Maximally Atomic Languages

Janusz Brzozowski
(University of Waterloo)
Gareth Davies
(University of Waterloo)

The atoms of a regular language are non-empty intersections of complemented and uncomplemented quotients of the language. Tight upper bounds on the number of atoms of a language and on the quotient complexities of atoms are known. We introduce a new class of regular languages, called the maximally atomic languages, consisting of all languages meeting these bounds. We prove the following result: If L is a regular language of quotient complexity n and G is the subgroup of permutations in the transition semigroup T of the minimal DFA of L, then L is maximally atomic if and only if G is transitive on k-subsets of 1,...,n for 0 <= k <= n and T contains a transformation of rank n-1.

In Zoltán Ésik and Zoltán Fülöp: Proceedings 14th International Conference on Automata and Formal Languages (AFL 2014), Szeged, Hungary, May 27-29, 2014, Electronic Proceedings in Theoretical Computer Science 151, pp. 151–161.
Published: 21st May 2014.

ArXived at: bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to:
For website issues: