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Wiring diagrams as normal forms for
computing in symmetric monoidal categories

Evan Patterson David I. Spivak Dmitry Vagner

Applications of category theory often involve symmetric monoidal categories (SMCs), in which ab-
stract processes or operations can be composed in series and parallel. However, in 2020 there remains
a dearth of computational tools for working with SMCs. We present an “unbiased” approach to im-
plementing symmetric monoidal categories, based on an operad of directed, acyclic wiring diagrams.
Because the interchange law and other laws of a SMC hold identically in a wiring diagram, no rewrite
rules are needed to compare diagrams. We discuss the mathematics of the operad of wiring diagrams,
as well as its implementation in the software package Catlab.

1 Introduction

The syntax for an algebraic structure is often derived from its traditional axiomatization, without addi-
tional thought. A symmetric monoidal category (SMC) is defined through operations of composition,
identity, monoidal product, monoidal unit, and braiding, subject to various laws. Once it is decided how
to assign symbols to these operations, such as # for composition and ⊗ for the monoidal product, a sym-
bolic syntax for constructing objects and morphisms follows immediately. So, given morphisms, say
f : x→ x⊗ y and g : y⊗ z→ z, a new morphism can be constructed via such expressions as

( f ⊗ idz) # (idx⊗g).

Symbolic syntax has a long tradition in algebra. Its utility derives, on the one hand, from its ease in
writing and typesetting, and on the other, from its immediacy given an axiomatization of an algebraic
structure as a generalized algebraic theory.

But these are not the only desiderata for mathematical syntax. In general, the mathematical ob-
jects denoted by two different expressions may be equal under the axioms. A good syntax narrows the
gap between a mathematical object and its representation by avoiding redundancy. For example, since
monoidal products are associative in a strict SMC, the expressions f ⊗ (g⊗ h) and ( f ⊗ g)⊗ h denote
the same morphism; thus, it is standard practice to eliminate parentheses around the monoidal product,
writing simply f ⊗g⊗h.

Encoding algebraic equations into a simplified yet unambiguous syntax has important cognitive and
computational benefits. For humans, it substitutes visual inspection for equational reasoning, playing to
our cognitive strengths. For computers, it reduces possibly complex algorithms for checking equality to
a simple test of identity on a suitable data structure. From this perspective, the ideal syntax provides a
normal form, making two expressions identical if and only if they denote equal mathematical objects.

What is the right syntax for symmetric monoidal categories? Beginning with the Penrose graphical
notation for tensors [8], it was gradually understood that morphisms in a monoidal category are best
depicted by a two-dimensional syntax, with one axis representing composition and the other representing

http://dx.doi.org/10.4204/EPTCS.333.4


50 Wiring diagrams as normal forms for computing in SMCs

monoidal product. For example, the above expression ( f ⊗ idz) # (idx⊗g) becomes the string diagram

f
g

x x

y

z z

As string diagrams, both sides of the interchange law ( f # g)⊗ (h # k) = ( f ⊗ h) # (g⊗ k) of a monoidal
category have the same representation, namely:

f g

h k

String diagrams were first put on a rigorous footing by Joyal and Street, who showed that the diagram-
matic language is sound and complete for the equations between morphisms deducible from the axioms
of a strict symmetric monoidal category [5]. Diagrammatic languages are now known for other kinds of
monoidal categories, such as traced monoidal categories and hypergraph categories [10, 3].

For Joyal and Street, string diagrams are geometric figures in the plane or in a higher-dimensional
Euclidean space. This perspective, while intuitively appealing, is of little computational use, since geo-
metric objects are not readily translated into data structures. For computational purposes, we would like
to extract the combinatorial data defining a string diagram, much like a graph does for a graph embedding
or graph drawing.

Wiring diagrams were introduced in [9]. Though they are often depicted graphically, wiring diagrams
are combinatorial, rather than geometric, objects. They also differ from string diagrams in that they deal
only with the syntax of composition, and do not include explicit morphisms from a given SMC. More
precisely, wiring diagrams—say for representing compositions in symmetric monoidal categories—are
organized as the morphisms of a typed operad W . Composition of morphisms corresponds to nesting of
wiring diagrams, for example:

1

2 2

#1 = (1)

Note that in the symbolic syntax of a symmetric monoidal category, there are infinitely-many ways to
represent any of the wiring diagrams in (1), for example the middle one could be represented by tensoring
with an arbitrary number of monoidal units, but the wiring diagram represents exactly one element of the
set W (X1,X2;Y ), where X1 and X2 are the inner boxes and Y is the outer box.

A given model of W , which we can think of as a symmetric monoidal category C , is represented
as a functor H : W → Set, which we refer to as a W -algebra.1 Each box (object in W ) is sent by H to
the set of all C -morphisms of that shape, and each wiring diagram (morphism in W ) is sent by H to the
function that takes morphisms in C and composes them accordingly.

Operads of wiring diagrams can be used to model various sorts of categories, such as traced or hyper-
graph categories [12, 3]—whose string diagram languages we mentioned above—or even just ordinary
categories. Here we will focus on the operad W of wiring diagrams for symmetric monoidal categories.

1For now, we elide the fact that wires should be annotated by types corresponding to the objects of C .
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The aim of this paper is to show how W can serve as a foundation for the computer algebra of
symmetric monoidal categories, both practically and theoretically. Since the interchange law and other
axioms of an SMC hold identically within W , wiring diagrams are nearly normal forms for morphisms
in a free SMC, as will be explained. With this motivation, Section 2 describes an implementation of
the operad of wiring diagrams in Catlab.jl, a Julia package for applied category theory [7]. The operad
structure is taken as fundamental in Catlab and used to implement a diagrammatic syntax for symmetric
monoidal categories. The wiring diagram operad is then extended to SMCs with extra structure, such
as cartesian monoidal categories, biproduct categories, and traced monoidal categories. In contrast to
systems like Quantomatic [6] and Cartographer [11], Catlab is not a graphical editor or a proof assistant;
rather, it provides data structures and algorithms for computing with in symmetrical monoidal categories
for scientific and engineering applications.

The remainder of the paper is about the mathematics of the operad of wiring diagrams. After some
preliminaries on biproducts and spans in Section 3, an operad of wiring diagrams is constructed in Sec-
tion 4. The directed wiring diagrams are defined to satisfy an acyclicity condition, making them suitable
for symmetric monoidal categories. They are built using the categorical matrix calculus, which extends
the notion of an adjacency matrix of a directed graph. Finally, Section 5 shows how algebras on the wiring
diagram operad give rise to symmetric monoidal categories and, conversely, how symmetric monoidal
categories yield algebras on this operad. These two constructions are not inverse equivalences; however,
beginning with an SMC, the roundtrip does return an equivalent SMC. We will make the correspondence
more precise in Theorems 5.2 and 5.3.

2 Wiring diagrams in Catlab

In the Julia package Catlab, wiring diagrams are implemented as combinatorial data structures. Wiring
diagrams are akin to directed graphs but possess extra structure; namely each box—which plays the
role of a node—has an explicit set of input and output ports. Every wiring diagram has an underlying
directed graph, obtained by forgetting this extra structure. For implementation purposes, Catlab exploits
this hierarchy by building its data structure for wiring diagrams on top of graph data structures that
already exist in the Julia ecosystem.

The functionality for wiring diagrams is implemented in several layers. The bottom layer is the
core data structure and a low-level imperative interface for mutating it. Operadic composition—or
substitution—of wiring diagrams is defined using this interface. Finally, the operadic interface is used
to define a syntax for morphisms in symmetric monoidal categories. The three layers are summarized in
Sections 2.1, 2.2, and 2.3 respectively.

2.1 The wiring diagram data structure

The data structure for wiring diagrams is comprised of several data types. From the user’s perspective,
these types are:

1. WiringDiagram: a quadruple consisting of (i) a list of input port types and (ii) a list of output
port types, both for the outer box; (iii) a list of boxes, where the first and second entries are special
values representing the input and output types of the outer box and the remaining entries are boxes
inside the diagram, of type Box; and (iv) a set of wires, of type Wire.
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2. Box: a triple consisting of (i) a label or value for the box, (ii) a list of input port types, (iii) and a list
of output port types. Thus, a morphism f : x⊗y→ z would be represented as Box(:f, [:x,:y],

[:z]), where the Julia syntax :x denotes a symbol named “x”.
3. Wire: a source-target pair, where both the source and target are pairs of numbers identifying a box

in the diagram and an input or output port on that box. So, a wire from output port p on box i to
input port q on box j is Wire((i,p) => (j,q)).

As a small but complete example, the wiring diagram corresponding to the composite f #g : x→ z of
morphisms f : x→ y and g : y→ z is implemented as:

WiringDiagram([:x], [:z],

[ 1 => {inputs}, 2 => {outputs}, 3 => Box(:f, [:x], [:y]), 4 => Box(:g, [:y], [:z]) ],

[ Wire((1,1) => (3,1)), Wire((3,1) => (4,1)), Wire((4,1) => (2,1)) ])

For performance reasons, the wires in a wiring diagram are not actually stored as a set. Instead,
underlying each wiring diagram is a simple directed graph, as implemented by the Julia package Light-
Graphs.jl [1]. The vertices in the graph are numbered consecutively from 1 to n+ 2, where n is the
number of boxes in the wiring diagram. Vertices 1 and 2, labelled {inputs} and {outputs} above,
refer to the inputs and outputs of the outer box, respectively; the remaining vertices refer to boxes inside
the diagram. There is an edge between two vertices if and only if there is at least one wire between the
corresponding boxes.

Traversals on the wiring diagram are then delegated to the underlying directed graph. For example, to
find the in-neighbors or out-neighbors of a box, one simply finds the in-neighbors or out-neighbors of the
corresponding vertex in the underlying graph. The graph data structure is designed to do this efficiently.
Wiring diagrams can be accessed and mutated through a simple imperative interface. Boxes, ports, and
wires can be retrieved individually or iterated over, and boxes and wires can be added and removed from
an existing diagram.

2.2 Implementing the operad of wiring diagrams

Operadic composition of wiring diagrams as in (1) is supported through the function ocompose, with
two signatures:

ocompose(f::WiringDiagram, gs::Vector{<:WiringDiagram})::WiringDiagram

ocompose(f::WiringDiagram, i::Int, g::WiringDiagram)::WiringDiagram

The first signature corresponds to full (May-style) operadic composition ◦ and the second corre-
sponds to partial (Markl-style) operadic composition ◦i. Both methods are one-line wrappers around
the procedure substitute, which substitutes wiring diagrams for one or more boxes in another wiring
diagram. Mathematically, substitute simultaneously performs one or more non-overlapping partial
operadic compositions.

Substitution of wiring diagrams is implemented using the imperative interface. In outline, the algo-
rithm proceeds as follows:

1. Create a copy d of the original wiring diagram.
2. Add to d all the boxes from all the diagrams to be substituted.
3. Extend each wire in each substituted diagram to new a wire in d. This subroutine branches into

four different cases, shown in pseudo-Julia code in Listing 1.
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4. Remove from d all the boxes from the original diagram that were to be substituted, which in turn
removes any extraneous wires created during step 3.

function substitute_wires!(d::WiringDiagram, v::Int, sub::WiringDiagram)

for wire in wires(sub)

# Case 1: Passing wire.

if {wire source and target are on outer box}

for in_wire in {wires in d incoming to source outer port}

for out_wire in {wires in d outgoing from target outer port}

{add wire to d fusing in_wire -> wire -> out_wire}

end

end

# Case 2: Incoming wire.

elseif {wire source is on outer box}

for in_wire in {wires in d incoming to source outer port}

{add wire to d fusing in_wire -> wire}

end

# Case 3: Outgoing wire.

elseif {wire target is on outer box}

for out_wire in {wires in d outgoing from target outer port}

{add wire to d fusing wire -> out_wire}

end

# Case 4: Fully internal wire.

else

{add wire to d}

end

end

end

Listing 1: Pseudo-Julia code for main subroutine in substitution algorithm. Each wire substituted into
the new diagram is either passing, incoming, outgoing, or fully internal. The inner loops under each of
the cases are needed because a port may have many or no incident wires, representing copying, merging,
deleting, or creating.

2.3 Wiring diagrams as a syntax for SMCs

Having implemented the operad of wiring diagrams, it is now straightforward to define an alternate
syntax for symmetric monoidal categories using wiring diagrams. That is, we construct a symmetric
monoidal category whose morphisms are wiring diagrams in which each box has been filled with a
morphism. To compute the series composition f # g of morphisms f and g, one forms the following
wiring diagram

f g
.
.
.

.

.

.
.
.
.

and then performs an operadic composition. Apart from exception handling and formatting, the following
Julia code for the procedure compose is identical to the implementation in Catlab.

function compose(f::WiringDiagram, g::WiringDiagram)::WiringDiagram

@assert length(codom(f)) == length(dom(g))
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h = WiringDiagram(dom(f), codom(g))

fv, gv = add_box!(h, f), add_box!(h, g)

add_wires!(h, [[ (input_id(h),i) => (fv,i) for i in 1:length(dom(f)) ];

[ (fv,i) => (gv,i) for i in 1:length(codom(f)) ];

[ (gv,i) => (output_id(h),i) for i in 1:length(codom(g)) ]])

substitute(h, [fv,gv])

end

Similarly, to compute the parallel composition f ⊗g of two morphisms f and g, form the generic diagram
with two boxes composed in parallel and then perform an operadic composition:

f

g

.

.

.
.
.
.

.

.

.
.
.
.

The wiring diagram syntax provides a normal form for morphisms in a free symmetric monoidal
category, up to (simple directed) graph isomorphism. Specifically, two morphisms represented by wiring
diagrams are equal if and only if there is an isomorphism of the underlying graphs making the diagrams
identical as Julia data structures. Although the graph isomorphism problem is not known to be solvable
in polynomial time, in practice it can usually be solved efficiently. Moreover, the labels on the boxes
drastically restrict the possible matchings. Wiring diagrams thus constitute an effective normal form for
morphisms in a free SMC.

3 Biproducts, matrix calculus, and categories of spans

We will formally present a wiring diagram by encoding all the interconnections between its boxes as a
single span. Since the category of spans enjoys a biproduct structure, we can represent wiring diagrams
as matrices and their compositions using matrix algebra. We begin with a brief detour into biproduct
categories.

3.1 Morphisms as matrices

Let (C ,⊕,0) be a biproduct category, i.e., a monoidal category for which ⊕ is both a product and a
coproduct. Such categories can equivalently be seen as monoidal categories with a homomorphic supply
of bimonoids [4]. Given a morphism

t1⊕·· ·⊕ tm
f−→ v1⊕·· ·⊕vn

in such a category, we can extract the component ti f v j corresponding to a choice of direct summand
ti in the domain and v j in the codomain, by pre- and post-composing f with canonical inclusions and
projections:

ti t1⊕·· ·⊕ tn v1⊕·· ·⊕vm v j.
ιti f πv j

(2)

This procedure defines a map of type C
(⊕

i:I ti,
⊕

j:J v j
)
→ C (ti,v j) for finite sets I and J, to which

we can define a section by swapping the inclusion and projections in (2). We say that this section is the
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embedding of the component since it produces a morphism for which all other components are the zero
morphisms 0 : tk→ vl , i.e. the unique morphism of the form tk→ 0→ vl .

Any biproduct category is enriched in commutative monoids, with the sum f +g of two morphisms

of type t→ v given by t t⊕ t v⊕v v∆ f⊕g ∇ . Here ∆ and ∇ are the diagonal and co-
diagonal morphisms arising from the universal property of product and coproduct. By the naturality
of these maps, composition distributes over sums. This operation allows us to define the leftward map
in the bijection C

(⊕
i:I ti,

⊕
j:J v j

) ∼= ∏(i, j):I×J C (ti,v j) by simply summing across the embeddings of
each component. By the universal property of the biproduct, a morphism is fully specified by its com-
ponents. More formally, given a choice of direct sum decomposition on both domain and codomain, we
can represent f as the block matrix

f =

t1 f v1 · · · t1 f vn
...

. . .
...

tm f v1 · · · tm f vn


meaning that we can reason about morphisms by simultaneously breaking up both domain and codomain
into cases. As an example of this reasoning, we recover matrix multiplication from the composition of
two morphisms

s1⊕·· ·⊕ sk t1⊕·· ·⊕ tm v1⊕·· ·⊕vn.
f g

The si( f g)v j component is defined as the composite (ιsi f )(gπv j), where ιsi f is given by a sum of mor-
phisms of type si→ t1⊕·· ·⊕ tm and gπv j is given by a sum of morphisms of type t1⊕·· ·⊕ tm→ v j:

ιsi f = (si f t1)(ιt1)+ · · ·+(si f tm)(ιtm) and gπv j = (πt1)(t1gv j)+ · · ·+(πtm)(tmgv j).

Composing these sums, applying distributivity, and then noting that ιtk πtl = δk,l (the Kronecker delta),
we arrive at the familiar formula for the component of a matrix multiplication

si( f g)v j = ∑
i, j
(si f tk)(ιtk πtl )(tl gv j) = ∑

k
(si f tk)(tk gv j).

We can narrativize this expression as answering the question “how can we go from si to v j?” with the
response “through any one of the tk,” demonstrating that the sum can be interpreted as a disjunction. The
capacity that biproduct categories possess for declaratively formalizing such reasoning motivates us to
situate wiring diagrams in a certain biproduct category, which we now proceed to define.

3.2 Spans

Let C be an extensive category, i.e., one for which the coproduct functor C /x×C /y→ C /(x+ y) is
an equivalence of categories. For example, C could be any elementary topos. Recall the bicategory of
C -spans, whose objects are C -objects, morphisms X →Y are spans Y ← S→ X in C , and 2-morphisms
from Y ← S→ X to Y ← S′→ X are C -arrows S→ S′ commuting with the legs of the spans. Let SpC be
the category whose objects are C -objects and whose morphisms are isomorphism classes of spans in the
bicategory of C -spans. The coproduct in C is then the biproduct in SpC , which we denote as ⊕. This
means that we can compute with spans using the matrix calculus of the previous subsection.
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It is worthwhile to observe how the matrix calculus manifests itself in this concrete setting. Given a
span Φ : t1⊕·· ·⊕ tm→ v1⊕·· ·⊕vn and indices 1 ≤ i ≤ m and 1 ≤ j ≤ n, we can define a component
sub-span tiΦv j : ti→ v j via the following limit:

tiΦv j

ti Φ v j

t1⊕·· ·⊕ tm v1⊕·· ·⊕vn

The multiplication t⊕ t→ t and unit 0→ t morphisms are given by the spans

t⊕ t t⊕ t tid ∇ 0 0 tid !

and the comultiplication and counit are their transposes.
Let τ be a set, which we interpret as a set of types. We now specialize to the slice category C := Set/τ ,

for which an object is a function x→ τ , regarded as a τ-typed set; when we speak of its elements, we
mean elements of x. Note that C := Set/τ is extensive, so the above discussion applies. In the setting of
SpC we will refer to elements of the domain and codomain of a map as ports, to elements of the apex as
wires, and to the legs as attachment maps.

The sum of two spans t α vf− f+ and t β vg− g+ is given by the span

t α⊕β vf−Og− f+Og+

where, given f : t→ v and g : u→ v, fOg : t⊕u→ v is the composition ιt f + ιug. We hence interpret
this enrichment in commutative monoids as a disjunction: in α⊕β , the t ports attach to the v ports via
either α-wires or β -wires. Of course, the zero span is t← 0→ v, also denoted 0.

In linear algebra, block matrices of linear maps correspond to direct sum decompositions, while
ordinary matrices of scalars correspond to maximal decompositions into one-dimensional subspaces.
Similarly, in Sp(Set/τ), we have maximal decompositions into singleton sets. What serves as a basis in
this context is simply a choice of ordering on a set, which we represent via enumeration as a tuple. In
such a decomposition, every entry of the corresponding matrix represents a subspan whose domain and
codomain are both singletons. In this case, the attachment maps are trivial, and hence we can, without
loss of information, represent such entries via the set of wires that connect the domain and codomain
singletons. Furthermore, for the sake of notational convenience, if a span Φ is given by a diagonal matrix,
i.e. consists of a direct sum of singleton spans with apex sets S1, . . . ,Sn, we will write S1⊕·· ·⊕ Sn for
the total span.
Example 3.1. The (r,s, t)→ (x,y,z) matrix 0 {B} 0

0 0 0
{C} 0 {A,D}


represents the span {r,s, t} {A,B,C,D} {x,y,z}f− f+ given by

f−(A) = t f−(B) = r f−(C) = t f−(D) = t
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f+(A) = z f+(B) = y f+(C) = x f+(D) = z

We note that the span matrix is like an adjacency matrix, except that rather than merely indicating the
presence of connection via a truth value, the entries indicate the set of all such connections.

We note that the composite of the span {s} ← α → {t} and the span {t} ← β → {v} is the span
{s}← α×β →{v}. We can hence perform matrix multiplication as in the following example.
Example 3.2. The composite of the span matrices

( j,k) (r,s, t) (x,y,z)

[
0 {N} {L,M}

{O,P} 0 {Q}

] {F,G} {B} 0
0 0 {A,D}
{C} 0 {E}



is given by the following ( j,k)→ (x,y,z) matrix[
{L,M}×{C} 0 {N}×{A,D}+{L,M}×{E}

{O,P}×{F,G}+{Q}×{C} {O,P}×{B} {Q}×{E}

]
Given our interpretation of apexes as wires, allowing non-bijective attachment maps corresponds to

allowing wires to split, merge, terminate, and initiate. For the purposes of defining wiring diagrams
for (strict) symmetric monoidal categories, we will (in Definition 4.1) restrict the legs of our spans to
bijections; however, the more general definition can be readily used to define wiring diagrams for SMCs
in which objects are supplied with monoids and/or comonoids. In particular, this bijectivity restriction is
lifted in Listing 1, where ports can attach to multiple other ports on either side.

We denote the category of τ-typed finite sets and typed bijections between them as Bijτ and the
associated category of spans by Sp(Bijτ). One might remark that spans of bijections are equivalent
simply to bijections and wonder why Definition 4.1 uses the former. Indeed, since Sp(Bijτ) is equivalent
to Bijτ , we could have in principle simply defined such wiring diagrams in the latter category. However,
our composition formula mirrors the case analysis of Listing 1 by leveraging the matrix calculus of the
biproduct category Sp(Set/τ).

4 The operad of acyclic wiring diagrams

We are now equipped to characterize unbiased compositions of morphisms in a strict symmetric monoidal
category. We make the strictness assumption for a couple of reasons. First, any monoidal category is
monoidally equivalent to a strict one and hence no loss of generality is incurred. Second, the graphical
languages of string and wiring diagrams prohibits bracketing of parallel wires and hides unit wires,
corresponding to strict associativity and unitality.

In addition to requiring that our symmetric monoidal category be strict, we define the monoidal prod-
uct in an unbiased manner, as in [2]. Thus, we index the hom-sets by a pair of typed finite sets—rather
than typed finite ordinals—whose monoidal product give the domain and codomain respectively. In the
context of computer science, this choice corresponds to a dictionary-like representation of domain and
codomain rather than the more traditional list-like representation. We note that this does not imply that
we enforce commutativity of the monoidal product. For instance, the typed finite sets f ,g : {a1,a2}⇒ τ

given by f (a1) = t1, f (a2) = t2 and g(a1) = t2,g(a2) = t1 are distinct, though isomorphic.
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Fix a set τ , whose elements we think of as types. Next we will define the operad Wτ of acyclic
wiring diagrams. Roughly speaking, morphisms in Wτ specify compositions (serial, parallel, etc.) of
morphisms in an arbitrary strict unbiased SMC C that has been equipped with a function τ → Ob(C ),
i.e., for which an object of C has been chosen for each element of τ .

Definition 4.1. Let τ be a set, elements of which we call types. We define the τ-typed operad Wτ of
acyclic wiring diagrams as follows.

• an object, called a box, t is a τ-typed signed set; i.e. a pair (t−, t+) of τ-typed sets, where a τ-typed
set is an object of Set/τ; we call t− the inputs and t+ the outputs.

• a morphism, called a wiring diagram, Φ of type t1, . . . , tn→ v is a span in Bijτ

v−⊕ t+ ω t−⊕v+
Φsrc Φtgt

where t± :=
⊕n

i=1 ti
±. We call ω-elements wires and enforce the following:

? progress condition: imposing ti≺ t j whenever there is a wire A∈ω for which both Φsrc(A)∈
ti
+ and Φtgt(A) ∈ t j

−, the result must be a partial order on the ti.
• the identity morphism inertt : t→ t is given by the identity span

t−⊕ t+ t−⊕ t+ t−⊕ t+1 1

we note that the block matrix form in the summands is given by the identity matrix.
• given wiring diagrams Ψ : si1 , . . . ,simi → ti and Φ : t1, . . . , tn → v, we now define their ith partial

composite (sometimes called “circle-i” composition)

Ψ #i Φ : t1, . . . ,si1 , . . . ,simi , . . . tn→ v

Letting t¬i
± :=

⊕
j 6=it

j
±, we make the following abbreviations

u− := v−⊕ t¬i
+ u+ := t¬i

− ⊕v+

The composite Ψ #i Φ is then given by the block matrix of type u−⊕ s+→ s−⊕u+

Ψ #i Φ =

[
(u−Φti

−
)(ti
−

Ψs−) u−Φu+ +(u−Φti
−
)(ti
−

Ψti
+
)(ti

+
Φu+)

s+Ψs− (s+Ψti
+
)(ti

+
Φu+)

]
(3)

If ≺Φ and ≺Ψ are the orderings induced on the ti and s j by Φ and Ψ respectively, then one can
define an ordering ≺ on {t1, . . . ,sk1 , . . . ,skmk , . . . tn} as follows

ski ≺ sk j := ski ≺Ψ sk j ski ≺ t j := tk ≺Φ t j

t j ≺ ski := t j ≺Φ tk ti ≺ t j := ti ≺Φ t j

Thus Ψ #i Φ satisfies the progress condition.

We remark that the composite formula (3) is a declarative version of the imperative substitution
algorithm presented in Listing 1. In particular, the four cases in the algorithm correspond to the four
entries in the composite matrix: incoming wire, passing wire, fully internal wire, and outgoing wire.
Furthermore, the products within each component, e.g. (u−Φti

−
)(ti
−

Ψti
+
)(ti

+
Φu+), correspond to the fusing
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together of wires. Finally, the sum in the upper right-hand entry codifies the fact that the composite wiring
diagram still includes all of the wires, u−Φu+ , that did not interact with input box ti.

Each of the entries in the fully decomposed matrix representation of a bijective span as in Defini-
tion 4.1 is either the empty set or a singleton; we will write 0 in the former case and write A for the
singleton set {A}. Similarly, we will write (A,B) for {A}×{B}.
Example 4.2. We now define wiring diagrams corresponding to core SMC operations. We call these
W -representations for any set τ; though we introduce them in an example, they will play an important
role in the theory.

• Symmetry. Consider wires ω , no inner boxes, and outer box t = (ω,ω). For any permutation
σ : ω

∼−→ω , the W -representation of symmetry is given by the 0-ary wiring diagram symσ
ω : ()→ t

represented by the permutation matrix of σ . We let unitω := symid
ω . For instance here is the wiring

diagram and matrix form in the case where σ is the transposition of two elements.

A

B

[
0 A
B 0

]
• Sequential composition. Consider wires ω = {A,B,C}, inner boxes t, t′, and outer box v. The W

representation of sequential composition (shown left) is given by the wiring diagram seq(A,B,C) :
t, t′→ v with matrix of type v−⊕ t+⊕ t′+→ t−⊕ t′−⊕v+ shown right:

t t′

v

A B C

A 0 0
0 B 0
0 0 C


• Parallel composition. Consider wires ω = {A,A′,B,B′}, inner boxes t, t′, and outer box v. The

W representation of parallel composition is given by the wiring diagram para[ A B
A′ B′ ]

: t, t′→ v with

matrix of type v−⊕ t+⊕ t′+→ t−⊕ t′−⊕v+, where both v− and v+ are two-dimensional.

t

t′

v

A B

A′ B′


A 0 0 0
0 A′ 0 0
0 0 B 0
0 0 0 B′


Example 4.3. Non-example. Consider the following wiring diagram Φ, which has a loop.

t t′
0A

B

This wiring diagram is of type t, t′→ 0, with wires {A,B}, given by the span

Φsrc(A) = t+ Φtgt(A) = t′− Φsrc(B) = t′+ Φtgt(B) = t−

The ordering ≺ from Definition 4.1 is not a partial order: both t ≺ t′ and t′ ≺ t. Therefore this diagram
fails to satisfy the progress condition of Definition 4.1.
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Example 4.4. Interchange Law. To demonstrate composition, we will prove that W -representations
satisfy the interchange law.

t11 t12

t21 t22

v

u1•

u2•

B1

B2

A1
+A1

−

A2
+A2

−

C1
− C1

+

C2
− C2

+

t11 t12

t21 t22

v

u•1 u•2

B1
0B1

− B1
+

B2
0B2

− B2
+

A1
+A1

−

A2
+A2

−

C1
− C1

+

C2
− C2

+
=

We wish to show the following diagram commutes:

t11, t21, t12, t22 u1•,u2•

u•1,u•2 v

seq
ω1 ,seqω2

para
η1 ,paraη2 paraη

seqω

where t11, t12, t21, t22 are inner boxes, u1•,u2•,u•1,u•2 are intermediary boxes, v is the outer box, and the
subscripts on the morphisms correspond to the following wire tuples:

ω
1 = (A1

+,B
1,C1
−) ω

2 = (A2
+,B

2,C2
−) ω = (A1

−⊕A2
−,B

1
0⊕B2

0,C
1
+⊕C2

+)

η
1 =

[
A1
+ B1

−
A2
+ B2

−

]
η

2 =

[
B1
+ C1

−
B2
+ C2

−

]
η =

[
A1
− C1

+

A2
− C2

+

]
The composite spans are represented as matrices of type

v−⊕ t11
+ ⊕ t21

+ ⊕ t12
+ ⊕ t22

+ → t11
− ⊕ t21

− ⊕ t12
− ⊕ t22

− ⊕v+

where v± are two-dimensional; we now compute these composites to be as follows:

seqω1 ,seqω2 #paraη =


(A1
−,A

1
+) 0 0 0 0 0

0 (A2
−,A

2
+) 0 0 0 0

0 0 B1 0 0 0
0 0 0 B2 0 0
0 0 0 0 (C1

−,C
1
+) 0

0 0 0 0 0 (C2
−,C

2
+)



paraη1 ,paraη2 # seqω =


(A1
−,A

1
+) 0 0 0 0 0

0 (A2
−,A

2
+) 0 0 0 0

0 0 (B1
−,B

1
0,B

1
+) 0 0 0

0 0 0 (B2
−,B

2
0,B

2
+) 0 0

0 0 0 0 (C1
−,C

1
+) 0

0 0 0 0 0 (C2
−,C

2
+)


These matrices of sets are isomorphic since they have isomorphic sets (singleton and empty sets) in
corresponding entries.
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5 Operad algebras and symmetric monoidal categories

With the operad Wτ of acyclic wiring diagrams (whose wires are labeled by a chosen set τ) in hand, we
now formalize how it captures the compositional structure of symmetric monoidal categories. Recall that
a Wτ -algebra is an operad functor:

H : Wτ → Set,

where Set is the operad corresponding to the symmetric monoidal category (Set,×,1). We will now
show precisely how such algebras correspond to strict SMC’s. Before doing so, we will first characterize
Wτ in terms of generators.

Lemma 5.1. The operad Wτ is generated by sym,seq,para defined in Example 4.2, and these satisfy the
usual axioms (parallel and sequential unitality and associativity, interchange, and permutation).

Sketch of proof. We proceed by induction on the number of inner boxes. Let Φ : t1, . . . , tn → v be a
morphism. If n = 0 then this is just some wire permutation symσ . For n≥ 0, the progress condition gives
a partial ordering on boxes. Without loss of generality, suppose that t1 is minimal. Then we can rewrite
the diagram in the form

t1

(4)

where all the wires shown can represent multiple wires (possibly none). The wiring diagram in (4) can be
written as a sequential composite of parallel composites. An example axiom relating series and parallel
composition was proved in Example 4.4.

We now show how W -algebras give rise to SMC’s.

Theorem 5.2. Let τ be a set. There is a fully faithful functor from the category of Wτ -algebras to
that of strict SMC’s whose objects are τ-typed finite sets and whose morphisms are identity-on-objects
symmetric monoidal functors.

Sketch of proof. Let H : Wτ → Set be a functor. We need to define an SMC (C ,⊗, I) with objects τ-
typed finite sets; in particular, we need to define the hom-set for a given pair of objects (t−, t+)∈Ob(C ).
But since objects in Wτ are exactly such pairs, we may simply use H:

C (t−, t+) := H(t−, t+). (5)

We will obtain the identities, composition, and monoidal structure of C , by applying H to various wiring
diagrams.

For any object A ∈ Ob(C ), consider the box t = (A,A) and the 0-ary wiring diagram unitA : ()→ t
given by A A . We obtain a function H(unitA) : 1→ H(A,A), and we define the identity on A to be
the image of the unique element.

Given objects A,B,C∈Ob(C ), we need a function Hom(A,B)×Hom(B,C)→Hom(A,C). We obtain
it by applying H to the wiring diagram seq(A,B,C) : (A,B),(B,C)→ (A,C), giving

#A,B,C := H(seq(A,B,C)) : H(A,B)×H(B,C)→ H(A,C).
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Similarly, given objects A,A′,B,B′ ∈ Ob(C ), parallel composition is defined by

⊗A,A′,B,B′ := H
(
para[ A B

A′ B′ ]

)
: H(A,B)×H(A′,B′)→ H(A⊗A′,B⊗B′).

These two compositions are respectively depicted below.

A B C

A B

A′ B′

The interchange law was established in Example 4.4, and the others, unitality and associativity of
serial composition, and unitality, associativity, and symmetry of parallel composition, are similar.

It remains to show that for any two Wτ -algebras H,H ′ with associated SMCs C ,C ′, we have a
bijection between the set of natural transformations H → H ′ and that of identity-on-objects symmet-
ric monoidal functors C → C ′. A natural transformation α : H → H ′ defines a function H(t−, t+)→
H ′(t−, t+), which by (5) defines the required functor on hom-sets. This functor respects identity, com-
position, and the symmetric monoidal structure by the naturality of α with respect to the morphisms in
Wτ that correspond to these structures.

The SMC resulting from the procedure in Theorem 5.2 is free-on-objects. In the next theorem we will
prove that the functor from Theorem 5.2 is 2-essentially surjective: every symmetric monoidal category
is equivalent to one coming from an W -algebra.

Theorem 5.3. To every SMC (C ,⊗, I) there is an associated WOb(C )-algebra HC . If we then apply the
construction of Theorem 5.2 to HC to obtain an SMC C ′, there is an induced equivalence of symmetric
monoidal categories C ′→ C .

Sketch of proof. Let (C ,⊗, I) be a symmetric monoidal category. We define a functor HC : WOb(C ) →
Set as follows. Suppose given a box, i.e. an object (t−, t+) in WOb(C ), where t− : S− → Ob(C ) and
t+ : S+→ Ob(C ) are the typed finite sets. To it we assign the hom-set

HC (t−, t+) := C

(⊗
s∈S−

t−(s),
⊗
s∈S+

t+(s)

)
. (6)

By Lemma 5.1, WOb(C ) is generated by the morphisms para,seq, and sym corresponding to parallel com-
position, series composition, and permutation, and that these morphisms satisfy well-known relations.
Thus to give the action of HC on morphisms, it suffices to say how it acts on these generators, and show
that relations hold. For the morphism seq(A,B,C) in WOb(C ) representing series composition

t t′

v

A B C

we need to give a function HC (A,B)×HC (B,C) → HC (A,C). By definition this is just a function
C (A,B)×C (B,C)→ C (A,C), and of course we use the composition function #A,B,C from C as a cate-
gory. The case for parallel composition (resp. symmetry) is similar: one uses the monoidal product (resp.
symmetry) from C . These satisfy the required diagrammatic relations because by definition C satisfies
the laws of monoidal categories.
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Finally we consider the roundtrip, starting with C , constructing HC as above, and then applying the
construction of Theorem 5.2 to obtain a new SMC C ′. The objects of C ′ are the Ob(C )-typed finite sets,
and there is a surjection Ob(C ′)→ Ob(C ) given by sending t : S→ Ob(C ) to

⊗
s∈S t(s). At this point,

(5) and (6) provide a bijection C ′(t−, t+)→ C (
⊗

s∈S− t−(s),
⊗

s∈S+ t+(s)), which one can check is part
of a surjective-on-objects fully faithful symmetric monoidal functor.
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