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The atoms of a regular language are non-empty intersectionsof complemented and uncomplemented
quotients of the language. Tight upper bounds on the number of atoms of a language and on the
quotient complexities of atoms are known. We introduce a newclass of regular languages, called the
maximally atomic languages, consisting of all languages meeting these bounds. We provethe follow-
ing result: IfL is a regular language of quotient complexityn andG is the subgroup of permutations
in the transition semigroupT of the minimal DFA ofL, thenL is maximally atomic if and only ifG
is transitive onk-subsets of{1, . . . ,n} for 0≤ k≤ n andT contains a transformation of rankn−1.
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1 Introduction

Thestate/quotient complexityof a regular language is the number of states in the minimal deterministic
finite automaton (DFA) of the language, or equivalently, thenumber of left quotients of the language. An
atomof a regular language is a non-empty intersection of the language’s left quotients, some of which
may be complemented. Brzozowski and Tamm have found tight upper bounds on the number of atoms
of a language [4] and on the quotient complexities of atoms [3]. This lets us define a new class of regular
languages which we callmaximally atomic: these are regular languages whose atoms meet these bounds.

The transition semigroupof a DFA is the semigroup of transformations induced by the transition
function of the DFA on its set of states. Our main result (stated formally in Section 3) is the following
relationship between maximally atomic languages and transition semigroups:

A regular language with quotient complexity n is maximally atomic if and only if the transition
semigroup of its minimal DFA contains permutations that canmap any subset of{1, . . . ,n} to any other
subset of the same size, as well as at least one transformation with an image of size n−1.

In the process of proving this, we establish several other relationships between transition semigroups
and atoms; in particular, we give sufficient conditions for alanguage to have the maximal number of
atoms, and necessary and sufficient conditions for certain individual atoms to have maximal complex-
ity. We also derive a general formula for the transition functions of “átomata” (nondeterministic finite
automata whose states correspond to the atoms of the language they recognize).

∗This work was supported by the Natural Sciences and Engineering Research Council of Canada under grant
No. OGP0000871.
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2 Definitions and Terminology

2.1 Partially Ordered Sets

A partially ordered set(poset) is a pair(S,≤) whereS is a set and≤ is a partial order onS. A subposet
of (S,≤) is a poset(T,≤) such thatT ⊆ S. We often abbreviate(S,≤) to simplyS.

If T is a subposet ofS, then fora,b∈ S, theinterval of T betweena andb, denoted[a,b]T , is the set
of all t ∈ T such thata≤ t andt ≤ b. Note that ifb< a, then the interval[a,b]T is empty.

Let Qn = {1,2, . . . ,n}, let P= (2Qn,⊆), and letX be a subposet ofP. For each non-empty interval
[V,U ]X , define thetypeof [V,U ]X to be the pair of integers(|

⋂

[V,U ]X | , |
⋃

[V,U ]X |). Let the type of the
empty interval be(−1,−1).

2.2 Transformations

A transformationof a setX is a mappingt : X → X. Since we deal only with finite sets, we assume
without loss of generality thatX = Qn for somen. A permutationis an invertible (one-to-one and onto)
transformation. Asingular transformationis a non-invertible transformation.

If a transformationt mapsi to j, we say theimageof i undert is j and writet(i) = j. The image of
S⊆ Qn is t(S) = {t(i) | i ∈ S}. The image oft itself is imt = t(Qn). Thecoimageof t is coimt = im t,
whereS=Qn\S. Thepreimageof an elementi undert is t−1(i) = { j | t( j) = i}. The preimage ofS⊆Qn

undert is t−1(S) =
⋃

i∈St−1(i). The rank of a transformation is| im t|. Thecompositionor productof
two transformationssandt is s◦ t, defined by(s◦ t)(i) = s(t(i)).

A transposition(i, j) for i 6= j is a transformation such thatt(i) = j, t( j) = i, andt(ℓ) = ℓ for all
ℓ 6∈ {i, j}. A permutation isevenif it can be written as a product of an even number of transpositions and
it is oddotherwise. Aunitary transformation, denoted by(i→ j) (with i 6= j), is a transformation such
thatt(i) = j andt(ℓ) = ℓ for all ℓ 6= i.

2.3 Semigroups, Monoids, and Groups

A semigroupis a pair(S, ·), whereS is a non-empty set and· is an associative binary operation. We often
abbreviate(S, ·) to S. A monoid M= (M, ·,e) is a semigroup with identitye, and agroup G= (G, ·,e)
is a monoid in which each element has an inverse. Asubsemigroupof (S, ·) is a semigroup(T, ·) where
T ⊆ S. If (S, ·,e) and(M, ·,e) are monoids withM ⊆ S, thenM is asubmonoidof S. A subgroupof S is
a submonoidG of Ssuch thatG is a group.

The full transformation semigroupof degreen, denotedTn, is the set of all transformationst : Qn→
Qn under the binary operation◦. Note thatTn is a monoid, since the identity transformation ofQn acts as
the identity element. Thesymmetric groupof degreen, denoted bySn, is the subgroup of permutations
in Tn. A transformation semigroupof degreen is a subsemigroup ofTn, and apermutation groupof
degreen is a subgroup ofSn. A conjugateof a permutation groupG of degreen is a group of the form
{p◦g◦ p−1 | g∈G}, wherep∈ Sn.

Let G be a permutation group of degreen and letX be a set. Forx∈ X, theorbit of x underG is the
set{g(x) | g∈G}. We say thatG acts transitivelyor is transitiveon a setX if for all x,y∈ X there exists
g∈ G such thatg(x) = y, or equivalently, ifG has only one orbit when it acts onX. We sayG is k-set-
transitive if it is transitive on the set ofk-subsets (subsets of cardinalityk) of Qn. If G is k-set-transitive
for 0≤ k≤ n, we sayG is set-transitive.
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The set-transitive permutation groups have been fully classified by Beaumont and Peterson [1]. In
general, a set-transitive group is either the symmetric group Sn or the alternating groupAn (the subgroup
of even permutations inSn). Whenn is small there are four exceptions (up to conjugation):

Proposition 1. A set-transitive permutation group of degree n is Sn or An or a conjugate of one of the
following permutation groups:

1. For n= 5, the affine general linear groupAGL(1,5).

2. For n= 6, the projective general linear groupPGL(2,5).

3. For n= 9, the projective special linear groupPSL(2,8).

4. For n= 9, the projective semilinear groupPΓL(2,8).

2.4 Finite Automata

A nondeterministic finite automaton(NFA) is a tupleN = (Q,Σ,η , I ,F), whereQ is a finite, non-empty
set ofstates, Σ is a finite, non-emptyalphabet, η : Q×Σ→ 2Q is a transition function, I ⊆Q is a set of
initial states, andF ⊆ Q is a set offinal states. We extendη to η : 2Q×Σ∗→ 2Q as follows: forS⊆ Q
andw= xa, x∈ Σ∗, a∈ Σ, we defineη(S,w) inductively byη(S,ε) = Sandη(S,xa) = η(η(S,x),a) =
⋃

s∈η(S,x) η(s,a). We defineηw : 2Q→ 2Q by ηw(S) = η(S,w).
A word w is acceptedby N if ηw(I)∩ F 6= /0. The language accepted byN is the set of all

words accepted byN . The language of a state q∈ Q is the language accepted by the modified NFA
Nq = (Q,Σ,η ,{q},F). For S,T ⊆ Q, we sayS is reachable from Tin N if there existsw ∈ Σ∗ such
that ηw(T) = S. If S is reachable fromI , we simply sayS is reachablein N . An NFA that accepts a
languageL is minimal if the number of states is minimal among all NFAs that acceptL.

A deterministic finite automaton(DFA) is a tupleD = (Q,Σ,δ ,q1,F), whereQ, Σ andF have the
same meaning as in an NFA,δ : Q×Σ→Q is a transition function, andq1 ∈Q is an initial state. Since
DFAs are special cases of NFAs, all the definitions above apply also to DFAs. While minimal NFAs need
not be unique, there is a unique (up to isomorphism) minimal DFA for each regular language.

For allw∈ Σ∗, δw : Q→Q is a transformation of the set of states ofD ; we call this thetransformation
induced by win D . The transition semigroupof D is the semigroup(T,◦), whereT = {δw | w∈ Σ+}.
This is the semigroup of transformations ofQ induced by non-empty words overΣ in D .

For an NFAN = (Q,Σ,η , I ,F), define thereverseof N to be the NFAN R = (Q,Σ,ηR,F, I),
whereηR(q,a) = {p∈ Q | q∈ η(p,a)}. Note that ifN = D is a DFA with transition functionδ , then
δw is a transformation and we haveδ R

w = δ−1
w . Define thedeterminizationof an NFAN to be the DFA

N D = (Q′,Σ,ηD, I ,F ′), whereQ′ = {S∈ 2Q | S is reachable inN }, F ′ = {S∈ Q′ | S∩F 6= /0}, and
ηD(S,a) =

⋃

s∈Sη(s,a).

2.5 Languages, Quotients, and Atoms

Let L be a regular language over the alphabetΣ and letD = (Qn,Σ,δ ,q1,F) be the minimal DFA of
L. The left quotient(or simply quotient) of L by the wordw ∈ Σ∗ is w−1L = {x | wx∈ L}. There is a
one-to-one correspondence between quotients ofL and states of the minimal DFA ofL: the languages
of distinct states ofD are distinct quotients ofL. We use the following convention when discussing
quotients ofL: the set of quotients is{K1,K2, . . . ,Kn}, whereKi is the language of statei of D . Due
to the one-to-one correspondence between states and quotients, thecomplexityof L can be equivalently
defined as the number of states in the minimal DFA ofL (state complexity) or the number of distinct
quotients ofL (quotient complexity).
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From now on we deal with non-empty languages only. Denote thecomplement of a languageL by
L = Σ∗ \ L. For S⊆ Qn, let AS denote the intersection

⋂

i∈SKi ∩
⋂

i∈SKi. If AS is non-empty, thenAS

is called anatomof L. Let A be the set of all atoms ofL. The atom mapφ : A → 2Qn is defined by
φ(AS) = S. This map is well-defined, since for each atomA there is precisely one subsetS of Qn such
thatAS= A. Thebasisof an atomA is B(A) = {Ki | i ∈ φ(A)}.

The átomatonof L is the NFAA = (A,Σ,η , I ,F), whereη(Ai,a) = {A j | aAj ⊆ Ai}, I = {A∈ A |
q1 ∈ φ(A)}, andF = {A∈ A | ε ∈ A}. Note that the initial atoms are those that containL in their bases.
Also, there is precisely one final atom: the atom for which allthe quotients in its basis containε and all
other quotients do not. The language of stateA of A is the atomA [4].

Theatomic posetof L is φ(A) = (φ(A),⊆); this is the set of all subsetsSof Qn such thatAS is an
atom. Anatomic intervalof L is an interval inφ(A), that is, an interval of the form[V,U ]φ(A). We denote
an atomic interval using double brackets, since this makes the notation cleaner: we write[[V,U ]] instead
of [V,U ]φ(A). Sinceφ(A) is a subposet of(2Qn,⊆), any two subsets ofQn can act as endpoints of an
atomic interval. Furthermore, every atomic interval[[V,U ]] has an associated type(v,u), as defined in
the section on posets.

Note that, if[[V,U ]] contains both of its endpoints (i.e.,V,U ∈ [[V,U ]]), then the type of[[V,U ]] is
(|V|, |U |). However, we cannot always use the sizes of the endpoints to determine the type of an interval,
since there may be multiple ways to choose the endpoints of aninterval. For example, ifA{1} is an atom
but A/0 andA{1,2} are not, then[[{1},{1}]] = [[ /0,{1}]] = [[{1},{1,2}]] = {{1}}. But this interval has
type(1,1), not (0,1) or (1,2).

Some basic facts about atoms and átomata follow. The following proposition, proved in [3], shows
that we may view the states ofA as subsets ofQn:

Proposition 2. Let L be a regular language with́atomatonA and minimal DFAD . Then the atom map
φ is an NFA isomorphism betweenA andDRDR.

The next proposition relates the number of atoms ofL to the complexity of the reverseLR. The proof
follows easily from Proposition 2.

Proposition 3 (Number of Atoms). Let L be a regular language with complexity n, and let the minimal
DFA of L beD = (Qn,Σ,δ ,q1,F). Then for S⊆ Qn, the intersection AS is an atom of L if and only if S
is reachable inDR, i.e, if and only if there exists w∈ Σ∗ such thatδ−1

w (F) = S. Thus there is a bijection
between atoms of L and states ofDRD, the minimal DFA of LR.

It is well-known that if the complexity ofL is n, then the complexity ofLR is at most 2n, and for
n≥ 2 this bound is tight. Thus 2n is also a tight bound on the number of atoms of a regular language
whenn≥ 2.

In [3], a tight upper bound on the complexity of individual atoms was derived and a formula for the
bound was given. We give a different (but equivalent) formula below:

Proposition 4 (Complexity of Atoms). Let L be a regular language with complexity n. Define the
functionΨ as follows:

Ψ(n,k) =

{

2n−1, if k = 0 or k= n;

1+∑k
v=1 ∑n−1

u=k

(n
u

)(u
v

)

, if 1≤ k≤ n−1.

If AS is an atom of L,Ψ(n, |S|) is a tight upper bound on the complexity of AS.

With these bounds established, we can formally define the class of maximally atomic languages.
A non-empty regular languageL of complexityn is maximally atomicif it has the maximal number of
atoms (1 ifn= 1, 2n if n≥ 2) and if for each atomAS of L, AS has the maximal complexityΨ(n, |S|).
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3 Main Results

Note that whenn = 1, the only nonempty language overΣ is Σ∗, and it is maximally atomic. The
following proposition characterizes the maximally atomiclanguages of complexityn= 2:

Proposition 5. Let L be a regular language of complexity2 and letD be its minimal DFA with state set
Q2. Let T be the transition semigroup ofD . Then:

• There are four transformations of Q2: the identity transformation, the transposition(1,2), and the
unitary transformations(1→ 2) and(2→ 1).

• T contains all four transformations of Q2 if and only if T contains(1,2) and at least one unitary
transformation.

• All subsets of Q2 are reachable inDR (and hence L has all22 atoms) if and only if T contains all
four transformations of Q2.

• Each atom of L has maximal complexity if and only if T containsall four transformations of Q2.

• Thus, L is maximally atomic if and only if T contains all four transformations of Q2.

The computations required to prove this proposition can be easily done by hand. Henceforth we will
be concerned only with languages of complexityn≥ 3.

Our main theorem is the following:

Theorem 1. Let L be a regular language overΣ with complexity n≥ 3, and let T be the transition semi-
group of the minimal DFA of L. Then L is maximally atomic if andonly if the subgroup of permutations
in T is set-transitive and T contains a transformation of rank n−1.

In view of this, let us consider how the class of maximally atomic languages relates to other lan-
guage classes. LetFTS denote the class of languages whose minimal DFAs have thefull transformation
semigroupas their transition semigroup, letSTSdenote the class whose minimal DFAs have transition
semigroups with aset-transitive subgroupof permutations and a transformation of rankn−1, letMAL
denote the class ofmaximally atomic languages, letMNA denote the class of languages with themaximal
number of atoms, and letMCR denote the class of languages with amaximally complex reverse.

1. FTS is properly contained inSTS, by Proposition 1.

2. STS is equal toMAL , by Theorem 1.

3. MAL is contained inMNA . Figure 1 in [2] shows the containment is proper.

4. MNA is equal toMCR , by Proposition 3.

To summarize, we have:FTS⊂ STS= MAL ⊂MNA = MCR .
The proof of Theorem 1 relies on two intermediate results. The first gives a condition that is sufficient

(but not necessary) forL to have 2n atoms:

Theorem 2. Let L be a regular language overΣ with complexity n≥ 3, and let T be the transition
semigroup of the minimal DFA of L. If T contains all unitary transformations, then L has2n atoms.

The second result establishes Theorem 1 in all but a few cases; it gives necessary and sufficient
conditions for individual atoms ofL to have maximal complexity, but only when the bases of the atoms
are in a certain size range.

Theorem 3. Let L be a regular language overΣ with complexity n≥ 3, and let T be the transition
semigroup of the minimal DFA of L. Let AS be an atom of L and suppose that either n≥ 4 and 2≤
|S| ≤ n− 2, or n= 3 and 1≤ |S| ≤ 2. Then AS has maximal complexity if and only if the subgroup of
permutations in T is|S|-set-transitive and T contains a transformation of rank n−1.
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The rest of the paper consists of the proofs of these three theorems. Shortly before the deadline for
this paper, we were informed that the proof of our main resultcan be simplified by replacing the átomaton
with a different construction [5]. Below we present our original proofs, which use the átomaton.

4 Proof of Theorem 2

Let L be a language of complexityn≥ 3 and letD = (Qn,Σ,δ ,q1,F) be its minimal DFA. LetT be
the transition semigroup ofD and assume it contains all unitary transformations. By Proposition 3,
L has 2n atoms if and only if for allS⊆ Qn, S is reachable inDR, i.e., there existsw ∈ Σ∗ such that
δ R

w(F) = δ−1
w (F) = S.

SupposeX ⊆Qn, with 1≤ |X| ≤ n−1. Lett = (i→ j) ands= (i→ k) for i ∈Qn, j ∈ X, k 6∈ X; then
t−1(X) = X∪{i} ands−1(X) = X \{i}. SinceT contains all unitary transformations, it containst ands.
Thus for every non-emptyX ⊂Qn and everyi ∈Qn, there are wordsw,x∈ Σ∗ such thatδ−1

w (X) =X∪{i}
andδ−1

x (X) = X \{i}.
In other words, from any non-empty proper subsetX of Qn, we can reach (inDR) all subsets that

differ from X by the addition or removal of a single element. Repeatedly applying this fact, we see that
from X we can reach any subsetSof Qn: shrinkX to a singleton{i} ⊆ X, expand{i} to {i, j} for j ∈ S,
shrink again to{ j} ⊆ S, and then expand toS(or shrink to /0 forS= /0).

Now, if |F | = 0 thenL = /0, and if |F | = n thenL = Σ∗; sinceD is minimal, n = 1 in either case.
Sincen≥ 3, we have thatF is a non-empty proper subset ofQn. Thus by the argument above, we can
reach all subsets ofQn in DR; henceL has 2n atoms.

5 Proof of Theorem 3

5.1 TheÁtomaton and Minimal DFAs of Atoms

In this section we prove the⇒ direction of Theorem 3. Two results on átomata and atoms areneeded for
this. We first describe the transition function of the átomaton, in the case where the states are viewed as
subsets ofQn. Define∆w : 2Qn → 2Qn by ∆w(S) = δw(S) = Qn\δw(Qn\S).

Lemma 1. Let L be a regular language overΣ. LetD = (Qn,Σ,δ ,q1,F) be the minimal DFA of L. Let
A be theátomaton of L with transition functionη . If [[V,U ]] is an atomic interval of L and a set of states
of A , then for all w∈ Σ∗, we haveηw([[V,U ]]) = [[δw(V),∆w(U)]].

Proof. It was shown in [3] thatηa(S)= {T |AT is an atom ofL, T ⊇ δa(S) andδa(S)∩T = /0}. If δa(S)∩

T = /0, thenT ⊆ δa(S) = ∆a(S). Thusηa(S) is the set ofT ⊆ Qn such thatAT is an atom ofL and
δa(S) ⊆ T ⊆ ∆a(S), which is precisely[[δa(S),∆a(S)]]. One verifies that this can be extended to words,
giving ηw(S) = [[δw(S),∆w(S)]].

Next, we want to showηw([[V,U ]]) = [[δw(V),∆w(U)]]. For T ∈ [[V,U ]], considerηw(T). Since
V ⊆ T, δw(V)⊆ δw(T). SinceT ⊆U , we haveT ⊇U , and thusδw(T)⊇ δw(U). It follows that∆w(T)⊆
∆w(U). Henceηw(T) = [[δw(T),∆w(T)]]⊆ [[δw(V),∆w(U)]], andηw([[V,U ]]) ⊆ [[δw(V),∆w(U)]].

For containment in the other direction, suppose thatT is in [[δw(V),∆w(U)]]; then δw(V) ⊆ T ⊆
∆w(U) and AT is an atom. LetS= δ−1

w (T); then we claimS∈ [[V,U ]]. SinceT ⊇ δw(V), we have
δ−1

w (T) = S⊇V. If i ∈ T ⊆ ∆w(U), theni 6∈ δw(U). Henceδ−1
w (i) is disjoint fromU for all i ∈ T, and

so δ−1
w (T) is disjoint fromU . It follows thatδ−1

w (T) = S⊆U . It remains to showAS is an atom; but
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sinceAT is an atom, by Proposition 3, there existsx ∈ Σ∗ such thatδ−1
x (F) = T. ThusS= δ−1

w (T) =
δ−1

w (δ−1
x (F)) = δ−1

xw (F), so by Proposition 3,AS is also an atom.
HenceS∈ [[V,U ]], and it follows thatηw(S) = [[T,∆w(S)]] ⊆ ηw([[V,U ]]). To complete the proof,

we must showηw(S) is non-empty (and thus containsT) by showing thatT ⊆ ∆w(S) = δw(δ−1
w (T)).

Observe that ifi ∈ T, thenδ−1
w (i)⊆ δ−1

w (T). Thusδ−1
w (i)∩δ−1

w (T) = /0, and soi 6∈ δw(δ−1
w (T)), which

givesi ∈ ∆w(S) as required. ThusT ∈ ηw(S) = [[T,∆w(S)]], and it follows that ifT ∈ [[δw(V),∆w(U)]],
thenT ∈ ηw([[V,U ]]). This proves that the two intervals must be equal.

Table 1:D .

δ a

→ 1 2

← 2 3

← 3 4

4 4

Table 2:DR.

δ R a

← 1

→ 2 {1}

→ 3 {2}

4 {3,4}

Table 3:DRD.

δ RD a

→ {2,3} {1,2}

← {1,2} {1}

← {1} /0

/0 /0

Table 4:A .

η a

← {2,3}

→ {1,2} {{2,3}}

→ {1} {{1,2}}

/0 { /0,{1}}

Example1. The minimal DFAD of Table 1 accepts the language{a,aa}. The NFADR is in Table 2 and
the DFADRD, in Table 3. The átomatonA is in Table 4. In NFAsDR andA , a blank in an entry(q,a)
indicates that there is no transition fromq undera. However, when determinization is used in Table 3,
the empty set of states ofDR becomes a state of the resulting DFADRD. A right arrow (→) indicates an
initial state and a left arrow (←) indicates a final state.

Consider the atomic interval[[ /0,{1,2}]] = { /0,{1},{1,2}}; we haveδa( /0) = /0, and∆a({1,2}) =

δa({1,2}) = δa({3,4}) = {4} = {1,2,3}. Thus to determine the result ofηa([[ /0,{1,2}]]), we take the
interval [ /0,{1,2,3}]2Q4 = { /0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} and we remove the sets that
do not represent atoms. After this removal, we get{ /0,{1},{1,2},{2,3}}. Henceηa({ /0,{1},{1,2}}) =
ηa([[ /0,{1,2}]]) = [[ /0,{1,2,3}]] = { /0,{1},{1,2},{2,3}}. �

Remark1. If we treat the set of states ofA as a subset of 2Qn, then it is possible that the empty set is a
state ofA , as in Example 1. Since we use the same symbol forη and its extension to subsets of states,
an ambiguity arises whenη is applied to the empty set. Specifically,ηw( /0) may mean “ηw applied to
the state /0∈ 2Qn”, in which caseηw( /0) = ηw([[ /0, /0]]) = [[ /0,coimδw]], or it may mean “ηw applied to
the empty subset of states /0⊆ 2Qn”, in which caseηw( /0) = /0. We avoid this ambiguity by adopting the
convention thatηw( /0) always means “ηw applied to /0⊆ 2Qn” and ηw([[ /0, /0]]) has the other meaning.

A corollary of this is that every reachable subset of states in the átomatonA = (A,Σ,η , I ,F)
is an atomic interval ofL. The same holds for every reachable subset of states in the NFA AS =
(A,Σ,η ,{S},F) recognizing the atomAS. Since the determinizationA D

S is the minimal DFA ofAS [3],
it follows that the states of minimal DFAs of atoms of L may be represented as atomic intervals of L.

If AS is an atom ofL with maximal complexity, certain restrictions apply to thetypesof the atomic
intervals inA D

S . ForS⊆Qn, define anS-typeto be a pair of integers(v,u) satisfying:

1. If |S|= 0, thenv= 0 and 0≤ u≤ n−1.

2. If |S|= n, then 1≤ v≤ n andu= n.

3. If 1≤ |S| ≤ n−1, then 1≤ v≤ |S| and|S| ≤ u≤ n−1.
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A non-empty interval that has anS-type is called anS-interval. The empty interval is a special case: it is
anS-interval if and only if 1≤ |S| ≤ n−1. The significance ofS-types andS-intervals is as follows:

Lemma 2. Let L be a regular language with complexity n and let AS be an atom of L. If AS has maximal
complexityΨ(n, |S|), then the set of states ofA D

S equals the set of atomic S-intervals of L.

Proof. A simple counting argument shows that the number of intervals of type(v,u) in a subposet of
P = (2Qn,⊆) is bounded from above by

(n
u

)(u
v

)

. Combining this fact with the definition of anS-type
gives thatΨ(n, |S|) is an upper bound on the number ofS-intervals in a subposet ofP. Now, we know
thatA D

S has exactlyΨ(n, |S|) states; if we show that these states are all atomicS-intervals ofL, then this
implies the state set ofA D

S contains exactlyΨ(n, |S|) distinct atomicS-intervals ofL, and nothing else.
Since the atomic poset ofL is a subposet ofP, there can be no more thanΨ(n, |S|) atomicS-intervals of
L, and this proves the result. Thus we just need to show that every state ofA D

S is anS-interval.
Let [[V,U ]] be a state ofA D

S and suppose[[δw(S),∆w(S)]] = [[V,U ]]. If [[V,U ]] is the empty interval,
then it is automatically anS-interval for 1≤ |S| ≤ n−1, by definition. For|S| = 0 or |S|= n, the empty
interval is not anS-interval, but this does not matter since it is not reachablein A D

S . In the|S|= 0 case,
a state ofA D

S has the form[[δw( /0),∆w( /0)]] = [[ /0,coimδw]], which always contains /0 (sinceAS= A/0 is
an atom); thus every state ofA D

S is a non-empty interval. For|S|= n, a similar argument works.
Next, suppose[[V,U ]] is non-empty. For this case, some setup is needed. Define the set XS =

{[δw(S),∆w(S)]P | w∈ Σ∗} of intervals inP. One can verify that(|δw(S)|, |∆w(S)|) is anS-type for allS
andw, and thusXS is a set ofS-intervals ofP. This means|XS| is bounded from above byΨ(n, |S|). Now,
let YS = {[[δw(S),∆w(S)]] | w ∈ Σ∗}; this is just the set of states ofA D

S , and thus it has sizeΨ(n, |S|).
Defineα : XS→YS by α([X,Y]P) = [[X,Y]]; this is clearly a surjection, and thus|XS| ≥ |YS|= Ψ(n, |S|).
Since we also have|XS| ≤Ψ(n, |S|), we get|XS|= |YS|= Ψ(n, |S|) and henceα is a bijection.

Now, assume without loss of generality that the type of[[V,U ]] is (|V|, |U |). Suppose for a contra-
diction that|V| > |S|. Then since[[V,U ]] = [[δw(S),∆w(S)]], we haveδw(S) ⊂ V. We can find a setX
such that|X| = |S| andδw(S) ⊆ X ⊂V. Now, sinceδw(S) ⊆ X ⊆ ∆w(S), we haveX ∈ [[δw(S),∆w(S)]]
if and only if AX is an atom. ButX 6∈ [[V,U ]] sinceX ⊂V, and thusAX is not an atom. It follows that
the interval[[X,X]] is empty. If|S|= 0 or |S|= n, then in fact|S|= |X| and[[S,S]] is clearly non-empty,
a contradiction. If 1≤ |S| ≤ n− 1, observe thatα([X,X]P) = [[X,X]] = /0. But /0∈ XS since /0 is an
S-interval ofP for 1≤ |S| ≤ n−1, so alsoα( /0) = /0. This is a contradiction, sinceα is a bijection. Thus
for Sof any size, we always have|V| ≤ |S|. A similar argument to the above shows that|U | ≥ |S|.

Thus, if |S| = 0 we have|V| = 0 and 0≤ |U | ≤ |∆w(S)| = n−1. If |S| = n we have 1≤ |δw(S)| ≤
|V| ≤ n and|U |= n. If 1 ≤ |S| ≤ n−1, then 1≤ |V| ≤ |S| and|S| ≤ |U | ≤ n−1. Thus we have proved
(|V|, |U |) is anS-type. Hence every state[[V,U ]] of A D

S is an atomicS-interval ofL, and the number of
states equals the upper boundΨ(n, |S|) on the number of atomicS-intervals ofL, proving the lemma.

Lemma 2 has two particularly useful consequences. LetAS be an atom of maximal complexity, and
supposeV,U ⊆Qn are sets such that(|V|, |U |) is anS-type. Then:

1. [[V,U ]] has type(|V|, |U |). In particular, this means[[V,U ]] contains its endpointsV andU .

2. [[V,U ]] is a state ofA D
S .

(1) follows since(|V|, |U |) is anS-type, and so if[[V,U ]] does not have type(|V|, |U |), the number of
atomicS-intervals of type(|V|, |U |) is not maximal and henceAS is not maximally complex. (2) follows
since if[[V,U ]] has theS-type(|V|, |U |), it is an atomicS-interval and thus a state ofA D

S .
These facts are sufficient to prove one direction of Theorem 3:
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Theorem 3 (⇒ Direction). Let L be a language of complexityn≥ 3, letT be the transition semigroup of
the minimal DFA ofL, and letAS be an atom ofL. Suppose eithern= 3 and 1≤ |S| ≤ 2, or n≥ 4 and
2≤ |S| ≤ n−2. We prove that ifAS has maximal complexity, then the subgroup of permutations in T is
|S|-set-transitive andT contains a transformation of rankn−1.

The minimal DFA ofAS is A D
S , and its initial state is[[S,S]]. For all X ⊆ Qn with |X| = |S|,

(|X|, |X|) is anS-type. Thus by Lemma 2,[[X,X]] is a state ofA D
S of type(|X|, |X|). Thusηw([[S,S]]) =

[[δw(S),∆w(S)]] = [[X,X]] for somew∈Σ∗. Applying Lemma 2 again gives(|δw(S)|, |∆w(S)|)= (|X|, |X|).
Hence|X|= |δw(S)|= |S|, and soδw ∈ T is a permutation. It follows for allX ⊆Qn with |X|= |S|, there
is a permutation that sendsSto X; thus the subgroup of permutations inT is |S|-set-transitive.

Now, let δw ∈ T have rankn− k and consider[[δw(S),∆w(S)]]. By Lemma 2 this interval has type
(|δw(S)|, |∆w(S)|), so it is a non-empty interval. This impliesδw(S) andδw(S) are disjoint. It follows that
| imδw|= |δw(Qn)|= |δw(S)|+ |δw(S)|. Since the rank ofδw is n−k, |δw(S)| = (n−k)−|δw(S)|. Thus
|∆w(S)|= n− (n−k−|δw(S)|) = |δw(S)|+k, which gives|∆w(S)|− |δw(S)|= k.

Consider[[S,S∪{i}]] for i 6∈ S. Since(|S|, |S|+1) is anS-type, by Lemma 2 this interval is reachable
in A D

S . Thus there is aδw ∈ T such that(|δw(S)|, |∆w(S)|) = (|S|, |S|+1). By the argument above, this
δw must have rankn− (|∆w(S)|− |δw(S)|) = n−1. HenceT contains a transformation of rankn−1.

5.2 Semigroups and Groups

To prove the other direction of Theorem 3, we use some resultsfrom semigroup and group theory. The
first is a result of Livingstone and Wagner [6]:

Proposition 6. Let G be a permutation group of degree n≥ 4. If 2≤ k≤ n
2, then the number of orbits

when G acts on k-subsets of Qn is at least the number of orbits when G acts on(k−1)-subsets of Qn.

Using this proposition, we can easily prove

Lemma 3. Let G be a k-set-transitive permutation group of degree n≥ 4 and suppose2≤ k≤ n
2. Then:

1. G is(n−k)-set-transitive.

2. G isℓ-set-transitive for eachℓ such that0≤ ℓ≤ k or n−k≤ ℓ≤ n.

Proof. (1): SupposeG is k-set-transitive. IfU andV are (n− k)-subsets ofQn, thenU andV arek-
subsets, and there exists a permutationp∈ G mappingU to V. But if p mapsU to V, then it mapsU to
V; thusG can map any(n−k)-subset to any other(n−k)-subset, and so is(n−k)-set-transitive.

(2): SupposeG is k-set-transitive and 2≤ k≤ n
2. Then there is one orbit whenG acts onk-subsets.

By Proposition 6, there is one orbit whenG acts on(k− 1)-subsets. This impliesG is (k− 1)-set-
transitive. Repeating this argument we conclude thatG is ℓ-set-transitive for 0≤ ℓ≤ k. By (1), G is also
ℓ-set-transitive forn−k≤ ℓ≤ n.

Note that forn= 3, a permutation group of degree 3 is set-transitive if and only if it is transitive.
The second result we use is a theorem of Ruškuc, published byMcAlister [7]:

Proposition 7. Let G be a permutation group of degree n≥ 3 and let t: Qn→ Qn be a unitary trans-
formation. Let T be the transformation semigroup generatedby G∪{t}. Then T contains all singular
transformations if and only if G is 2-set-transitive.

We can use this to prove the following lemma:

Lemma 4. Let G be a 2-set-transitive permutation group of degree n≥ 3 and let t: Qn→ Qn be a
transformation of rank n− 1. Then the transformation semigroup T generated by G∪{t} contains all
singular transformations.
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Proof. By Proposition 7, ifG is 2-set-transitive andt is a unitary transformation, thenT contains all
singular transformations. Thus it suffices to show that ift is any transformation of rankn− 1, then
G∪{t} generates a unitary transformation.

For each transformations: Qn→ Qn, we define a set of tuples calleds-paths. For k ≥ 2, a tuple
(i1, . . . , ik) of distinct elements ofQn is ans-path of length kif s(i j) = i j+1 for 1≤ j < k ands(ik) = iℓ for
someℓ < k. An s-path(i1, . . . , ik) is incompleteif there existsa in Qn such that(a, i1, . . . , ik) is ans-path,
andcompleteotherwise. Ans-path(i1, . . . , ik) is cyclic if s(ik) = i1 andacyclicotherwise. The element
i1 of the acyclics-path(i1, . . . , ik) is called thehead.

Let t be a transformation of rankn−1, and consider thet-paths. If at-path is complete and acyclic,
its head must be an element of coimt. Sincet has rankn−1, |coimt| = 1, and so there is precisely one
complete acyclict-path. Let(a1, . . . ,ak) be that complete acyclict-path, and supposet(ak) = aℓ.

SinceG is 2-set-transitive, it is 1-set-transitive by Lemma 3. Thus there exists a permutationp∈ G
with p(a1) = aℓ−1. Let pt = p◦ t, and considerpt-paths. Sincept has rankn− 1, there is only one
complete acyclicpt-path; the head of this path must beaℓ−1, since coimpt = {aℓ−1}. Observe that
pt(ak) = p(t(ak)) = p(aℓ) = p(t(aℓ−1)) = pt(aℓ−1); it follows that(aℓ−1, p(aℓ), pt(p(aℓ)), . . . ,ak) is the
complete acyclicpt-path.

Now, let n be the product of the lengths of all the complete cyclicpt-paths and the incomplete
cyclic pt-path(p(aℓ), pt(p(a, ℓ)), . . . ,ak). Then we have(pt)n = (aℓ−1→ (pt)n(aℓ−1)), where(pt)n is
pt composed with itselfn times. This proves thatT must contain all singular transformations, since it is
2-set-transitive and contains a unitary transformation.

These results are sufficient to prove the other direction of Theorem 3:

Theorem 3 (⇐ Direction). Let L be a language of complexityn≥ 3, letT be the transition semigroup of
the minimal DFA ofL, and letAS be an atom ofL. Suppose eithern= 3 and 1≤ |S| ≤ 2, or n≥ 4 and
2≤ |S| ≤ n−2. We prove that if the subgroup of permutations inT is |S|-set-transitive andT contains a
transformation of rankn−1, thenAS has maximal complexity.

By Lemmas 3 and 4,T contains all singular transformations. By Theorem 2,L has 2n atoms. From
the proof of Lemma 2,Ψ(n, |S|) is a tight bound on the number ofS-intervals in the atomic poset ofL.
SinceL has 2n atoms (the maximal possible), the number of atomicS-intervals ofL meets the bound
Ψ(n, |S|). It remains to show that all these intervals are reachable inthe minimal DFAA D

S of AS. From
the inital state[[S,S]] of A D

S , we can reach the empty interval by(i→ j) wherei ∈ Sand j 6∈ S; thus it
suffices to consider non-empty intervals.

Let [[V,U ]] be a non-empty atomicS-interval ofL with type(|V|, |U |). By the definition of an atomic
S-interval, 1≤ |V| ≤ |S| and|S| ≤ |U | ≤ n−1 andV ⊆U . Thus there exists a setX such that|X|= |S|
andV ⊆ X ⊆U . Since the subgroup of permutations inT is |S|-set-transitive, there is a permutation
δw ∈ T that sendsS to X; thusηw([[S,S]]) = [[X,X]]. If V = X =U , we are done, so assume thatV ⊂ X
or X ⊂U . If V ⊂ X and |V| ≥ 2, we can shrink the lower bound of[[X,X]] as follows: select distinct
i, j ∈Qn such thati ∈X\V and j ∈V. SinceT contains all unitary transformations, there is aδx∈ T such
thatδx = (i→ j). Sincei 6∈X, δx(X) =X and thus∆x(X) =X. It follows thatηx([[X,X]]) = [[X\{i},X]].
Repeating this process, we can reach[[V,X]] for all V with 1≤ |V| ≤ |S|. By a similar process, we can
repeatedly enlarge the upper bound of[[V,X]] to reach[[V,U ]]. Thus allΨ(n, |S|) atomicS-intervals ofL
are reachable inA D

S . By Lemma 2,AS has maximal complexity.

Remark2. The proof above works for the|S|= 1 and|S| = n−1 cases if we assume thatT contains all
unitary transformations, rather than only assuming it contains some transformation of rankn−1.
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6 Proof of Theorem 1

Having proved Theorems 2 and 3, we need only a bit more work to prove our main theorem.
Let L be a language with complexityn≥ 3 and letT be the transition semigroup of the minimal

DFA of L. If L is maximally atomic, then by Theorem 3 and Lemma 3, the subgroup of permutations
in T is k-set-transitive for 1≤ k≤ n−1, and hence is set-transitive; also, by Theorem 3,T contains a
transformation of rankn−1. This proves one direction of the theorem.

For the other direction, suppose the subgroup of permutations in T is set-transitive and contains a
transformation of rankn−1. By Theorem 2,L has 2n atoms. By Theorem 3, ifn≥ 4 and 2≤ |S| ≤ n−2
or n = 3 and 1≤ |S| ≤ 2, thenAS has maximal complexity. By Lemma 4,T contains all singular
transformations and hence all unitary transformations; soby Remark 2,AS has maximal complexity if
|S|= 1 or |S|= n−1. The only remaining cases are|S|= 0 and|S|= n.

Let A D
S be the minimal DFA ofAS. By Lemma 2, to show thatAS has maximal complexity, it suffices

to show that all atomicS-intervals ofL are reachable inA D
S . If |S| = 0, thenS= /0, and the atomic /0-

intervals ofL are those with type(0, i) where 0≤ i ≤ n− 1. The initial state ofA D
/0 is [[ /0, /0]]; thus a

reachable state looks like[[δw( /0),∆w( /0)]] = [[ /0,coimδw]] for somew∈ Σ∗.
SinceT contains all singular transformations, for allU ⊂Qn, there existst ∈ T such that coimt =U .

Hence for allU ⊂ Qn, [[ /0,U ]] is reachable inA D
/0 . Thus all intervals of type(0, i) are reachable, for

0≤ i ≤ n−1. By Lemma 2,A/0 has maximal complexity. By a similar argument, when|S|= n, the atom
AQn has maximal complexity. Thus all 2n atoms have maximal complexity; this completes the proof.

7 Conclusions

We have defined a new class of regular languages – the maximally atomic languages – and proven that
a language of complexityn is maximally atomic if and only if the transition semigroup of its minimal
DFA is set-transitive and contains a transformation of rankn− 1. Since the set-transitive groups have
been fully classified, it is easy to construct examples of maximally atomic languages and study them. We
have also derived a formula for the transition functions of ´atomata and minimal DFAs of atoms.

Acknowledgements:We thank a referee for giving many suggestions to improve ourproofs.

References

[1] Ross A. Beaumont & Raymond P. Peterson (1955):Set-transitive permutation groups. Canadian Journal of
Mathematics7, pp. 35–42, doi:10.4153/CJM-1955-005-x.

[2] Janusz Brzozowski & Gareth Davies (2013):Maximal Syntactic Complexity of Regular Languages Implies
Maximal Quotient Complexities of Atoms. Available athttp://arxiv.org/abs/1302.3906.

[3] Janusz Brzozowski & Hellis Tamm (2013):Complexity of Atoms of Regular Languages. Int. J. Found. Comput.
Sci.24(7), pp. 1009–1027, doi:10.1142/S0129054113400285.

[4] Janusz Brzozowski & Hellis Tamm (2014): Theory of Átomata. Theoret. Comput. Sci.,
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