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We describe first steps towards a system for automated triangle constructions in absolute and hy-
perbolic geometry. We discuss key differences between constructions in Euclidean, absolute and
hyperbolic geometry, compile a list of primitive constructions and lemmas used for constructions
in absolute and hyperbolic geometry, build an automated system for solving construction problems
and test it on a corpus of triangle-construction problems. We also provide an online compendium
containing construction descriptions and illustrations.

1 Introduction

Ruler1 and compass triangle constructions (abbr. RC-constructions) have been intensively studied in
mathematics and mathematical education since ancient Greeks, for now more than two and a half thou-
sand years. Triangles are also a very nice polygon to develop and test artificial intelligence and automated
reasoning tools, and systems that automatically solve RC-construction problems are actively being de-
veloped (e.g., ArgoTriCS [10]).

Construction problems may require constructing a triangle given some of its significant points.
William Wernick [18] has given an exhaustive catalogue of all such problems formulated over the follow-
ing significant points: three vertices A, B, C, circumcenter O, three side midpoints Ma, Mb, Mc, centroid
G, three feet of altitudes Ha, Hb, Hc, orthocenter H, three feet of internal angle bisectors Ta, Tb, Tc, and
incenter I (see Figure 1)2. All problems require constructing a triangle given its three distinct significant
points (from those listed). There are 139 such problems that are significantly different. Some problems
are redundant (e.g., the triple A, B, and Mc is redundant since the midpoint Mc can be constructed when
A and B are given). Some problems are locus dependent (e.g, the triple A, B, and O is solvable only
if O belongs to the perpendicular bisector of the segment AB). When redundant and locus dependent
problems are excluded, there remain 114 problems, and Wernick solved 65 of these, leaving the others
with an unknown status. In the meantime status of all problems from the Wernick’s list has been de-
termined, by either solving them, or proving that required triangles are not constructible by using only
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1Usually only a straightedge (ruler with no marks) is allowed.
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http://dx.doi.org/10.4204/EPTCS.352.3
https://orcid.org/0000-0003-0526-899X
https://orcid.org/0000-0001-6371-3081
https://orcid.org/0000-0001-7219-6960
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ruler and compass: there are 74 solvable problems, 39 unsolvable, 3 redundant and 23 locus dependent
problems [17].

A B

C

MaMb

Mc

O
G

Hc

Hb

HaH

Tc

Tb

TaI

Figure 1: Significant points from Wernick’s corpus.

RC-constructions are usually done in the framework of Euclidean geometry. Triangle constructions
in other geometries (e.g., hyperbolic) have been studied, but to much lesser extent. In this paper we inves-
tigate automated triangle constructions in absolute and hyperbolic geometry (focusing on the Poincaré
disc model). We describe an automated solver for those problems, based on our Euclidean triangle
construction solver ArgoTriCS. We describe all changes that have been necessary to adapt ArgoTriCS
to fully automatically find triangle constructions in absolute and hyperbolic geometry. We apply the
modified system to Wernick’s corpus and summarize the current results.

1.1 Related work

Constructions in hyperbolic geometry. The theory of hyperbolic constructions was almost entirely de-
veloped by Russian-writing mathematicians (e.g., Mordoukhay-Boltovskoy [13]). Pambuccian gives
constructive axiomatizations of several geometries [14], including Euclidean, absolute and hyperbolic
geometry. Unlike traditional geometry axiomatizations (e.g., Hilbert’s and Tarski’s) that use only re-
lation and no function (operation) symbols, Pambuccian does quite the opposite and gives axiomatic
systems that use only function and no relation symbols. There are several toolboxes in dynamic ge-
ometry systems (GeoGebra, Geometer’s Sketchpad, Cinderella, etc.) that facilitate manual step-by-step
constructions in Poincaré disc model.

Automated triangle constructions. Despite long tradition of RC-constructions, there are quite few
systems that automate them. Schreck developed Progé [15] – a general framework implemented in
PROLOG where different kind of geometric objects (not only triangles) can automatically be constructed.
Gao and Chou applied algebraic approach and used Wu’s method [19] or Gröbner bases [3] to find
locations of unknown objects from the locations of known objects and determine RC-constructibility [5].
Schreck [16] also focused on the algebraic approach and compared Gao and Chou’s method with the
Lesbegue’s method using them to show non-constructibility, but also to extract some RC-constructions
from algebraic methods. Gulwani et al. [6] formulated a logic and a programming language of geometry
constructions and then applied methods for program synthesis to obtain RC-constructions. Marinković
and Janičić [9, 10] focused on triangle construction given its significant points. Their system ArgoTriCS
is capable of solving 66 out of 74 solvable problems from Wernick’s list. It can also detect all redundant
and locus dependent problems from this list.

As far as we know, there has been no previous research on automated triangle constructions or au-
tomated theorem proving in non-Euclidean geometries. Algebraic approach that is very successful for
Euclidean geometry is hard to apply in the hyperbolic setting since distance constraints are not describ-
able using only polynomials (distances involve logarithms of cross-ratio).
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2 ArgoTriCS

ArgoTriCS is a PROLOG system that can solve geometry construction problems automatically, given
some background geometrical knowledge [10]. It generates informal description of found construction
in natural language (in English) and formal description in GCLC language [8], accompanied by a cor-
responding illustration. It also generates non-degeneracy conditions which guarantee that the obtained
solution exists and has support for proving that generated constructions are correct by using OpenGeo-
Prover [11] and provers available within GCLC tool.

The knowledge base that the system requires was identified through a careful analysis of construc-
tions available in the literature. We came up to a core geometrical knowledge needed for solving triangle
construction problems from Wernick’s corpus. This knowledge was split into three sets: set of defini-
tions, set of lemmas, and set of primitive constructions. We distinguish between instantiated and general
definitions and lemmas. For instance, in a given triangle there is only one orthocenter, one centroid,
and one circumcenter. Therefore the lemma of Euclidean geometry stating that these three points are
collinear and that the centroid is between circumcenter and orthocenter and is twice as far from the or-
thocenter than from the circumcenter is an instantiated lemma. On the other hand, the lemma stating that
the center of a circle belongs to the bisector of an arbitrary chord of that circle is a general lemma, and
therefore it is applicable to any chord of any circle. However, before the search for a construction starts,
general definitions are instantiated with all relevant objects and added to the knowledge base as derived
definitions, and, similarly, general lemmas are instantiated with objects that satisfy their preconditions
and added to the knowledge base as derived lemmas. Primitive constructions used in the system are
always non-instantiated.

The search procedure starts from the given points and tries to construct all three vertices of the trian-
gle. Primitive constructions are used to construct new objects from the current ones: if some primitive
construction can be instantiated so that all objects from its preconditions are already constructed, but its
resulting object is not yet constructed, then the object is added to the set of constructed objects. Let us
consider the primitive construction saying that for two given points one can construct the line passing
through them; if, for instance, the circumcenter O of the triangle ABC and the midpoint Ma of the side BC
are already constructed, but not the perpendicular bisector ma of the side BC, we can use this primitive
construction, construct the line ma and add it to the set of constructed objects. After successful applica-
tion of one primitive construction, the search for the next applicable primitive construction starts from the
beginning. If all three vertices of triangle are constructed, the search succesfully finishes. If no primitive
construction is applicable and at least one of the vertices is not yet constructed, the problem is declared
unsolvable using given knowledge base (however, it does not mean that it is not constructible given ruler
and compass). Some additional techniques are employed in order to make the search process more effi-
cient. For instance, only relevant objects are constructed – a midpoint of a segment determined by two
known points is constructed only if it appears in a definition or a lemma involving some object, not yet
constructed. Therefore, definitions and lemmas guide the construction process. After the construction is
automatically generated, it is simplified and all irrelevant steps that are not used for the construction of
triangle vertices are eliminated.
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Figure 2: Construction of triangle ABC in Euclidean geometry
given the vertex A, circumcenter O, and centroid G.

Example 1 Let’s take a look at one construction automatically found by ArgoTriCS. The problem is to
construct triangle ABC given vertex A, circumcenter O and its centroid G. The sequence of construction
steps is the following (see Figure 2):
Step 1. Construct the point Ma for which holds −−→AMa/

−→AG = 3/2;
Step 2. Construct the point H for which holds −→OH/

−→OG = 3;
Step 3. Construct the line ha through the points A and H;
Step 4. Construct the circle κ centered at point O passing through point A;
Step 5. Construct the line a perpendicular to the line ha passing through point Ma;
Step 6. Construct the intersection points B and C of the circle κ and the line a.

The facts used for generating this solution are that centroid G divides the median AMa in the ratio 2 : 1
and that centroid G is between circumcenter O and orthocenter H and twice as far from the orthocenter
than from the circumcenter.

Solving time of different construction problems differ a lot: for most problems it is a couple of
milliseconds, while for some (e.g. locus dependent problems) it can last more than an hour. Most of the
generated constructions are the same as the ones found in literature.

2.1 Primitive constructions for Euclidean geometry

Here we list a few primitive constructions that ArgoTriCS uses for generating constructions in the frame-
work of Euclidean geometry. Note that high-level constructions (such as dropping a perpendicular or
constructing a parallel) can be expressed in terms of basic, low-level RC-constructions.
1. Given points X and Y one can construct a line XY ;
2. Given two distinct points X and Y it is possible to construct a circle centered at point X which passes
through the point Y ;
3. Given two lines, it is possible to construct their intersection point;
4. Given a point X and a line p one can construct a line q which passes through the point X and which
is perpendicular to the line p;
5. Given points X and Y one can construct the bisector of the segment XY ;
6. Given a point X and a line p one can construct a line which passes through the point X and which is
parallel to the line p;
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7. Given points X , Z, and W , and a rational number r (given by its numerator and denominator) one can
construct a point Y for which holds: −→XY/−→ZW = r.

2.2 Definitions and Lemmas for Euclidean geometry

Let’s take a look at the couple of definitions used by ArgoTriCS.
1. Circumcenter O is the intersection point of the perpendicular bisectors of the segments BC and AC;
2. Orthocenter H is the intersection point of the altitudes ha and hb;
3. Feet of altitudes Ha, Hb, and Hc are intersection points of altitudes with opposite sides of triangle;
4. Circumcircle is the circle centered at circumcenter passing through point C.

Here we list a few instantiated and one general lemma used for carrying out constructions in Eu-
clidean geometry and used by ArgoTriCS.
1. Points C, Hb, and Hc belong to the circle centered at point Ma passing through point B; points A, Ha,
and Hc belong to the circle centered at point Mb passing through point C; points B, Ha, and Hb belong to
the circle centered at point Mc passing through point A;
2. −→AG/

−−→AMa = 2/3, −→BG/
−−→BMb = 2/3, −→CG/

−−→CMc = 2/3;
3. Lines MaMb and AB are parallel; lines MaMc and AC are parallel; lines MbMc and BC are parallel;
4. 6 HAI = 6 IAO, 6 HBI = 6 IBO, 6 HCI = 6 ICO;
5. Center of an arbitrary circle belongs to the bisector of an arbitrary chord of that circle.

3 Triangle constructions in non-Euclidean geometries

In the rest of the text we shall assume the basic knowledge about hyperbolic geometry and its models
(e.g., Poincaré disk model). For more details on hyperbolic geometry and its relations to Euclidean geom-
etry we refer the readers to classic literature [4, 12]. Also, for the avid readers, we strongly recommend
reading the original works of Lobachevsky and Bolyai.

First, let us emphasize the relation between absolute geometry and the Euclidean or hyperbolic set-
ting. It is well known that the absolute geometry is based on four groups of axioms: incidence, order,
congruence, and continuity. By adding the appropriate axiom of parallelism, we get either Euclidean or
hyperbolic geometry.

Recall that the question of parallelism is basically the following: In Euclidean geometry there is a
unique line parallel to a given line a through a point A not on the line, while in hyperbolic geometry there
are infinitely many parallels to a through a point A. However, there are exactly two parallel lines that
contains the limiting parallel rays (in Poincaré disc model those are h-lines meeting only at the infinity,
i.e. on the absolute) and those two lines we call parallel to a line a. All the other lines not intersecting
line a are called hyperparallel. For example, a line through point A that is parallel/hyperparallel to line
BHb is the line AHa from the middle/right picture of Figure 3, respectively.

Many statements related to the geometry of a triangle can be proved without a notion of parallelism.
Let us mention some of the main ones:
1. The sum of internal angles of a triangle is less or equal to π .
2. The three medians of a triangle intersect in one point (the centroid G).
3. The three internal angle bisectors of a triangle intersect in one point (the incenter I).
4. The perpendicular bisectors of triangle sides belong to the same pencil of lines (see [4]). The same
holds for the altitudes of a triangle.
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In the Euclidean case, the sum of the internal angles of each triangle is exactly π , the perpendicular
bisectors of triangle sides are concurrent lines that intersect in the circumcenter O and altitudes are also
concurrent and intersect in the orthocenter H. In the hyperbolic case, the sum of the internal angles
of each triangle is always less than π . Also, unlike the Euclidean case, similar triangles are always
congruent. As illustrated in Figure 3, in the hyperbolic case the altitudes of the triangle may not intersect.
The same holds for the perpendicular bisectors. Namely, altitudes/perpendicular bisectors of triangle
belong to the same pencil of lines. In the Euclidean case, this pencil is always elliptic, i.e. the lines are
concurrent, but in the hyperbolic case, it can also be parabolic (lines are parallel) or hyperbolic (lines are
hyperparallel, i.e. they poses a common perpendicular).
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Figure 3: Elliptic, parabolic, and hyperbolic pencil of altitudes.
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Therefore, one can expect many similarities, but also many differences between constructions in
Euclidean and hyperbolic geometry.

Hyperbolic instruments. Ruler and compass can be used to draw points, straight lines, and circles,
and these are the most important loci of points in Euclidean geometry. For example, the set of points
on one side of a line, equidistant from that line forms another line (parallel to the original). All vertices
of angles of given size subtending a line segment lie on a circular arc. In hyperbolic geometry there
are other types of curves that can be of interest. For example, the equidistant curve is not a line, but a
hypercycle (Figure 4). Another useful curve type is horocycle (Figure 5) whose normal lines all converge
asymptotically in the same direction (in the Euclidean case horocycles are lines, and all normal lines of
a horocycle are parallel and thus converge in the same direction).

Oa

P

Figure 4: Hypercycle (solid blue) through
point P with its axis (dotted red)
and normal (dashed)

Oa

Figure 5: Horocycle (solid blue) and
its perpendicular
lines (dashed)

Therefore, it is very important to make precise what instruments can be used in a construction and
what curves can be constructed. Various hyperbolic instruments have been proposed [2]. The hyperbolic
ruler draws a h-line given its two different points, the hyperbolic compass draws a h-circle given its center
and a point, the hypercompass draws a hypercycle given its central line and radius, and the horocompass
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draws a horocycle through a given point, given its diameter through the point with its direction. An
important (and a bit surprising) result in the theory of hyperbolic constructions shows that in conjunction
with a hyperbolic ruler, all three compasses are equivalent (everything that can be constructed by a
hyperbolic ruler and one of these three compasses can also be constructed by a hyperbolic ruler and any
other one of these three compasses) [13, 4]. Using a combination of a hyperbolic ruler and any of the
three compasses one can also draw a h-line through a given point parallel to a given h-ray and a h-line
parallel to one and perpendicular to the other given h-line [7, 2].

Additional confusion can come from the fact that in some models of hyperbolic geometry circles rep-
resent many different hyperbolic curves. For example, in the Poincaré disc model h-lines are represented
by Euclidean circular arcs that are orthogonal to the unit circle (absolute), h-circles are represented by
Euclidean circles fully contained within the absolute (however, the h-center does not need to match the
Euclidean center), hypercycles are represented by Euclidean circular arcs that are not orthogonal to the
unit circle, and horocycles are represented by Euclidean circles touching the absolute from inside. There-
fore most diagrams in the Poincaré model can be drawn using Euclidean ruler and compass. However,
such constructions are not intrinsic constructions of hyperbolic geometry. In other models, things are
quite different. For example, in the Beltrami-Klein model h-lines are Euclidean segments (chords of the
absolute), but h-circles are Euclidean ellipses.

Pseudo-elements. At first sight, many fundamental theorems of Euclidean geometry fail to hold in
hyperbolic geometry. For example, in Euclidean geometry the orthocenter, the circumcenter and the
centroid of a triangle are collinear and lie on a so called Euler line of the triangle. Under standard
definitions of medians and altitudes, this does not hold in hyperbolic geometry (moreover, orthocenter
and circumcenter may not even exist). However, it turns out that in the Euclidean case many notions can
be defined in equivalent ways.

For example, a median is the segment that connect a triangle vertex with the midpoint of its opposite
side, but is also a segment that divides the triangle area in two exact halves. In Euclidean geometry
those two notions coincide and the same term is used in both cases. However, since in hyperbolic
geometry these notions are different, segments that connect triangle vertices with midpoints of opposite
triangle sides are usually called medians3, and segments that divide triangle area in halves are called
pseudomedians [1]. Similarly, altitudes are defined using lines perpendicular to the opposite triangle
sides. However, they could be also defined by noting that the altitude feet Ha, Hb, and Hc are three
unique points on triangle sides BC, AC, and AB such that the quadrilaterals ABHaHb, ACHaHc, and
BCHbHc are all cyclic. The second definition gives the notion of pseudoaltitudes (Figure 6).
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Figure 6: Alternative definitions of altitudes:
orthocenter H and pseudoorthocenter H ′

3To be more precise, these are h-medians as they connect vertices with h-midpoints of opposite sides.
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The pseudoorthocenter (intersection of pseudoaltitudes), the circumcenter, and the pseudocentroid (in-
tersection of pseudomedians) are always collinear and lie on a line that deserves to be called the (pseudo)
Euler line [1]. This suggests that many Euclidean constructions that use the Euler line could be trans-
ferred to hyperbolic geometry, if alternative definitions are used. We advocate that hyperbolic triangle has
more significant points than Euclidean. Some significant points that are different in hyperbolic geometry
coincide in Euclidean geometry (for example, a hyperbolic triangle has both the orthocenter and pseu-
doorthocenter, but they always coincide for Euclidean triangles). Therefore, Wernick’s corpus should
be extended taking into account many different characterizations of points and notions that coincide in
Euclidean, but are different in hyperbolic geometry. This way, we may not only consider the pseudo
versions of the listed problems, but we may also include the combinations of regular and pseudo-points
(e.g. construct a triangle given both the orthocenter and the pseudoorthocenter).

An important challenge is to determine RC-constructibility and construction procedures for such ex-
tended set of points. For example, while it is easy to construct the classic centroid of a hyperbolic triangle
(as an intersection of h-medians) it is challenging (if possible at all) to construct its pseudocentroid. The
same holds for pseudoorthocenter. Since our main focus at this point is to consider problems that can be
easily RC-constructed, the pseudo objects will not be subject of the present research.

4 Automated triangle construction in non-Euclidean geometries

4.1 Primitive constructions

Which primitive constructions can be transferred from Euclidean to hyperbolic geometry? If we take a
closer look at the list given in Subsection 2.1, we see that the primitive construction 7 cannot be carried
out in the hyperbolic case. The notion of ratio of collinear points must be substituted by the cross-ratio of
collinear points. However, in a majority of solutions, we only use two special cases: for the fixed points
X and Y construct a point Z that is either the midpoint of the segment XY or is symmetric to the point X
wrt. the point Y . Since these constructions can be performed in hyperbolic geometry, they will substitute
the more general Euclidean one without much loss:
7a. Given points X and Y construct the midpoint Z of the segment XY ;
7b. Given points X and Y construct the point Z symmetric to X wrt. point Y .

For example, the first construction is used to construct point Ma given the points B and C, while the
second one is necessary when points B and Ma are given and we want to construct point C.

The rest of the list of primitive constructions given in Section 2.1 can be carried out in the hyperbolic
case as well with one exception: the primitive construction 6 does not have a unique solution in the
hyperbolic case (there are two lines through a given point parallel to the given line). Additionally, we
can construct infinitely many lines containing the given point that have no intersection with the given
line, i.e. the construction of the hyperparallel lines is also possible. However, the need to construct an
arbitrary line through a point that diverges from a given line rarely arises. Usually, we need to choose
a specific line out of this set. But what choice is natural to make? One of the characterizations of
hyperparallel lines is that they have a unique common perpendicular. Therefore, we can say that we
know how to construct a line b 3 A hyperparallel to a such that the given point A 6∈ a is the foot of the
common perpendicular of a and b.

Now, in the hyperbolic case, we have two primitive constructions substituting the primitive construc-
tion 6:
6a. Construct the line p through point P that is parallel in the given direction to the line passing through
points X and Y ;
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6b. Construct the line p through point P that is hyperparallel to the line passing through X and Y , with
P being the foot of their common perpendicular.

Further, we can extend the list with two new primitive constructions that are also applicable in the
Euclidean case. These were not previously used since they were subsumed by constructions based on
stronger statements specific to the Euclidean setting (for illustration, see Example 3). However, in abso-
lute geometry, it is natural to consider the image of some object under the reflection wrt. the given line,
since every plane isometry can be represented as a composition of a finite number of reflections. Hence,
we add the following:
8. Given line m and point P, one can construct a point which is an image of point P under the reflection
wrt. line m;
9. Given point M and line p, one can construct a line which is an image of line p under the reflection
wrt. point M.

Note that the reflection wrt. the point can be represented as a composition of two reflections wrt. the
perpendicular lines intersecting in that point.

4.2 Definitions and Lemmas

Definitions of the basic elements are given in terms of absolute geometry, hence they can be transferred
from the Euclidean case. However, one should always have in mind that when saying “line” we are
thinking of “h-line”. The illustration of significant points from Wernick’s corpus in the hyperbolic setting
is given in Figure 7.

Although some of the lemmas from the Euclidean case can be transferred to the hyperbolic setting
(see Lemma 5), most of them needs to be discarded or adapted.

For example, the lemmas referring to the ratio of segments, especially the ones related to the centroid
G of the triangle, do not hold in the hyperbolic case, hence the construction presented in the Example 1
is not possible in the hyperbolic setting. Despite the median concurrence theorem being true, the ratios
from Lemma 2 do not hold. Also, Lemma 1 will hold only in the pseudo-case.

On the other hand, in the Euclidean case the midline of the triangle is parallel to the corresponding
side of the triangle, while in the hyperbolic case those lines are hyperparallel. Hence, the Lemma 3 has
its hyperbolic version:
3h Lines MaMb and AB are hyperparallel and Mc is the foot of their common perpendicular; lines MaMc

and AC are hyperparallel and Mb is the foot of their common perpendicular; lines MbMc and BC are
hyperparallel and Ma is the foot of their common perpendicular.
Similarly, we know that the line AI is a bisector on an angle 6 A′AO, where A′ is the foot of perpendicular
from point A to the midline MbMc. In the Euclidean case, points A,A′ and H are collinear, while in the
hyperbolic one they are not. Hence, Lemma 4 cannot be used in the present form.
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Figure 7: Significant points from Wernick’s corpus in hyperbolic geometry.
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We added some more lemmas which relate to notion of reflection with respect to point/line. All
of them hold, also, in Euclidean geometry, but we didn’t need them there since we found alternative
solutions to construction problems.
1. If a vertex A of triangle ABC belongs to the line p, then a vertex B belongs to a line which is an image
of line p under the reflection wrt. point Mc;
2. Image of the vertex B under the reflection wrt. internal angle bisector sc belongs to line AC;
3. Image of the vertex B under the reflection wrt. internal angle bisector sc belongs to the circle centered
at point Tc passing through point B.

4.3 Examples

Here, we give couple of examples illustrated in Poincaré disc model. Note that all constructions can be
performed using only classical ruler and compass, since all the basic objects (h-lines, h-circles, etc.) are
either Euclidean lines or circles.

All generated solutions of problems from Wernick’s corpus in the Euclidean setting can be found on-
line at http://www.matf.bg.ac.rs/∼vesnap/animations/compendium wernick.html, and in the hyperbolic
setting at http://www.matf.bg.ac.rs/∼vesnap/animations hyp/compendium wernick hyperbolic.html.

Example 2 Let us start with the most basic construction problem that illustrates the difference between
Euclidean and hyperbolic geometry: Construct the triangle ABC given three side midpoints Ma, Mb, and
Mc.

In the Euclidean case, we know that AB ‖ MaMb, BC ‖ MbMc, AC ‖ MaMc. Therefore, it is easy to
construct lines a : Ma ∈ a ‖MbMc, b : Mb ∈ b ‖MaMc, and c : Mc ∈ c ‖MaMb. Now, points A,B, and C
are intersection points of lines b and c, a and c, a and b, respectively (see Construction 0341).

As already discussed in Section 4.2, in hyperbolic geometry, the notion of parallelism can be replaced
with notion of hyper-parallelism. Therefore, we will use the construction of hyperparallel lines from
Lemma 3h (see Figure 8 and Construction 0341).

Step 1. Construct the line a that is hyperparallel to the line through points Mb and Mc with point Ma

being the foot of their common perpendicular;
Step 2. Construct the line b that is hyperparallel to the line through points Ma and Mc with point Mb

being the foot of their common perpendicular;
Step 3. Construct the intersection point C of the lines a and b;
Step 4. Construct the point B symmetric to C wrt. point Ma;
Step 5. Construct the point A symmetric to C wrt. point Mb.

Oa

Mb

Ma

Mc

C

B

A

Figure 8: Construction of triangle ABC in hyperbolic geometry
given the side midpoints Ma, Mb, and Mc.

http://www.matf.bg.ac.rs/~vesnap/animations/compendium_wernick.html
http://www.matf.bg.ac.rs/~vesnap/animations_hyp/compendium_wernick_hyperbolic.html
http://www.matf.bg.ac.rs/~vesnap/animations/construction_0341.html
http://www.matf.bg.ac.rs/~vesnap/animations_hyp/construction_0341.html
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Example 3 Let us consider a construction of triangle ABC given vertex A, midpoint Ma of side BC, and
foot Hb of the altitude from vertex B.

This is one of the easiest problems to solve in the Euclidean case, requiring only four construction
steps (see Construction 0044). However, the crucial step uses the information that the inscribed angle
subtended by a diameter is right. Unfortunately, this does not hold in the hyperbolic case. On the other
hand, if we take a closer look at the problem we are trying to solve, we see that we actually need a way to
construct a segment with endpoints lying on the chords of the convex angle Opq (not necessarily the right
angle) given point M inside that angle as its midpoint. This we know how to construct: we simply need
to construct the image q′ of line q under the reflection wrt. point M; the intersection point of p and q′ will
give the first endpoint P, while the second one Q will be symmetric to P wrt. point M (see Construction
0044).

Oa

A

Ma

Hb

B

C

Figure 9: Construction of triangle ABC in hyperbolic geometry
given points A, Ma, and Hb.

Now, the steps leading to the construction of the triangle ABC in any geometrical setting (i.e. it holds
in absolute geometry) are the following:

Step 1. Construct the line b through the points A and Hb;
Step 2. Construct the line hb perpendicular to the line b through Hb;
Step 3. Construct the line sMa(b) that is image of the line b under the reflection wrt. point Ma;
Step 4. Construct the intersection point B of the lines sMa(b) and hb;
Step 5. Construct the point C symmetric to B wrt. point Ma.

4.4 Results

We considered only significantly different construction problems from Wernick’s list. Immediately, we
had to discard all the problems related to the centroid G of the triangle and the ones that had to be solved
using Euler’s line or Euler’s circle. These problems can be solved if we use pseudo-definitions of those
objects, but in the traditional setting, we could not find an alternate solution for them. Solutions of all
problems from Wernick’s corpus we managed to solve (including symmetric ones) in hyperbolic setting
are given in Hyperbolic corpus. There are 31 significantly different solvable problems, 1 redundant and
11 locus dependent problems.

5 Conclusions and further work

We have described the first steps towards an automated system for triangle RC-constructions in absolute
and hyperbolic geometry. The same algorithm that was previously used for Euclidean constructions was

http://www.matf.bg.ac.rs/~vesnap/animations/construction_0044.html
http://www.matf.bg.ac.rs/~vesnap/animations_hyp/construction_0044.html
http://www.matf.bg.ac.rs/~vesnap/animations_hyp/construction_0044.html
http://www.matf.bg.ac.rs/~vesnap/animations_hyp/compendium_wernick_hyperbolic.html
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successfully applied within our system ArgoTriCS. However, underlying mathematical knowledge had
to be substantially changed by omitting definitions, lemmas and construction steps specific for Euclidean
geometry and by adding specifics of hyperbolic geometry.

The present experiment confirms that RC-constructions in absolute and hyperbolic geometry are
harder to make than in Euclidean geometry due to less lemmas that can be proved about lines, circles,
and significant points of a triangle (hyperbolic triangle has more significant points, that coincide in the
Euclidean case). Also, issues of degeneracy and existence of a solution are more complicated than in
the Euclidean case, since significant lines in a triangle may not meet (not all pencils of lines are elliptic
ones).

In our further work we shall manually investigate problems that were not solved by our current
implementation and to extend the knowledge base (lemmas and primitive steps) so that the problems that
can be solved manually could also be solved automatically. We also plan to investigate potential use
of our system in mathematical education, since studying Euclidean and hyperbolic geometry and their
relationship can help students to acknowledge and adopt formal mathematics.
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[9] Vesna Marinković & Predrag Janičić (2012): Towards Understanding Triangle Construction Problems. In:
Intelligent Computer Mathematics - CICM 2012, Lecture Notes in Computer Science 7362, pp. 126–141,
doi:10.2307/2690164.
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