
Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 201–215, doi:10.4204/EPTCS.151.14

Operations on Automata with All States Final

Kristı́naČevorová
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We study the complexity of basic regular operations on languages represented by incomplete deter-
ministic or nondeterministic automata, in which all statesare final. Such languages are known to
be prefix-closed. We get tight bounds on both incomplete and nondeterministic state complexity of
complement, intersection, union, concatenation, star, and reversal on prefix-closed languages.

1 Introduction

A languageL is prefix-closed ifw∈ L implies that every prefix ofw is in L. It is known that a regular
language is prefix-closed if and only if it is accepted by a nondeterministic finite automaton (NFA) with
all states final [18]. In the minimal incomplete deterministic finite automaton (DFA) for a prefix-closed
language, all the states are final as well.

The authors of [18] examined several questions concerning NFAs with all states final. They proved
that the inequivalence problem for NFAs with all states finalis PSPACE-complete in the binary case,
but polynomially solvable in the unary case. Next, they showed that minimizing a binary NFA with all
states final is PSPACE-hard, and that deciding whether a given NFA accepts a language that is not prefix-
closed is PSPACE-complete, while the same problem for DFAs can be solved in polynomial time. The
NFA-to-DFA conversion and complementation of NFAs with allstates final have been also considered
in [18], and the tight bound 2n for the first problem, and the lower bound 2n−1 for the second one have
been obtained.

The quotient complexity of prefix-closed languages has beenstudied in [5]. The quotient of a lan-
guageL by the stringw is the setLw = {x | wx∈ L}. The quotient complexity of a languageL, κ(L),
is the number of distinct quotients ofL. Quotient complexity is defined for any language, and it is fi-
nite if and only if the language is regular. The quotient automaton of a regular languageL is the DFA
({Lw | w∈ Σ∗},Σ, ·,Lε ,F), whereLw ·a= Lwa, and a quotientLw is final if it contains the empty string.
The quotient automaton ofL is a minimal complete DFA forL, so quotient complexity is the same as the
state complexity ofL which is defined as the number of states in the minimal DFA forL. In [5], the tight
bounds on the quotient complexity of basic regular operation have been obtained, and to prove upper
bounds, the properties of quotients have been used rather than automata constructions.

∗Research supported by grant APVV-0035-10.
†Research supported by grant VEGA 1/0479/12.

http://dx.doi.org/10.4204/EPTCS.151.14


202 Operations on Automata with All States Final

Automata with all states final represent systems, for example, production lines, and their intersection
or parallel composition represents the composition of these systems [21]. A question that arises here
is, whether the complexity of intersection of automata withall states final is the same as in the general
case of arbitrary DFAs or NFAs. At the first glance, it seems that this complexity could be smaller.
Our first result shows that this is not the case. We show that both incomplete and nondeterministic state
complexity of intersection on prefix-closed languages is given by the functionmn, which is the same as
in the general case of regular languages.

In the deterministic case, to have all the states final, we have to consider incomplete deterministic
automata because otherwise, the complete automaton with all states final would accept the language
consisting of all the strings over an input alphabet. Noticethat the model of incomplete deterministic
automata has been considered already by Maslov [20]. The same model has been used in the study of
the complexity of the shuffle operation [6]; here, the complexity on complete DFAs is not known yet.

We next study the complexity of complement, union, concatenation, square, star, and reversal on
languages represented by incomplete DFAs or NFAs with all states final. We get tight bounds in both
nondeterministic and incomplete deterministic cases. In the nondeterministic case, all the bounds are the
same as in the general case of regular languages, except for the bound for star that isn instead ofn+1.
However, to prove the tightness of these bounds, we usually use larger alphabets than in the general case
of regular languages where all the upper bounds can be met by binary languages [10, 12].

To get lower bounds, we use a fooling-set lower-bound method[1, 2, 3, 8, 11]. In the case of union
and reversal, the method does not work since it provides a lower bound on the size of NFAs with multiple
initial states. Since the nondeterministic state complexity of a regular language is defined using a model
of NFAs with a single initial state [10], we have to use a modified fooling-set technique to get the tight
boundsm+n+1 andn+1 for union and reversal, respectively.

In the case of incomplete deterministic finite automata, thetight bounds for complement, union,
concatenation, star, and reversal aren+1,mn+m+n,m·2n−1+2n−1, 2n−1, and 2n−1, respectively.
To define worst-case examples, we use a binary alphabet for union, star, and reversal, and a ternary
alphabet for concatenation.

The paper is organized as follows. In the next section, we give some basic definitions and preliminary
results. In Sections 3 and 4, we study boolean operations. Concatenation is discussed in Section 5, and
star and reversal in Section 6. The last section contains some concluding remarks.

2 Preliminaries

In this section, we recall some basic definitions and preliminary results. For details and all unexplained
notions, the reader may refer to [24].

A nondeterministic finite automaton(NFA) is a quintupleA= (Q,Σ,δ , I ,F), whereQ is a finite set
of states,Σ is a finite alphabet,δ : Q×Σ → 2Q is the transition function which is extended to the domain
2Q ×Σ∗ in the natural way,I ⊆ Q is the set of initial states, andF ⊆ Q is the set of final states. The
language accepted byA is the setL(A) = {w∈ Σ∗ | δ (I ,w)∩F 6= /0}.

The nondeterministic state complexityof a regular languageL, nsc(L), is the smallest number of
states in any NFA with asingle initial staterecognizingL.

An NFA A is incomplete deterministic(DFA) if |I | = 1 and|δ (q,a)| ≤ 1 for eachq in Q and each
a in Σ. In such a case, we writeδ (q,a) = q′ instead ofδ (q,a) = {q′}. A non-final stateq of a DFA is
called adeadstate ifδ (q,a) = q for each symbola in Σ.
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The incomplete state complexityof a regular languageL, isc(L), is the smallest number of states in
any incomplete DFA recognizingL. An incomplete DFA is minimal (with respect to the number of states)
if it does not have any dead state, all its states are reachable, and no two distinct states are equivalent.

Every NFA A = (Q,Σ,δ , I ,F) can be converted to an equivalent DFAA′ = (2Q,Σ, ·, I ,F ′), where
R·a= δ (R,a) andF ′ = {R∈ 2Q | R∩F 6= /0}. The DFAA′ is called thesubset automatonof the NFAA.
The subset automaton need not be minimal since some of its states may be unreachable or equivalent.
However, if for each stateq of an NFA A, there exists a stringwq that is accepted byA only from the
stateq, then the subset automaton of the NFAA does not have equivalent states since if two subsets of
the subset automaton differ in a stateq, then they are distinguishable bywq.

To prove the minimality of NFAs, we use a fooling set lower-bound technique, see [1, 2, 3, 8, 11].

Definition A set of pairs of strings{(x1,y1),(x2,y2), . . . ,(xn,yn)} is called afooling setfor a languageL
if for all i, j in {1,2, . . . ,n}, the following two conditions hold:

(F1) xiyi ∈ L, and
(F2) if i 6= j, thenxiy j /∈ L or x jyi /∈ L.

It is well known that the size of a fooling set for a regular language provides a lower bound on the
number of states in any NFA (with multiple initial states) for the language. The argument is simple. Fix
the accepting computations of any NFA on stringsxiyi andx jy j . Then, the states on these computations
reached after readingxi andx j must be distinct, otherwise the NFA accepts bothxiy j andx jyi for two
distinct pairs. Hence we get the following observation.

Lemma 1 ([3, 8, 11]). Let F be a fooling set for a language L. Then every NFA (with multiple initial
states) for the language L has at least|F | states.

The next lemma shows that sometimes, if we insist on having a single initial state in an NFA, one
more state is necessary. It can be used in the case of union, reversal, cyclic shift [15], and AFA-to-NFA
conversion [13]. In each of these cases, NFAs with a single initial state require one more state than NFAs
with multiple initial states. For the sake of completeness,we recall the proof of the lemma here.

Lemma 2 ([14]). LetA andB be sets of pairs of strings and let u and v be two strings such that A ∪B,
A ∪{(ε ,u)}, andB∪{(ε ,v)} are fooling sets for a language L. Then every NFA with a singleinitial
state for the language L has at least|A |+ |B|+1 states.

Proof. Consider an NFA for a languageL, and letA = {(xi ,yi) | i = 1,2, . . . ,m} andB = {(xm+ j ,ym+ j) |
j = 1,2, . . . ,n}. Since the stringsxkyk are inL, we fix an accepting computation of the NFA on each string
xkyk. Let pk be the state on this computation that is reached after reading xk. SinceA ∪B is a fooling set
for L, the statesp1, p2, . . . , pm+n are pairwise distinct. SinceA ∪{(ε ,u)} is a fooling set, the initial state
is distinct from all the statesp1, p2, . . . , pm. SinceB∪{(ε ,v)} is a fooling set, the (single) initial state
is also distinct from all the statespm+1, pm+2, . . . , pm+n. Thus the NFA has at leastm+n+1 states.

Example Let K = (a3)∗ andL = (b3)∗. Then nsc(K) = 3 and nsc(L) = 3, and the languageK ∪ L is
accepted by a 6-state NFA with two initial states. Therefore, we cannot expect that we will be able to
find a fooling set forK ∪ L of size 7. However, every NFA with asingle initial state for the language
K∪L requires at least 7 states since Lemma 2 is satisfied for the languageK∪L with

A = {(a,a2),(a2,a),(a3,a3)},

B = {(b,b2),(b2,b),(b3,b3)},

u= b3, and

v= a3.
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If w= uv for stringsu andv, thenu is aprefixof w. A languageL is prefix-closedif w∈ L implies
that every prefix ofw is in L. The following observations are easy to prove.

Proposition 3 ([18]). A regular language is prefix-closed if and only if it is accepted by some NFA with
all states final.

Proposition 4. Let A be a minimal incomplete DFA for a language L. Then the language L is prefix-
closed if and only if all the states of the DFA A are final.

3 Complementation

If L is a language over an alphabetΣ, then the complement ofL is the languageLc = Σ∗ \ L. If L is
accepted by a minimal complete DFAA, then we can get a minimal DFA forLc from the DFAA by
interchanging the final and non-final states. In the case of incomplete DFAs, we first have to add a dead
state, that is, a non-final state which goes to itself on each input, and let all the undefined transitions go
to the dead state. After that, we can interchange the final andnon-final states to get a (complete) DFA
for the complement. This gives the following result.

Theorem 5. Let n≥ 1. Let L be a prefix-closed regular language over an alphabetΣ with isc(L) = n.
Thenisc(Lc)≤ n+1, and the bound is tight if|Σ| ≥ 1.

Proof. For tightness, we can consider the unary prefix-closed language{ai | 0≤ i ≤ n−1}.

If a languageL is represented by ann-state NFA, then we first construct the corresponding subset
automaton, and then interchange the final and non-final states to get a DFA for the languageLc of at
most 2n states. This upper bound on the nondeterministic state complexity of complement on regular
languages is know to be tight in the binary case [12].

For prefix-closed languages, we get the same bound, however,to prove tightness, we use a ternary
alphabet. Whether or not the bound 2n can be met by a binary language remains open.

Theorem 6. Let n≥ 2. Let L be a prefix-closed regular language over an alphabetΣ with nsc(L) = n.
Thennsc(Lc)≤ 2n, and the bound is tight if|Σ| ≥ 3.

Proof. The upper bound is the same as in the general case of regular languages [10]. To prove tightness,
consider the languageL accepted by the NFAN shown in Figure 1, in which staten goes to the empty
set on botha andb, and to{1} on c. Each other statei goes to{i +1} on botha andc, and to{1, i +1}
on b. Our aim is to describe a fooling setF = {(xS,yS) | S⊆ {1,2, . . . ,n}} of size 2n for Lc.

First, let us show that each subset of{1,2, . . . ,n} is reachable in the subset automaton of the NFAN.
The initial state is{1}, and each singleton set{i} is reached from{1} by ai−1. The empty set is reached
from {n} by a. The set{i1, i2, . . . , ik} of sizek, where 2≤ k≤ n and 1≤ i1 < i2 < · · ·< ik ≤ n, is reached
from the set{i2− i1, . . . , ik− i1} of sizek−1 by the stringbai1−1. This proves reachability by induction.
Now, definexS as the string, by which the initial state 1 of the NFAN goes to the setS.

...1 2 n−1 n
b

b b

a,b,c a,b,c a,b,c a,b,cN

c

Figure 1: The NFAN of a prefix-closed languageL with nsc(Lc) = 2n.
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Next, for a subsetSof {1,2, . . . ,n}, define the stringyS as the stringyS = y0y1 · · ·yn−1 of lengthn,
where

yi =

{

a, if n− i ∈ S,

c, if n− i /∈ S.

We claim that the stringyS is rejected by the NFAN from each state inSand accepted from each state
that is not inS. Indeed, if i is a state inS, thenyn−i = a and yS = uav with u = y0y1 · · ·yn−i−1 and
v= yn−i+1yn−i+2 · · ·yn−1. Hence|u| = n− i, which means that the statei goes to{n} by u since botha
andc move each stateq to stateq+1. However, in staten the NFAN cannot reada, and therefore the
stringyS= uav is rejected fromi. On the other hand, ifi /∈ S, thenyn−i = c, and the stringyS= ucvwith
|u|= n− i and|v|= i −1 is accepted fromi through the computationi

u
−→ n

c
−→ 1

v
−→ i.

Now, we are ready to prove that the set of pairs of stringsF = {(xS,yS) | S⊆ {1,2, . . . ,n}} is a
fooling set for the languageLc.

(F1) ByxS, the initial state 1 goes to the setS. The stringyS is rejected byN from each state inS. It
follows that the NFAN rejects the stringxSyS. Thus the stringxSyS is in Lc.

(F2) LetS 6= T. Then without loss of generality, there is a statei such thati ∈ Sandi /∈ T. By xS, the
initial state 1 goes toS, so it also goes to the statei. Sincei /∈ T, the stringxT is accepted byN from i.
Therefore, the NFAN accepts the stringxSyT , and so this string is not inLc.

HenceF is a fooling set forLc of size 2n. By Lemma 1, we have nsc(Lc)≥ 2n.

4 Intersection and Union

In this section, we study the incomplete and nondeterministic state complexity of intersection and union
of prefix-closed languages. If regular languagesK and L are accepted bym-state andn-state NFAs,
respectively, then the languageK ∩ L is accepted by an NFA of at mostmn states, and this bound is
known to be tight in the binary case [10]. Our first result shows that the boundmn can be met by
binary prefix-closed languages. Then, using this result, weget the same bound on the incomplete state
complexity of intersection on prefix-closed languages.

Theorem 7. Let K and L be prefix-closed languages over an alphabetΣ withnsc(K)=m andnsc(L) = n.
Thennsc(K∩L)≤ mn, and the bound is tight if|Σ| ≥ 2.

Proof. The upper bound is the same as for regular languages [10]. Fortightness, consider prefix-closed
binary languagesK = {w ∈ {a,b}∗ | #a(w) ≤ m− 1} andL = {w ∈ {a,b}∗ | #b(w) ≤ n− 1} that are
accepted by anm-state and ann-state incomplete DFAsA andB, respectively, shown in Figure 2.

Consider the set of pairs of stringsF = {(aib j ,am−1−ibn−1− j) | 0≤ i ≤ m−1,0≤ j ≤ n−1} of size
mn. Let us show thatF is a fooling set for the languageK∩L.

a a a a

...

...

b b b b

a a a a

b b b b

A

B

0 1 m−2 m−1

n−2 n−11 0

Figure 2: The incomplete DFAsA andB of prefix-closed languagesK andL with nsc(K∩L) = mn.
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(F1) The stringaib j ·am−1−ibn−1− j has exactlym−1 a’s andn−1 b’s. It follows that it is inK∩L.
(F2) Let(i, j) 6= (k, ℓ). If i < k, then the stringakbℓ ·am−1−ibn−1− j containsm−1+(k− i) a’s, and

therefore it is not inK. The case ofj < ℓ is symmetric.
HenceF is a fooling set forK∩L, and the theorem follows.

Theorem 8. Let K and L be prefix-closed languages over an alphabetΣ with isc(K)=m andisc(L) = n.
Thenisc(K∩L)≤ mn, and the bound is tight if|Σ| ≥ 2.

Proof. Let A= (QA,Σ,δA,sA,QA) andB= (QB,Σ,δB,sB,QB) be incomplete DFAs forK andL, respec-
tively. Define an incomplete product automatonM = (QA×QB,Σ,δ ,(sA,sB),QA×QB), where

δ ((p,q),a) =

{

(δA(p,a),δB(q,a)), if both δA(p,a) andδB(q,a) are defined,

undefined, otherwise.

The DFAM accepts the languageK∩L. This gives the upper boundmn. For tightness, consider the same
languagesK andL as in the proof of the previous theorem. Notice thatK andL are accepted bym-state
andn-state incomplete DFAs, respectively. We have shown that nondeterministic state complexity of
their intersection ismn. It follows that the incomplete state complexity is also at leastmn.

Our next result on the incomplete state complexity of union on prefix-closed languages can be derived
from the result on the quotient complexity of union in [5]. For the sake of completeness, we restate it in
terms of incomplete complexities, and recall the proof.

Theorem 9. Let K and L be prefix-closed languages over an alphabetΣ with isc(K)=m andisc(L) = n.
Thenisc(K∪L)≤ mn+m+n, and the bound is tight if|Σ| ≥ 2.

Proof. LetA=({0,1, . . . ,m−1},Σ,δA,0,FA) andB=({0,1, . . . ,n−1},Σ,δB,0,FB) be incomplete DFAs
for the languagesK andL, respectively. To construct a DFA for the languageK ∪ L, we first add the
dead statesm andn to the DFAsA andB, and let go all the undefined transitions to the dead states.
Now we construct the classic product-automaton from the resulting complete DFAs with the state set
{0,1, . . . ,m}×{0,1, . . . ,n}. All its states are final, except for the state(m,n) that is dead, and we do not
count it. Hence we get the upper boundmn+m+n on the incomplete state complexity of union.

b b b b

b b b

b b b b

b b b b

b

b

b

a a a a a

a a a a a

a a a a

a a a a

0,0 0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3 1,4

2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3

Figure 3: The product automaton for incomplete DFAsA andB from Figure 2;m= 3 andn= 4.
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a a a a

...

...

b

c c c c

d

A

B

0 1 

0 1 

m−2 m−1

n−2 n−1

Figure 4: The NFAsA andB of prefix-closed languagesK andL with nsc(K∪L) = m+n+1.

For tightness, we again consider the languages described inthe proof of Theorem 7. We add the dead
statesm andn and construct the product automaton. The product automatonin the case ofm= 3 and
n= 4 is shown in Figure 3.

Each state(i, j) of the product automaton is reached from the initial state(0,0) by the stringaib j . Let
(i, j) and(k, ℓ) be two distinct states of the product automaton. Ifi < k, then the stringam−kbn is rejected
from (k, ℓ) and accepted from(i, j). If j < ℓ, then the stringbn−ℓam is rejected from(k, ℓ) and accepted
from (i, j). Thus all the states in the product-automaton are reachableand pairwise distinguishable, and
the lower boundmn+m+n follows.

In the nondeterministic case, the upper bound for union on regular language ism+n+1, and it is
tight in the binary case [10]. We get the same bound for union on prefix-closed languages, however, to
define witness languages, we use a four-letter alphabet.

Theorem 10.Let K and L be prefix-closed languages over an alphabetΣ withnsc(K)=m andnsc(L) = n.
Thennsc(K∪L)≤ m+n+1, and the bound is tight if|Σ| ≥ 4.

Proof. The upper bound is the same as for regular languages [10]. To prove tightness, letK andL be the
prefix-closed languages accepted by the NFAsA andB, respectively, shown in Figure 4. Let

A = {(ai ,am−1−ib) | i = 1,2, . . . ,m−1}∪{(am−1b,a)},

B = {(c j ,cn−1− jd) | j = 1,2, . . . ,n−1}∪{(cn−1d,c)}.

Let us show thatA ∪B is a fooling set for the languageK ∪L.
(F1) We haveai ·am−1−ib = am−1b andc j · cn−1− jd = cn−1d. Both these strings are inK ∪ L. The

stringsam−1b·a andcn−1d ·c are inK ∪L as well.
(F2) If 1≤ i < i′ ≤ m−1, then the stringai ·am−1−i′b is not inK sincem−1− (i′− i)< m−1. Next,

if 1 ≤ i ≤ m−1, thenam−1b ·am−1−ib is not inK. The argumentation for two pairs fromB is similar.
If we concatenate the first part of a pair inA with the second part of a pair inB, then we get a string
that either contains all three symbolsa,c,d, or contains both symbolsa andd. No such string is inK∪L.

ThusA ∪B is a fooling set for the languageK∪L. Moreover, the setsA ∪{(ε ,c)} andB∪{(ε ,a)}
are fooling sets forK∪L as well. By Lemma 2, we have nsc(K ∪L)≥ m+n+1.

5 Concatenation

In this section, we deal with the concatenation operation onprefix-closed languages. We start with
incomplete state complexity. We use a slightly different ternary witness language than in [5], and prove
the upper bound using automata constructions.
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q0 q1 qm−2 qm−1

...

...

a,b

c c c c
bb

b

a,b a,b a,ba

b,c c c c

A

B 0 1 n−2 n−1

a

Figure 5: The incomplete DFAsA andB of languagesK andL with isc(KL) = m·2n−1+2n−1.

Theorem 11. Let m,n≥ 3. Let K and L be prefix-closed languages over an alphabetΣ with isc(K) = m
and isc(L) = n. Thenisc(KL)≤ m·2n−1+2n−1, and the bound is tight if|Σ| ≥ 3.

Proof. Let A = (QA,Σ,δA,sA,QA) andB = (QB,Σ,δB,sB,QB) be incomplete DFAs with all states final
accepting the languagesK andL, respectively. Construct an NFAN for the languageKL from the DFAs
A andB by adding the transition on a symbola from a stateq in QA to the initial statesB of B whenever
the transition ona in stateq is defined inA. The initial states of the NFAN aresA andsB, and the set of
final states isQB. Each reachable subset of the subset automaton of the NFAN contains at most one state
of QA, and several states ofQB. Moreover, if a state ofQA is in a reachable subsetS, thenSmust contain
the statesB. This gives the upper boundm·2n−1+2n−1 on isc(KL) since the empty set is not counted.

For tightness, consider the prefix-closed languagesK andL accepted by incomplete DFAsA andB,
respectively, shown in Figure 5, in which the transitions are as follows:

on a, stateq0 goes to itself, and each statej goes to( j +1) modn;
on b, each stateqi goes to stateq0, state 0 goes to itself, and statej with 1≤ j ≤ n−2 goes toj +1;
on c, each stateqi with 0≤ i ≤ m−2 goes toqi+1, and each statej goes to itself;

and all the remaining transitions are undefined.
Construct an NFAN for the languageKL as described above. Let us show that the subset automaton

of the NFAN hasm·2n−1+2n−1 reachable and pairwise distinguishable non-empty subsets.
(1) First, let us show that each set{q0}∪S is reachable, whereS⊆ {0,1, . . . ,n−1} and 0∈ S. The

proof is by induction on the size of subsets. The set{q0,0} is the initial subset. The set{q0,0, j1, j2, . . . , jk}
with 1≤ j1 < j2 < · · ·< jk ≤ n−1 is reached from the set{q0,0, j2− j1, . . . , jk− j1} by the stringabj1−1,
and the latter set is reachable by induction.

(2) Now, let us show that each set{qi}∪S, is reachable, where 1≤ i ≤ m−1, S⊆ {0,1, . . . ,n−1}
and 0∈ S. The set{qi}∪S is reached from{q0}∪Sby ci , and the latter set is reachable as shown in (1).

(3) Next, we show that each setS with S⊆ {0,1, . . . ,n− 1} and 0∈ S is reachable. The setS is
reached from{qm−1}∪Sby c, and the latter set is reachable as shown in case (2).

(4) Finally, we show that each non-empty setSwith S⊆ {0,1, . . . ,n−1} and 0/∈ S is reachable. If
S= { j1, j2, . . . , jk} with j1 ≥ 1, thenS is reached from the set{0, j2 − j1, . . . , jk − j1} by a j1, and the
latter set is reachable as shown in case (3).

This proves the reachability ofm·2n−1+2n−1 non-empty subsets.
To prove distinguishability, notice that the stringbn is accepted by the DFAB only from the state 0,

and the stringan−1−iabn is accepted only from the statei (1 ≤ i ≤ n− 1). If S andT are two distinct
subsets of{0,1, . . . ,n−1}, thenSandT differ in a statei. If i = 0, thenbn distinguishesSandT, and if
i ≥ 1, thenan−ibn distinguishesSandT.
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a a a a

...

...

b c

a a a a

b c

A

B 1 0

1 0 m−2 m−1

n−2 n−1

Figure 6: The incomplete DFAs of prefix-closed languagesK andL with nsc(KL) = m+n.

Next, the sets{qi}∪S and{qi}∪T, whereS andT are distinct subsets of{0,1, . . . ,n− 1}, go to
S and T, respectively, bycm. SinceS and T are distinguishable, the sets{qi} ∪S and {qi} ∪ T are
distinguishable as well.

Finally, notice that the stringbnabn is accepted by the NFAN from each stateqi , but rejected from
each statei in {0,1, . . . ,n−1}. Hence the sets{qi}∪SandT, whereSandT are subsets of{0, . . . ,n−1},
are distinguishable. Now let 0≤ i < j ≤ m−1. Then{qi}∪Sand{q j}∪T go to{qi+m− j}∪SandT,
respectively, bycm− j . Since{qi+m− j}∪SandT are distinguishable, the sets{qi}∪Sand{q j}∪T are
distinguishable as well. This proves the distinguishability of all the reachable subsets, and completes the
proof.

In the next theorem, we consider the nondeterministic case.For regular languages, the upper bound
on the nondeterministic state complexity of concatenationis m+ n, and it is tight in the binary case
[10]. For prefix-closed languages, we get the same bound for concatenation. However, we define witness
languages over a ternary alphabet.

Theorem 12. Let m,n≥ 3. Let K and L be prefix-closed languages over an alphabetΣ with nsc(K) = m
andnsc(L) = n. Thennsc(KL)≤ m+n, and the bound is tight if|Σ| ≥ 3.

Proof. The upper bound is the same as for regular languages [10]. Fortightness, consider the ternary
prefix-closed languagesK andL accepted by incomplete DFAsA andB, respectively, shown in Figure 6.
Notice that if a stringw is in KL, thenw is in the languageb∗a∗c∗b∗a∗c∗, and the number ofa’s in w is
at most(n+m−2).

For i = 0,1, . . . ,m+n−1, define the pair(xi ,yi) as follows:

(xi ,yi) = (ai ,am−1−icban−1), for i = 0,1, . . .m−1,

(xm+ j ,ym+ j) = (am−1cbaj ,an−1− j), for j = 0,1, . . .n−1.

Let us show that the set of pairsF = {(xi ,yi) | i = 0,1, . . . ,m+n−1} is a fooling set for the languageKL.
(F1) For eachi, we havexiyi = am−1cban−1. Thusxiyi is in KL sinceam−1c is in K andban−1 is in L.
(F2) Let i < j and (i, j) 6= (m− 1,m). Then the number ofa’s in the stringx jyi is greater than

m+n−2, and therefore the stringx jyi is not inKL. If (i, j) = (m−1,m), thenxmym−1 = am−1cbcban−1.
Thusxmym−1 is not inb∗a∗c∗b∗a∗c∗, and therefore it is not inKL.

Hence the setF is a fooling set for the languageKL, so nsc(KL)≥ m+n.

6 Star and Reversal

We conclude our paper with the star and reversal operation onprefix-closed languages. The star of a
languageL is the languageL∗ =

⋃

i≥0 Li, whereL0 = {ε} andLi+1 = Li ·L.



210 Operations on Automata with All States Final

1 2 3 4 5 6
b b

b

a

a

b

b

a

a

b

A

Figure 7: The incomplete DFAA of a prefix-closed languageL with isc(L∗) = 2n−1; n= 6.

If a regular languageL is accepted by a completen-state DFA, then the languageL∗ is accepted by a
DFA of at most 3/4·2n states, and the bound is tight in the binary case [20, 25].

For prefix-closed languages, the upper bound on the quotientcomplexity for star is 2n−2+1, and it
has been shown to be tight in the ternary case [5]. In the case of incomplete state complexity, we get the
bound 2n−1. For the sake of completeness, we give a simple proof of the upper bound using automata
constructions. Moreover, we are able to define a witness language over a binary alphabet.

Theorem 13. Let n≥ 4. Let L be a prefix-closed regular language over an alphabetΣ with isc(L) = n.
Thenisc(L∗)≤ 2n−1, and the bound is tight if|Σ| ≥ 2.

Proof. Let A= (Q,Σ, ·,s,Q) be an incomplete DFA forL. Construct an NFAA∗ for L∗ from the DFA
A by adding the transition on a symbola from a stateq to the initial states whenever the transitionq·a
is defined. In the subset automaton of the NFAA∗, each reachable set is either empty, or it contains the
initial states. It follows that isc(L∗)≤ 2n−1.

For tightness, consider the binary incomplete DFA with the state set{1,2, . . . ,n}, the initial state
1 and with all states final. The transitions are as follows. Bya, the transitions in states 1 and 2 are
undefined, each odd statei with 3≤ i ≤ n−1 goes toi+1, and each even statei with 3≤ i ≤ n−1 goes
to i −1. By b, there is a cycle(1,2,3), each odd statei with 4≤ i ≤ n−1 goes toi −1, and each even
statei with 4≤ i ≤ n−1 goes toi +1. If n is odd, thenn goes to itself bya, otherwise it goes to itself
by b. The DFA forn= 6 is shown in Figure 7.

Notice that each statei with 3≤ i ≤ n has exactly one in-transition ona and onb. Denote bya−1(i)
the state that goes toi on a, and byb−1(i) the state that goes toi onb.

Construct an NFAA∗ as described above. Let us show that in the subset automaton of the NFA A∗,
all subsets of{1,2, . . . ,n} containing state 1 are reachable and pairwise distinguishable.

We prove reachability by induction on the size of subsets. The basis is|S| = 1, and the set{1} is
reachable since it is the initial state of the subset automaton. Assume that every setScontaining 1 with
|S|= k, where 16 k6 n−1, is reachable. LetS= {1, i1, i2, i3, . . . , ik}, where 26 i1 < i2 < · · ·< ik 6 n,
be a set of sizek+1. Consider three cases:

(i) i1 = 2. TakeS
′
= {1,b−1(i2),b−1(i3), . . . ,b−1(ik)}. Then|S

′
|= k, and thereforeS

′
is reachable by

the induction hypothesis. Since we haveS′
b
−→ {1,2, i2, . . . , ik}= S, the setS is reachable.

(ii ) i1 = 3. TakeS′ = {1,2,b−1(i2),b−1(i3), . . . ,b−1(ik)}. Then|S′|= k+1 andS′ contains states 1 and

2. Therefore, the setS′ is reachable as shown in case(i). Since we haveS
′ b
−→{1,2,3, i2, i3, . . . , ik}

aa
−→

{1,3, i2, i3, . . . , ik}= S, the setS is reachable.

(iii ) Let i1 = j ≥ 3, and assume that each set{1, j, i2, . . . , ik} is reachable. Let us show that then also
each set{1, j + 1, i2, . . . , ik} is reachable. Ifj is odd, then the set{1, j + 1, i2, . . . , ik} is reached
from the set{1, j,a−1(i2),a−1(i3), . . . ,a−1(ik)} by a. If j is even, then the set{1, j +1, i2, . . . , ik}
is reached from the set{1, j,b−1(i2),b−1(i3), . . . ,b−1(ik)} by baa.
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This proves reachability. To prove distinguishability, notice that the string(ab)n−2 is accepted by the
NFA A∗ from state 3 since state 3 goes to the initial state 1 by(ab)n−2 through the computation

3
ab
−→ 5

ab
−→ 7

ab
−→ ·· ·

ab
−→ n

a
−→ n

b
−→ n−1

ab
−→ n−3

ab
−→ ·· ·

ab
−→ 4

ab
−→ 1

if n is odd, and through a similar computation ifn is even. On the other hand, the string(ab)n−2 cannot
be read from any other state 2i with 2≤ i ≤ n/2 since we have

2i
ab
−→ {2i −2,1,2}

ab
−→ {2i −4,1,2}

ab
−→ ·· ·

ab
−→ {4,1,2}

a
−→ {3,1}

b
−→ {1,2}

ab
−→ /0,

thus 2i goes to the empty set by(ab)i , so also by(ab)n−2. If n is odd, then we have

2i +1
ab
−→ {2i +3,1,2}

ab
−→ {2i +5,1,2}

ab
−→ ·· ·

ab
−→ {n,1,2}

a
−→ {n,1}

b
−→ {n−1,1,2}

ab
−→

{n−3,1,2}
ab
−→ ·· ·

ab
−→ {2i,1,2}

(ab)i

−−→ /0,

thus 2i + 1 goes to the empty set by(ab)n−i , i ≥ 2, and so also by(ab)n−2. For n even, the argument
is similar. The string(ab)n−2 is not accepted from states 1 and 2. Hence the NFAA∗ accepts the string
(ab)n−2 only from the state 3. Since there is exactly one in-transition onb in state 3, and it goes from state
2, the stringb(ab)n−2 is accepted byA∗ only from state 2. Similarly, the stringbb(ab)n−2 is accepted by
A∗ only from state 1. Next, for similar reasons, the stringa(ab)n−2 is accepted only from 4, the string
ba(ab)n−2 is accepted only from 5, and in the general case, the string(ab)ia(ab)n−2 is accepted only
from 4+2i (i ≥ 0), and the string(ba)i(ab)n−2 is accepted only from 3+2i (i ≥ 1). Hence for each state
q of the NFAA∗, there exists a stringwq that is accepted byA∗ only from the stateq. It follows that all
the subsets of the subset automaton of the NFAA∗ are pairwise distinguishable since two distinct subsets
differ in a stateq, and the stringwq distinguishes the two subsets. This completes the proof.

We did some computations in the binary case. Having the files of n-state minimal binary pairwise
non-isomorphic complete DFAs with a dead state and all the remaining states final, we computed the
state complexity of the star of languages accepted by DFAs onthe lists; here the state complexity of
a regular languageL, sc(L), is defined as the smallest number of states in anycompleteDFA for the
languageL. We computed the frequencies of the resulting complexities, and the average complexity of
star. Our results are summarized in Table 2. Notice that forn= 3,4,5, there is just one language with
sc(L) = n and sc(L∗) = 2. Let us show that this holds for everyn with n≥ 3.

n\sc(L∗) 1 2 3 4 5 6 7 8 9 average

2 - 2 - - - - - - - 2

3 8 1 6 - - - - - - 1.866

4 161 1 48 30 6 - - - - 1.857

5 4177 1 771 275 350 84 84 - 26 1.849

Table 1: The frequencies of the complexities and the averagecomplexity of star on prefix-closed lan-
guages in the binary case;n= 2,3,4,5.
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Figure 8: The only binaryn-state complete DFA of a prefix-closed languageL with sc(L∗) = 2.

Proposition 14. Let n≥ 3. There exists exactly one (up to renaming of alphabet symbols) binary prefix-
closed regular language L withsc(L) = n andsc(L∗) = 2.

Proof. Let A= ({0,1},{a,b},δ ,0,F ) be a minimal two-state DFA for the languageL∗. SinceL is prefix-
closed, the languageL∗ is prefix-closed as well. It follows that state 0 is final, and state 1 is dead, thus
F = {0} andδ (1,a) = δ (1,b) = 1.

Without loss of generality, state 1 is reached from the initial state 0 bya, thusδ (0,a) = 1.
Sincen≥ 3, the languageL contains a non-empty string. This means that the languageL∗ contains a

non-empty string as well. Therefore, we must haveδ (0,b) = 0, and soL∗ = b∗.
Now let B be the minimaln-state DFA forL. Then all the states ofB are final, except for the dead

state. SinceL∗ = b∗, no a may occur in any string ofL. Hence each non-dead state ofB must go to
the dead state ona. Since all states must be reachable, we must have a path labeled bybn−2 and going
through all the final states. The last final state must go to thedead state onb because otherwise all final
states would be equivalent. The resultingn-state DFAB is shown in Figure 8.

The reversewR of a stringw is defined byεR = ε , and(wa)R = awR for a in Σ andw in Σ∗. The
reverse of a languageL is the languageLR = {wR | w ∈ L}. If a regular languageL is accepted by a
completen-state DFA, then the languageLR is accepted by a complete DFA of at most 2n states [22, 25],
and the bound is tight in the binary case [16, 19].

For prefix-closed languages, the quotient complexity of reversal is 2n−1 [5], and it follows from the
results on ideal languages [4] since reversal commutes withcomplementation, and the complement of a
prefix-closed language is a right ideal; here a languageL is a right ideal ifL = L ·Σ∗.

We restate the result for reversal in terms of incomplete state complexity, and prove tightness using
a slightly different witness language.

Theorem 15. Let n≥ 2. Let L be a prefix-closed regular language over an alphabetΣ with isc(L) = n.
Thenisc(LR)≤ 2n−1, and the bound is tight if|Σ| ≥ 2.

Proof. Let A be an incomplete DFA forL. Construct an NFAAR for the languageLR from the DFAA by
swapping the role of the initial and final states, and by reversing all the transitions. The subset automaton
of the NFAAR has at most 2n−1 non-empty reachable states, and the upper bound follows.

For tightness, consider the incomplete DFAA with all states final, shown in Figure 9. Construct an
NFA AR as described above. In the subset automaton of the NFAAR, the initial state is{1,2, . . . ,n}. If S
is a subset and ifi ∈ S, then the subsetS\{i} is reached fromSby aiban−i . This proves the reachability
of all non-empty subset by odd induction. Since the states ofthe subset automaton of any reversed DFA
are pairwise distinguishable [7, 16, 22], the theorem follows.

Now, let us turn to the nondeterministic case. For regular languages, the tight bound for both star and
reversal isn+1. It is met by a unary language for star [10], and by a binary language for reversal [12].
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Figure 9: The incomplete DFAA of a languageL with isc(LR) = 2n−1, and the NFAAR.

For prefix-closed languages, we get the same bound for reversal. However, for star, the upper bound
is n since every prefix-closed language contains the empty string, and there is no need to add a new initial
state in the construction of an NFA for star. In the followingtheorem, we show that both these bounds
are tight in the binary case.

Theorem 16. Let n≥ 2. Let L be a prefix-closed language over an alphabetΣ with nsc(L) = n. Then
(1) nsc(L∗)≤ n,
(2) nsc(LR)≤ n+1,

and both bounds are tight if|Σ| ≥ 2.

Proof. (1) Let N = (Q,Σ,δ ,s,F) be ann-state NFA forL. SinceL is prefix-closed, the empty string is
in L. Therefore, we can get ann-state NFA for the languageL∗ from the NFAN as follows: for each
stateq and each symbola such thatδ (q,a)∩F 6= /0, we add a transition ona from q to the initial states.
Thus the upper bound isn.

For tightness, consider the prefix-closed languageL accepted by the NFAA shown in Figure 10.
Consider the set of pair of stringsF = {(ai ,an−1−ib) | i = 0,1, . . . ,n−1} of sizen. Let us show thatF
is a fooling set for the languageL∗.

(F1) We haveaian−1−ib= an−1b. Since the stringan−1b is in L, it also is inL∗.

(F2) Let i < j. Thenaian−1− jb= an−1−( j−i)b. Since no stringaℓb with ℓ < n−1 is in L, the string
an−1−( j−i)b is not inL∗.

Hence the setF is a fooling set for the languageL∗, and the lower bound follows.

(2) The upper bound is the same as for regular languages [10].It is shown in [12, Theorem 2] that
this bound is met by the binary prefix-closed languageL accepted by the NFA shown in Figure 10.
The proof in [12] is by a counting argument. Notice that Lemma2 is satisfied for the languageLR

with A = {(bai ,an−1−i) | i = 0,1, . . . ,n−2},B = {(ban−1,ban−1)},u = ban−1, andv= a. This gives
nsc(LR)≥ n+1 immediately.

...a a a aa

b

0 1 2 n−2 n−1

Figure 10: The NFA of a prefix-closed languageL with nsc(L∗) = n and nsc(LR) = n+1.
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complement |Σ| intersection |Σ| union |Σ|
isc on prefix-closed n+1 1 mn 2 mn+m+n 2
sc on prefix-closed [5] n 1 mn−m−n+2 2 mn 2
sc on regular [20, 25] n 1 mn 2 mn 2

nsc on prefix-closed 2n 3 mn 2 m+n+1 4
nsc on regular [10, 12] 2n 2 mn 2 m+n+1 2

Table 2: The complexity of boolean operations on prefix-closed and regular languages.

concatenation |Σ| star |Σ| reversal |Σ|
isc on prefix-closed m2n−1+2n−1 3 2n−1 2 2n−1 2
sc on prefix-closed [5] (m+1)2n−2 3 2n−2+1 3 2n−1 2
sc on regular [20, 25] m2n−2n−1 2 2n−1+2n−2 2 2n 2

nsc on prefix-closed m+n 3 n 2 n+1 2
nsc on regular [10, 12] m+n 2 n+1 2 n+1 2

Table 3: The complexity of concatenation, star, and reversal on prefix-closed and regular languages.

7 Conclusions

In this paper we considered operations on languages recognized by incomplete deterministic or non-
deterministic finite automata with all states final. Our results are summarized in Tables 2 and 3. The
results on quotient (state) complexity on prefix-closed languages are from [5], and the results for regular
languages are from [10, 12, 20, 25]. Notice that in the nondeterministic case, our results are the same
as in the general case of regular languages, except for the star operation. However, to prove tightness,
we usually used larger alphabets than in the general case. Whether or not these bounds are tight also for
smaller alphabets remains open.
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[21] Tomáš Masopust (2010):Personal communication.

[22] B. G. Mirkin (1970): On dual automata. Kibernetika (Kiev) 2, pp. 7–10 (Russian). Available at
http://dx.doi.org/10.1007/BF01072247. English translation: Cybernetics2, (1966) 6–9.

[23] Narad Rampersad (2006):The state complexity of L2 and Lk. Inform. Process. Lett.98(6), pp. 231–234.
Available athttp://dx.doi.org/10.1016/j.ipl.2005.06.011.

[24] Michael Sipser (1997):Introduction to the theory of computation. PWS Publishing Company.

[25] Sheng Yu, Qingyu Zhuang & Kai Salomaa (1994):The state complexities of some basic op-
erations on regular languages. Theoret. Comput. Sci.125(2), pp. 315–328. Available at
http://dx.doi.org/10.1016/0304-3975(92)00011-F.

http://jmc.feydakins.org/ps/c09psc02.ps
http://dx.doi.org/10.1016/0020-0190(96)00095-6
http://dx.doi.org/10.1007/978-3-642-30642-6
http://dx.doi.org/10.1142/S0129054103002199
http://dx.doi.org/10.1007/978-3-662-03442-2
http://dx.doi.org/10.1016/j.tcs.2004.04.011
http://dx.doi.org/10.1007/978-3-642-30642-6_19
http://dx.doi.org/10.1142/S0129054111008933
http://dx.doi.org/10.1051/ita:2007038
http://dx.doi.org/10.1016/j.tcs.2012.05.008
http://dx.doi.org/10.1016/j.tcs.2009.07.049
http://dx.doi.org/10.1016/S0304-3975(81)80005-9
http://dx.doi.org/10.1007/BF01072247
http://dx.doi.org/10.1016/j.ipl.2005.06.011
http://dx.doi.org/10.1016/0304-3975(92)00011-F

	1 Introduction
	2 Preliminaries
	3 Complementation
	4 Intersection and Union
	5 Concatenation
	6 Star and Reversal
	7 Conclusions

