(D,A) (D′,A′)

(D′′,A′′) (D′′′,A′′′)

(g,g])

( f , f]) α ( f ′, f ′])

(g′,g′])

is a square
D D′

D′′ D′′′

g

f α f ′

g′

such that E (α)(g]) · f ′] = fa ·g
′].

Composition is given as follows:

• Vertical composition is given by

( f ′, f ′])◦ ( f , f]) := ( f ′ ◦ f , f ′] ◦E ( f )( f])).

The vertical identities are (id, id).

• Horizontal composition is given by

(g′,g
′])◦ (g,g]) := (g′ ◦g,µ(g′],g]))

where µ : E (g′)⊗E (g)→ E (g′ ◦g) is the laxator.
The horizontal identities are (id,η(id)), where η is the unitor.

• Vertical and horizontal composition of squares are given as in D .

6 Indexed Double Functors Covariantly Represented by Dynamical Sys-
tems

In this section, we consider functors out of the indexed double category of dynamical systems. In par-
ticular, we will focus on covariantly representable functors. As we saw in Section 3, notions such as
trajectories, steady states, and periodic orbits of open dynamical systems are represented by covariant
morphisms out of simple systems. In this section, we will construct covariantly representable indexed
double functors into an indexed double category of spans (Definition 6.1).

In The steady states of coupled dynamical systems compose via matrix arithmetic [7], David Spivak
shows that taking steady states of deterministic automata (and other systems) gives a functor of wiring
diagram algebras into an wiring diagram algebra of matrices. In Theorem 4.40 of that paper, Spivak
shows that this functor factors through a wiring diagram algebra of “matrices of sets”4.

Our indexed double category of spans generalizes this algebra of matrices of sets and therefore also
the algebra of matrices. We can see a span V s←− X t−→W as a V ×W matrix of sets Xvw (the fibers over
v∈V and w∈W ), and composition of spans as matrix multiplication. As a result, we can see Theorem 6.2
as a generalization of Spivak’s [7, Theorem 4.40], showing that any covariantly representable structure

4See Definition 4.34 of ibid.
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associated to an open dynamical system — including not only steady states but also trajectories and
periodic orbits — composes via matrix arithmetic.

We begin by defining the codomain of these covariantly representable functors.

Definition 6.1. Let A be a category with finite limits, and consider the double categoy Span(A ) as with
vertical morphisms the spans in A and horizontal morphisms the maps in A . Note that it is the vertical
morphisms of Span(A ) which are the spans, contradicting a common (but not universal) convention.
We define the slice indexed double category A /(−) : Span(A )→ Cat to be given by the following
assignments:

• To every object X , A /X is the slice category of A over X . Note that this is equivalently the
category of vertical morphisms vSpan(A )(∗,A ).

• To every span X
f←− Z

g−→ Y , we assign the functor g! f ∗ : A /X → A /Y . Note that this is vertical
composition by the span.

• To every map f : X →Y , we associate the profunctor (A /X)
op×A /Y → Set assigning x : Z1→ X

and y : Z2→ Y to the set of commuting squares
Z1 Z2

X Y

x y

f


acted upon by composition on the left and right.

• To every map of spans
X1 X2

Z1 Z2

Y1 Y2

f1

g2

f2

g2

associate the morphism of profunctors which acts by pulling back along the first square and push-
ing forward along the second.

Theorem 6.2. Let
(

u
id

)
:
(

T S
S

)
�

(
I
S

)
be a (Bun,T )-dynamical system which exposes its entire state.

Then we have an indexed double functor

Interface

Cat

Span(Set)

∫
Bun

I

S

,−



Dyn

hDyn

 u

id

,−



Set/(−)

covariantly represented by
(

u
id

)
.
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The double functor
∫
Bun

((
I
S

)
,−
)

: Interface→ Span(Set) is given by interpreting Interface as a

double category of certain spans in
∫
Bun (by Proposition 4.2) and noting that this representable functor

preserves pullbacks.

The transformation hDyn
((

u
id

)
,−
)

: Dyn⇒ Set/(−) consists of:

• For every interface
(

I′

O′

)
, we have a functor Dyn

(
I′

O′

)
→ Set/∫

Bun

I
S

,

 I′

O′

 sending a

(
I′

O′

)
-dynamical system

(
u′

r′

)
to the set of covariant morphisms hDyn

((
u
id

)
,

(
u′

r′

))
together

with the projection of its first component to
∫
Bun

((
I
S

)
,

(
I′

O′

))
. This functor acts on morphisms

by composition.

• For every bundle map
(

g]
g

)
:
(

I′

O′

)
⇒

(
I′′

O′′

)
, we have a map of profunctors given by post-

composition:

(
T S′

S′

) (
T S′′

S′′

)

(
I′

O′

) (
I′′

O′′

)

T ϕ

ϕ


u′

r′

 u′′

r′′


g]

g





→



hDyn
((

u
r

)
,

(
u′

r′

))
hDyn

((
u
r

)
,

(
u′′

r′′

))

∫
Bun

((
I
S

)
,

(
I′

O′

)) ∫
Bun

((
I
S

)
,

(
I′′

O′′

))

T ϕ

ϕ

◦−


In his behavioral approach to control theory [8, 9], Willems looks not at the dynamical law governing
a system, but rather the trajectories of the system and the variables that they expose. In their Temporal
Type Theory [3], Schultz and Spivak give a definition of behavior type — a sheaf on the interval domain of
real numbers — which forms a foundation for a Willems-style analysis of various dynamical systems. A
Willems-style dynamical system is then a behavior type S of trajectories together with exposed variables
x : S→ V (landing in some behavior type of values V ). If V s←− X t−→W is a span representing a way
that the variables of sort V will be shared to form variables of sort W , then the system resulting from the
sharing of these variables is t!s∗x : S×V X →W . We can express this idea through the indexed double
category B/(−) : Span(B)→ Cat which assigns to each behavior type V of variables the category of
systems exposing variables of sort V , and which assigns to any span the variable sharing functor which
it describes.

We will show that taking solutions of continuous-time dynamical systems constitutes an indexed
double functor Dyn→ B/(−) taking a dynamical system to its behavior type of trajectories. Indexed
double functoriality here shows that plugging in exposed variables to parameters can be seen as an
instance of variable sharing. In particular, it shows that if one takes a system of systems of differential
equations with parameters, solves them in terms of those parameters, and then makes substitutions of
those parameters in terms of exposed variables of the systems, this is the same as substituting and then
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solving. The proof relies crucially on the representablility (by
( d

ds
id

)
:
(

T R
R

)
�

(
R
R

)
) of solutions of

continuous-time dynamical systems. We can see the following corollary as a paradigm for turning the
open dynamical system framework of free parameters (inputs) and exposed variables (outputs) coupled
by a dynamical law (the system itself) into a Willems-style behavioral dynamical system consisting of
trajectories and exposed variables.

Corollary 6.3. Let B denote the category of Schultz-Spivak behavior types. There is an indexed double
functor

Interface

Cat

Span(B)

Traj

Dyn

Sol

B/(−)

taking the behavior types of solutions of (Subm,T )-dynamical systems — that is, of continuous-time
dynamical systems.

Proof Sketch. We note that a solution of length ` is represented by the dynamical system( d
ds
id

)
:
(

T (0, `)
(0, `)

)
�

(
(0, `)
(0, `)

)
.

There is a functor IR/B → hDyn from the site IR/B of B (this is the twisted arrow category of the
one object category associated to the additive monoid of non-negative reals; see Definition 3.1 of [3]) to
the category of continuous-time dynamical systems and covariant morphisms sending ` to the dynami-

cal system
( d

ds
id

)
. Therefore, the various representable functors defined in Theorem 6.2 take values in

presheaves on IR/B. We may then check that the values actually land in sheaves by noting this property
for the presheaf of solutions.

7 Conclusion

In this extended abstract, we have laid out an abstract framework in which to study open dynamical
systems of many different kinds. We have analyzed morphisms between systems into two sorts — those
which act on parameters covariantly, and those which act on parameters contravariantly — and presented
a double category of dynamical systems formed by these two sorts of morphisms.

We saw trajectories and steady states as an example of covariant morphisms, and “plugging in vari-
ables to parameters” as an example of contravariant morphisms. These are not the only uses of these
morphisms. For example, in the monadic doctrine of Markov decision processes, hierarchical planning
[6] can be seen as an example of a contravariant morphism, a perspective which the author looks to take
in future work.

In Theorem 6.2, we showed that if one takes a system of open dynamical systems, finds their tra-
jectories, steady states, or periodic orbits, and then makes substitutions of their parameters in terms of
the exposed variables of the systems, this is the same as substituting and then finding those trajectories,
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steady states, or periodic orbits. These substitutions can be seen as a form of “matrix arithmetic” for
combining these covariantly representable structures associated to open dynamical systems.

This theorem suggests a possible way to speed up numerical approximation of large systems with
many repeated subparts. Namely, one approximates the solution for the various sorts of subparts in terms
of their parameters, and then substitutes in those solutions according to the scheme by which the large
system was formed out of its subparts. Exploring the viability of this approach will be the subject of
future work.
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