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We consider a measure of similarity for infinite words that generalizes the notion of asymptotic or
natural density of subsets of natural numbers from number theory. We show that every overlap-free
infinite binary word, other than the Thue-Morse wordt and its complementt, has this measure of
similarity with t between1

4 and3
4. This is a partial generalization of a classical 1927 resultof Mahler.

1 Introduction

The Thue-Morse word

t = 01101001100101101001011001101001· · ·

is one of the most studied objects in combinatorics on words.It can be defined in a number of different
ways, such as the fixed point of the morphismµ defined byµ(0) := 01 andµ(1) := 10 beginning with
0, or as the word whosenth position is the number of1s (modulo 2) in the binary representation ofn.

The wordt has a large number of interesting properties, many of which are covered in the survey
[1]. For example,t is overlap-free: it contains no factor of the formaxaxa, wherex is a (possibly empty)
word anda is a single letter. One that concerns us here is the following“fragility” property [4]: if the
bits in anyfinite non-empty set of positions are “flipped” (i.e., changed to their binary complement) in
the Thue-Morse word, the resulting word is no longer overlap-free.1

Of course, this is not true of arbitraryinfinitesets of positions; for example, we can transformt to t by
flipping all the positions. Chao Hsien Lin (personal communication, October 2013) raised the following
natural question.

Problem 1. Is it possible to flip aninfinite, but density 0, set of positions int and still get an overlap-free
word?

Our main result (Theorem 18) solves Problem 1 in the negative. After making precise what we
mean by “density”, we use a certain automaton [10] encoding all the overlap-free infinite binary words
to comparet to all other overlap-free infinite binary words and show thatthey differ from t in at least
density 1

4 of the positions. Furthermore, computational evidence suggests that the true lower bound is
density 1

3. However, we were unable to obtain a proof of this tighter bound. Finally, we consider the
possibility of similar results holding for other words (in place oft) or for larger classes of words (in place
of overlap-free words).

1Note that the “fragility” property does not hold for an arbitrary overlap-free binary word; for example, both0t and1t are
overlap-free. There are even overlap-free words in which blocks arbitrarily far from the beginning may be flipped and still
remain overlap-free [10].
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2 Notation

We observe the following notational conventions throughout this paper. We letN := {0,1,2, . . .} denote
the natural numbers. The upper-case Greek lettersΣ,∆,Γ represent finite alphabets. For eachn∈ N, we
let Σn := {0,1,2, . . . ,n−1}.

As usual,Σω denotes the set of all (right-)infinite words overΣ andLω := {x0x1x2 · · · : xi ∈ L\{ε}}
denote the set of all infinite words formed by concatenation from nonempty words ofL. By xω we mean
the infinite periodic wordxxx· · · .

We adopt the convention that, in the context of words, lower-case letters such asx,y,z refer to finite
words (i.e.,x,y,z∈ Σ∗), while boldface lettersx,y,z refer to infinite words (i.e.,x,y,z∈ Σω ).

To be consistent with 0∈ N, all words are zero-indexed, i.e., the first letter of the word is in position
0. For x ∈ Σ∗ andm≤ n ∈ N, x[n] denotes the letter at thenth position ofx andx[m. .n] denotes the
subword consisting of the letters from themth throughnth positions (inclusive) ofx. Forx∈ Σ∗

2, x denotes
the binary complement ofx, i.e., the word obtained by changing all0s to1s and vice versa. We use the
same notation just described for infinite words. In addition, for x ∈ Σω andn∈ N, x[n. .∞] denotes the
(infinite) suffix ofx starting from thenth position ofx.

For a morphismg : Σ∗→Σ∗ andn∈N, we letgn denote then-fold composition ofg, andgω : Σ∗→Σω

denote limn→∞ gn if the limit exists. The Thue-Morse morphismµ : Σ∗
2 → Σ∗

2 is defined byµ(0) := 01

andµ(1) := 10. Iterates of the Thue-Morse morphism acting on0 are denoted bytn := µn(0). Note that
t = µω(0).

3 Similarity density of words

Let us express Problem 1 in another way: how similar can an arbitrary overlap-free wordw be tot? For
w a shift of t, this was essentially determined by the following result from a surprisingly little-known
1927 paper of Kurt Mahler on autocorrelation [7].

Theorem 2. For all k ∈ N, the limit

σ(k) := lim
n→∞

1
n

n−1

∑
i=0

(−1)t[i]+t[i+k]

exists. Furthermore, we haveσ(0) = 1, σ(1) =−1
3, and for all n∈ N, σ(2n) = σ(n) andσ(2n+1) =

−1
2(σ(n)+σ(n+1)).

(Also see [11, 12].) Then an easy induction onk gives

Corollary 3. For all k ∈ N\{0}, −1
3 ≤ σ(k)≤ 1

3.

Mahler’s result is not exactly what we want, but we can easilytransform it. Rather than autocorrela-
tion, we are more interested in a quantity we call “similarity density”; it measures how similar two words
of the same length are, with a simple and intuitive definitionfor finite words that generalizes to infinite
words by way of limits.

Definition 4. We interpret the Kronecker delta as a function of two variablesδ : Σ2 → Σ2 as follows.

δ (a,b) :=

{

0, if a 6= b;

1, if a= b.
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Definition 5. Let n∈ N\{0} andx,y∈ Σn. Thesimilarity densityof x andy is

SD(x,y) :=
1
n

n−1

∑
i=0

δ (x[i],y[i]).

Thus, two finite words of the same length have similarity density 1 if and only if they are equal.

Definition 6. Let x,y ∈ Σω . Thelowerandupper similarity densitiesof x andy are, respectively,

LSD(x,y) := lim inf
n→∞

SD(x[0. .n−1],y[0. .n−1]),

USD(x,y) := limsup
n→∞

SD(x[0. .n−1],y[0. .n−1]).

Remark7. Our notion of similarity density is not a new idea. (Similar ideas can be found, e.g., in [8, 6].)
It is inspired by the well-studied number-theoretic notionof asymptoticor natural densityof subsets of
natural numbers. Thelowerandupper asymptotic densitiesof A⊆ N are, respectively,

d(A) := lim inf
n→∞

1
n
|A∩{0, . . . ,n−1}| ,

d(A) := limsup
n→∞

1
n
|A∩{0, . . . ,n−1}| .

Similarity density generalizes asymptotic density in the following way. ForA⊆ N, let χA ∈ Σω
2 denote

the characteristic sequence ofA (i.e., χA[n] = 1 iff n∈ A). Then

d(A) = LSD(χA,1
ω),

d(A) = USD(χA,1
ω).

Mahler’s result can now be restated as follows.

Theorem 8. For all k ∈ N\{0}, 1
3 ≤ LSD(t, t[k. .∞]) = USD(t, t[k. .∞]) ≤ 2

3.

Proof. Note that for alli,k∈N, (−1)t[i]+t[i+k] = 2δ (t[i], t[i+k])−1. Hence, by Definition 6, Theorem 2,
and Corollary 3, we obtain

LSD(t, t[k. .∞]) = USD(t, t[k. .∞]) =
1
2
(σ(k)+1) ∈

1
2

([

−
1
3
,
1
3

]

+1

)

=

[
1
3
,
2
3

]

.

Remark9. There exist overlap-free infinite binary wordsw with LSD(t,w) < USD(t,w). One example
is the wordh = 00100110100101100110100110010110 · · · whosenth position is the number of0s
(modulo 2) in the binary representation ofn. (Note thath[0] = 0 as we take the binary representation of
0 to beε .) We prove in Proposition 17 that LSD(t,h) = 1

3 while USD(t,h) = 2
3. See Figure 1, where this

similarity density is graphed as a function of the length of the prefix.
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Figure 1: Similarity density of prefixes oft andh

Our main result (Theorem 18) is that the lower and upper similarity densities oft with anyoverlap-
free infinite binary word other thant andt are bounded below and above as in Theorem 8, but with the
constants1

4 and 3
4 instead of13 and 2

3 respectively. However, computational evidence suggests that the
tighest bounds are indeed1

3 and2
3, which, if true, would fully generalize Theorem 8 from nontrivial shifts

of t to all overlap-free infinite binary words (other thant andt).
The following are basic properties of similarity density that we will use later. Their statements are all

intuitive and their proofs are just basic exercises in algebra. Observation 10 states that similarity density
can be computed using weighted averages. Observation 11 andCorollary 12 explain how complementa-
tion affects similarity density. Observation 13 states that the similarity densities of infinite words depends
only on their tails, so we can ignore arbitrarily long prefixes. Observation 14 states that the similarity
densities of infinite words can be obtained by considering similarity densities of prefixes where the length
of the prefix grows by any constant instead of just by one in each iteration.

Observation 10. Let n,m∈N\{0}, u,v∈ Σn, and x,y∈ Σm. Then

SD(ux,vy) =
n

n+m
SD(u,v)+

m
n+m

SD(x,y).

Proof.

SD(ux,vy) =
1

n+m

n+m−1

∑
i=0

δ ((ux)[i],(vy)[i])

=
1

n+m

(
n−1

∑
i=0

δ (u[i],v[i])+
m−1

∑
i=0

δ (x[i],y[i])

)

=
n

n+m
·
1
n

n−1

∑
i=0

δ (u[i],v[i])+
m

n+m
·

1
m

m−1

∑
i=0

δ (u[i],v[i])

=
n

n+m
SD(u,v)+

m
n+m

SD(x,y).
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Observation 11. For all n ∈ N\{0} and x,y∈ Σn
2,

(i) SD(x,y) = 1−SD(x,y).

(ii) SD(x,y) = SD(x,y).

Proof.

(i) SD(x,y) = 1
n ∑n−1

i=0 δ (x[i],y[i]) = 1
n ∑n−1

i=0 (1−δ (x[i],y[i])) = 1−SD(x,y).

(ii) By (i) and symmetry of SD, we have SD(x,y) = 1−SD(x,y) = 1− (1−SD(x,y)) = SD(x,y).

Corollary 12. For all x,y ∈ Σω
2 ,

(i) LSD(x,y) = 1−USD(x,y) andUSD(x,y) = 1−LSD(x,y).

(ii) LSD(x,y) = LSD(x,y) andUSD(x,y) = USD(x,y).

Proof. Immediate by Definition 6, Observation 11, and basic properties of limits.

Observation 13. Let l ∈ N, u,v∈ Σl andx,y ∈ Σω . ThenLSD(ux,vy) = LSD(x,y) andUSD(ux,vy) =
USD(x,y).

Proof. If l = 0, then the proof is trivial. Ifl > 0, then we have

LSD(ux,vy) = lim inf
n→∞

1
n

n−1

∑
i=0

δ ((ux)[i],(vy)[i])

= lim inf
n→∞

1
n+ l

n+l−1

∑
i=0

δ ((ux)[i],(vy)[i])

= lim inf
n→∞

(

1
n+ l

l−1

∑
i=0

δ (u[i],v[i])
︸ ︷︷ ︸

∈[0, l
n+l ]

n→∞
−−−→0

+
1

n+ l

n−1

∑
i=0

δ (x[i],y[i])

)

= lim inf
n→∞

(

0+

(
1
n
−

l
n(n+ l)

)n−1

∑
i=0

δ (x[i],y[i])

)

= lim inf
n→∞

(

1
n

n−1

∑
i=0

δ (x[i],y[i])−
l

n(n+ l)

n−1

∑
i=0

(1−δ (x[i],y[i]))
︸ ︷︷ ︸

∈[0, l
n+l ]

n→∞
−−−→0

)

= lim inf
n→∞

(

1
n

n−1

∑
i=0

(1−δ (x[i],y[i]))−0

)

= LSD(x,y).

The proof is exactly the same for USD with liminf replaced by limsup.

Observation 14. Let M∈N\{0}. Then

LSD(x,y) = lim inf
n→∞

SD(x[0. .Mn−1],y[0. .Mn−1]),

USD(x,y) = limsup
n→∞

SD(x[0. .Mn−1],y[0. .Mn−1]).
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Proof. For anyn∈ N\{0} andk∈ {Mn,Mn+1, . . . ,M(n+1)−2}, by Observation 10, we have

SD(x[0. .k],y[0. .k]) =
Mn

k+1
SD(x[0. .Mn−1],y[0. .Mn−1])

+
k−Mn+1

k+1
SD(x[Mn. .k],y[Mn. .k])

∈

[
Mn

M(n+1)−1
,

Mn
Mn+1

]

SD(x[0. .Mn−1],y[0. .Mn−1])

+

[
1

M(n+1)−1
,

M−1
Mn+1

]

SD(x[Mn. .k],y[Mn. .k]),

so since limn→∞[
Mn

M(n+1)−1,
Mn

Mn+1] = [1,1] = {1} and limn→∞[
1

M(n+1)−1,
M−1
Mn+1] = [0,0] = {0}, all of the

intermediate values SD(x[0. .k],y[0. .k]) for k ∈ {Mn,Mn+ 1, . . ,M(n+ 1)− 2} get arbitrarily close to
SD(x[0. .Mn−1],y[0. .Mn−1]) asn→ ∞. Hence,

liminf
n→∞

SD(x[0. .n−1],y[0. .n−1]) = lim inf
n→∞

SD(x[0. .Mn−1],y[0. .Mn−1]),

limsup
n→∞

SD(x[0. .n−1],y[0. .n−1]) = limsup
n→∞

SD(x[0. .Mn−1],y[0. .Mn−1]).

4 Fife automaton for overlap-free infinite binary words

We recall the so-called “Fife automaton” for overlap-free infinite binary words from [10]. (Note that this
automaton does not appear in the original paper of Fife [5].)

1
0

0

31

0

D

C

F

G

HK

J

I

E

B

A

3

31

3

1

3

3

1

0

3

0

00

0

1

0

24

1

Figure 2: Automaton encoding all overlap-free infinite binary words

Here, infinite paths through the automaton encode all overlap-free infinite binary words, as follows.
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Definition 15. First, each of the edge labels encodes a binary word, viac : Σ5 → Σ∗
2 defined by

c(0) := ε ,
c(1) := 0,

c(2) := 00,

c(3) := 1,

c(4) := 11.

Then, the Fife-to-binary encoding FBE :(Σω
5 \Σ∗

50
ω)∪

(
Σ∗

50
ω ×Σ2

)
→ Σω

2 is defined by

FBE(x) :=
∞

∏
n=0

µn(c(x[n])) for x ∈ Σω
5 \Σ∗

50
ω ;

FBE(x,a) :=

(
∞

∏
n=0

µn(c(x[n]))

)

µω(a) for (x,a) ∈ Σ∗
50

ω ×Σ2.

Note that FBE is well-defined becausec is only erasing for the letter0 and µ is non-erasing, so for
x ∈ Σω

5 , the concatenation∏∞
n=0 µn(c(x[n])) is finite iff x ends in0ω .

We now recall the basic property of the automaton from [10].

Theorem 16. Let w ∈ Σω
2 . Thenw is overlap-free iff there existsx ∈ Σω

5 that encodes a valid path
through the Fife automaton for overlap-free infinite binarywords such thatFBE(x) = w (if x does not
end in0ω ) or FBE(x,a) = w (if x ends in0ω ) for some a∈ S, where S⊆ Σ2 depends on the eventual
cycle corresponding to the suffix0ω of the path encoded byx: on state A and between states B and D
(S= Σ2), between states G and H (S= {1}), or between states J and K (S= {0}).

Recallh as defined in Remark 9. Note that the definitions ofh andt are very similar. This is related
to the special path that encodesh in the Fife automaton for overlap-free infinite binary words[10]:
h = FBE(2(31)ω). We will see later in our proof of our main result why this pathis special. For now,
we can use this path to compute the following result.

Proposition 17. LSD(h, t) = LSD(h, t) = 1
3 andUSD(h, t) = USD(h, t) = 2

3.

Proof. Note that

h = FBE(2(31)ω) = µ0(p(2))
∞

∏
n=0

(
µ2n+1(p(3))µ2n+2(p(1))

)

= µ0(00)
∞

∏
n=0

(
µ2n+1(1)µ2n+2(0)

)
= 0t0

∞

∏
n=0

(t2n+1t2n+2) = 0
∞

∏
n=0

(t2nt2n+1) ,

and since for eachn∈ N, we have|tn|= 2n and 1+∑n
i=02i = 2n+1, it follows that

h[2n. .2n+1−1] =

{

tn, if n≡ 0 (mod 2);

tn, if n≡ 1 (mod 2).

Note that for eachn∈ N, we havet[2n. .2n+1−1] = tn+1[2n. .2n+1−1] = tn. Hence, for alln∈ N,

h[2n. .2n+1−1] =

{

t[2n. .2n+1−1], if n≡ 0 (mod 2);

t[2n. .2n+1−1], if n≡ 1 (mod 2),
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whence

SD(h[2n. .2n+1−1], t[2n. .2n+1−1]) =

{

0, if n≡ 0 (mod 2);

1, if n≡ 1 (mod 2).

If we consider two of these blocks at a time, we obtain, by Observation 10, that for alln∈ N,

SD(h[2n. .2n+2−1], t[2n. .2n+2−1]) =
2n

2n+2n+1 SD(h[2n. .2n+1−1], t[2n. .2n+1−1])

+
2n+1

2n+2n+1 SD(h[2n+1. .2n+2−1], t[2n+1. .2n+2−1])

=

{
2
3, if n≡ 0 (mod 2);
1
3, if n≡ 1 (mod 2).

Iterating Observation 10 finitely many times, we obtain thatfor all n∈ N,

SD(h[1. .22n−1], t[1. .22n−1]) =
2
3
,

SD(h[2. .22n+1−1], t[2. .22n+1−1]) =
1
3
.

Furthermore, applying Observation 10 one letter at a time, we see that fork ∈ [22n − 1,22n+1 − 1],
SD(h[1. .k], t[1. .k]) monotonically decreases (from23), and fork∈ [22n+1−1,22n+2−1], SD(h[1. .k], t[1. .k])
monotonically increases (back to23). Thus,

USD(h[1. .∞], t[1. .∞]) = limsup
n→∞

SD(h[1. .n], t[1. .n]) =
2
3
.

Similarly, for k ∈ [22n+1 −1,22n+2−1], SD(h[2. .k], t[2. .k]) monotonically increases (from13), and for
k∈ [22n+2−1,22n+3−1], SD(h[2. .k], t[2. .k]) monotonically decreases (back to1

3), so

LSD(h[2. .∞], t[2. .∞]) = lim inf
n→∞

SD(h[2. .n+1], t[2. .n+1]) =
1
3
.

Finally, by Observation 13, we conclude that LSD(h, t) = LSD(h[2. .∞], t[2. .∞]) = 1
3 and USD(h, t) =

USD(h[1. .∞], t[1. .∞]) = 2
3, whence by Corollary 12(i), we obtain LSD(h, t)=1−USD(h, t)= 1− 2

3 =
1
3

and USD(h, t) = 1−LSD(h, t) = 1− 1
3 = 2

3.

5 Main result

We now state and prove our main result.

Theorem 18. For all overlap-freew ∈ Σω
2 \{t, t}, 1

4 ≤ LSD(w, t)≤ USD(w, t)≤ 3
4.

Our approach to proving Theorem 18 is to consider each overlap-free infinite binary word in terms
of the path through the Fife automaton that encodes it. We divide the paths into four cases.

(1) ends in0ω .

(2) does not end in0ω , begins with0n2 or 0n4 for somen∈ N, and contains exactlyn 0s.

(3) does not end in0ω , begins with0n2 or 0n4 for somen∈ N, and contains more thann 0s.
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(4) does not end in0ω and begins with0n1 or 0n3 for somen∈N.

Upon closer examination of the Fife automaton, case (2) can be subdivided into two cases:0n2(31)ω and
their complements under FBE,0n4(13)ω . It turns out that we can bootstrap Proposition 17 to obtain the
same bounds for both of these cases. Case (1) follows from Mahler’s theorem 8, but it will also follow
from our own generalized version of it (albeit with weaker bounds). For cases (3) and (4), we observe
that the infinite binary word corresponding to the path eventually “lags behind” the prefixestn of t in
the sense that each successiventh symbol in the path can only generate positions prior to 2n, whence we
can use a technical lemma that bounds the similarity densityof tn with nontrivial subwords oftn+1 to
complete the proof.

Proposition 19. For all n ∈N we haveLSD(FBE(0n2(31)ω), t) = 1
3 andUSD(FBE(0n2(31)ω), t) = 2

3.

Proof. Note that

FBE(0n2(31)ω) =
n−1

∏
k=0

(

µk(p(0))
)

µn(p(2))
∞

∏
k=0

(

µn+2k+1(p(3))µn+2k+2(p(1))
)

=
n−1

∏
k=0

(

µk(ε)
)

µn(00)
∞

∏
k=0

(

µn+2k+1(1)µn+2k+2(0)
)

= tntn
∞

∏
k=0

(tn+2k+1tn+2k+2)

= tn
∞

∏
k=0

(tn+2ktn+2k+1) .

From the proof of Proposition 17, we see that

FBE(0n2(31)ω)[2n. .∞] =

{

h[2n. .∞], if n≡ 0 (mod 2);

h[2n. .∞], if n≡ 1 (mod 2).

Hence, by Observation 13 and Proposition 17, we have

(LSD,USD)(FBE(0n2(31)ω), t) = (LSD,USD)(FBE(0n2(31)ω)[2n. .∞], t[2n. .∞])

=

{

(LSD,USD)(h[2n. .∞], t[2n. .∞]), if n≡ 0 (mod 2);

(LSD,USD)(h[2n. .∞], t[2n. .∞]), if n≡ 1 (mod 2),

=

{

(LSD,USD)(h, t), if n≡ 0 (mod 2);

(LSD,USD)(h, t), if n≡ 1 (mod 2),

=

(
1
3
,
2
3

)

.
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Lemma 20. For all n ∈ N and i∈ [1,2n−1],

(a) SD(tn, tn+1[i. .2
n+ i −1]) ∈

{

{1
2}, if i = 2n−1;

[1
4,

3
4], otherwise.

(a) SD(tn, tn+1[i. .2
n+ i −1]) ∈

{

{1
2}, if i = 2n−1;

[1
4,

3
4], otherwise.

(a) SD(tn, tn+1[i. .2
n+ i −1]) ∈

{

{1
2}, if i = 2n−1;

[1
4,

3
4], otherwise.

(a) SD(tn, tn+1[i. .2
n+ i −1]) ∈

{

{1
2}, if i = 2n−1;

[1
4,

3
4], otherwise.

(b) SD(tn, t
2
n[i. .2

n+ i −1]) ∈

{

{0}, if i = 2n−1;

[1
4,

3
4], otherwise.

(b) SD(tn, t
2
n[i. .2

n+ i −1]) ∈

{

{1}, if i = 2n−1;

[1
4,

3
4], otherwise.

(b) SD(tn, tn
2[i. .2n+ i −1]) ∈

{

{1}, if i = 2n−1;

[1
4,

3
4], otherwise.

(b) SD(tn, tn
2[i. .2n+ i −1]) ∈

{

{0}, if i = 2n−1;

[1
4,

3
4], otherwise.

Proof. By induction onn.

• Forn= 0, all eight cases are vacuously true due toi ∈ /0.

• Suppose all eight cases hold for somen∈ N. For i ∈ [1,2n+1−1], using Observation 10 followed
by the induction hypothesis, we calculate

SD(tn+1, tn+2[i. .2
n+1+ i −1])

= SD(tntn,(tntntntn)[i. .2
n+1+ i −1])

=







SD(tntn,(tntntn)[i. .2n+1+ i −1]), if i ∈ [1,2n−1];

SD(tntn, tntn), if i = 2n;

SD(tntn,(tntntn)[i −2n. .2n+ i −1]), if i ∈ [2n+1,2n+1−1],

=







2n

2n+1 SD(tn,(tntn)[i. .2n+ i −1])+ 2n

2n+1 SD(tn,(tntn)[i. .2n+ i −1]), if i ∈ [1,2n−1];
2n

2n+1 SD(tn, tn)+ 2n

2n+1 SD(tn, tn), if i = 2n;
2n

2n+1 SD(tn,(tntn)[i −2n. . i −1])+ 2n

2n+1 SD(tn,(tntn)[i −2n. . i −1]), if i ∈ [2n+1,2n+1−1],

∈







1
2{

1
2}+

1
2{0}, if i = 2n−1; (by (a),(b))

1
2[

1
4,

3
4]+

1
2[

1
4,

3
4], if i ∈ [1,2n−1]\{2n−1}; (by (a),(b))

1
2{0}+ 1

2{1}, if i = 2n;
1
2{1}+ 1

2{
1
2}, if i = 2n+2n−1; (by (b),(a))

1
2[

1
4,

3
4]+

1
2[

1
4,

3
4], if i ∈ [2n+1,2n+1−1]\{2n+2n−1}, (by (b),(a))
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=







{1
4}, if i = 2n−1;

[1
4,

3
4], if i ∈ [1,2n−1]\{2n−1};

{1
2}, if i = 2n;

{3
4}, if i = 2n+2n−1;

[1
4,

3
4], if i ∈ [2n+1,2n+1−1]\{2n+2n−1},

SD(tn+1, t
2
n+1[i. .2

n+1+ i −1])

= SD(tntn,(tntntntn)[i. .2
n+1+ i −1])

=







SD(tntn,(tntntn)[i. .2n+1+ i −1]), if i ∈ [1,2n−1];

SD(tntn, tntn), if i = 2n;

SD(tntn,(tntntn)[i −2n. .2n+ i −1]), if i ∈ [2n+1,2n+1−1],

=







2n

2n+1 SD(tn,(tntn)[i. .2n+ i −1])+ 2n

2n+1 SD(tn,(tntn)[i. .2n+ i −1]), if i ∈ [1,2n−1];
2n

2n+1 SD(tn, tn)+ 2n

2n+1 SD(tn, tn), if i = 2n;
2n

2n+1 SD(tn,(tntn)[i −2n. . i −1])+ 2n

2n+1 SD(tn,(tntn)[i −2n. . i −1]), if i ∈ [2n+1,2n+1−1],

∈







1
2{

1
2}+

1
2{

1
2}, if i = 2n−1; (by (a),(a))

1
2[

1
4,

3
4]+

1
2[

1
4,

3
4], if i ∈ [1,2n−1]\{2n−1}; (by (a),(a))

1
2{0}+ 1

2{0}, if i = 2n;
1
2{

1
2}+

1
2{

1
2}, if i = 2n+2n−1; (by (a),(a))

1
2[

1
4,

3
4]+

1
2[

1
4,

3
4], if i ∈ [2n+1,2n+1−1]\{2n+2n−1}, (by (a),(a))

=







{1
2}, if i = 2n−1;

[1
4,

3
4], if i ∈ [1,2n−1]\{2n−1};

0, if i = 2n;

{1
2}, if i = 2n+2n−1;

[1
4,

3
4], if i ∈ [2n+1,2n+1−1]\{2n+2n−1},

hence proving (a) and (b) also hold forn+1. By Observation 11, the remaining six cases also hold
for n+1.

Corollary 21. For all n ∈ N, i ∈ [0,2n−1] with gcd(i,2n)≤ 2n−2, and x,y0,y1 ∈ {tn, tn},

SD(x,(y0y1)[i. . i +2n−1]) ∈ [1
4,

3
4].

Proof. Follows immediately from Lemma 20.

Corollary 22. For all n, i ∈N with gcd(i,2n)≤ 2n−2 andx,y ∈ {tn, tn}ω ,

1
4
≤ LSD(x,y[i. .∞]) ≤ USD(x,y[i. .∞]) ≤

3
4
.

Proof. Note that for anyj ∈ N, gcd(i + j ·2n,2n) = gcd(i,2n) ≤ 2n−2. Also for any j ∈ N, sincex,y ∈
{tn, tn}ω and|tn|= |tn|= 2n, we havex[2n j. .2n( j +1)−1] ∈ {tn, tn} andy[i +2n j. . i +2n( j +1)−1] =
(y0y1)[(i mod 2n). .(i mod 2n)+2n−1] for somey0,y1 ∈ {tn, tn}. Hence, for anyj ∈N, by Corollary 21,

SD(x[2n j. .2n( j +1)−1],y[i +2n j. . i +2n( j +1)−1]) ∈

[
1
4
,
3
4

]

,
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whence by Observation 10,

SD(x[0. .2n( j +1)−1],y[i. . i +2n( j +1)−1]) ∈

[
1
4
,
3
4

]

,

whence by Observation 14,

(LSD,USD)(x,y[i. .∞]) =

(

lim inf
j→∞

, limsup
j→∞

)

SD(x[0. .2n j −1],y[i. . i +2n j −1])

∈

([
1
4
,
3
4

]

,

[
1
4
,
3
4

])

.

Corollary 23. For all i ∈ N\{0}, 1
4 ≤ LSD(t, t[i. .∞]) ≤ USD(t, t[i. .∞]) ≤ 3

4.

Proof. Sincei > 0, we have 4maxm∈N gcd(i,2m) = 2n for somen∈N. Note that gcd(i,2n) = 2n−2. Also
note thatt = µn(t) ∈ {tn, tn}ω . Hence, by Corollary 22,

1
4
≤ LSD(t, t[i. .∞]) ≤ USD(t, t[i. .∞]) ≤

3
4
.

We now have all the tools needed to prove Theorem 18.

Proof of Theorem 18.Let w ∈ Σω
2 \{t, t}. By Theorem 16, there existsx ∈ Σω

5 that encodes a valid path
through the Fife automaton for overlap-free infinite binarywords such that FBE(x) =w or FBE(x,a) =w
for somea∈ Σ2. From inspection of the Fife automaton for overlap-free infinite binary words, we see
thatx must fall into one of the following four cases.

(1) x ends in0ω .

(2) x does not end in0ω , begins with0n2 or 0n4 for somen∈ N, and contains exactlyn 0s.

(3) x does not end in0ω , begins with0n2 or 0n4 for somen∈ N, and contains more thann 0s.

(4) x does not end in0ω and begins with0n1 or 0n3 for somen∈N.

Case 1: wends in eithert or t, so sincew 6∈ {t, t}, it follows that w ∈ {zt,zt} for somez∈ Σ+
2 . By

Observation 13, we have

(LSD,USD)(w, t) ∈ {(LSD,USD)(t, t[|z| . .∞]),(LSD,USD)(t, t[|z| . .∞])},

whence by Corollary 23 and Corollary 12, we obtain(LSD,USD)(w, t) ∈ ({[1
4,

3
4], [1− 3

4,1−
1
4]},{[

1
4,

3
4], [1−

3
4,1−

1
4]}) = ([1

4,
3
4], [

1
4,

3
4]), as desired.

Case 2: From inspection of the Fife automaton for overlap-free infinite binary words, we see thatx ∈
{0n{2(31)ω ,4(13)ω} : n∈ N}. Note that FBE(0n4(13)ω) = FBE(0n2(31)ω). Hence, by Propo-
sition 19 and Corollary 12, we obtain(LSD,USD)(w, t) ∈ {(1

3,
2
3),(1−

2
3,1−

1
3)} = {(1

3,
2
3)} ⊂

([1
4,

3
4], [

1
4,

3
4]), as desired.

Case 3: From inspection of the Fife automaton for overlap-free infinite binary words, we see thatx ∈
{0n{2(31)

m
2 ,4(13)

m
2 }0{1,3}y : n,m∈ N,y ∈ {0,1,3}ω}, whence

w ∈ Σω
2 ∩

(
⋃

n,m∈N

Σ2n+m+1

2 {tn+m+2, tn+m+2}
∞

∏
k=n+m+3

{ε , tk, tk}

)

⊆
⋃

n,m∈N

Σ2n+m+1

2 {tn+m+2, tn+m+2}{tn+m+3, tn+m+3}
ω ,
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so there is ak ∈ N such thatw[2k. .∞] ∈ {tk+1, tk+1}{tk+2, tk+2}
ω . By Observation 13 and Corol-

lary 22, we obtain

(LSD,USD)(t,w) = (LSD,USD)(t[2k+2. .∞],w[2k+2. .∞])

= (LSD,USD)(t[2k+2. .∞]
︸ ︷︷ ︸

∈{tk+2,tk+2}ω

,(w[3·2k. .∞]
︸ ︷︷ ︸

∈{tk+2,tk+2}ω

)[2k. .∞])

∈

([
1
4
,
3
4

]

,

[
1
4
,
3
4

])

,

as desired.

Case 4: From inspection of the Fife automaton for overlap-free infinite binary words, we see thatx ∈
{0n{1,3}0m{1,3}y : n,m∈ N,y ∈ {0,1,3}ω}, whence

w ∈ Σω
2 ∩

(

⋃

n,m∈N

{tn, tn}{tn+m+1, tn+m+1}
∞

∏
k=n+m+2

{ε , tk, tk}

)

⊆
⋃

n,m∈N

{tn, tn}{tn+m+1, tn+m+1}{tn+m+2, tn+m+2}
ω ,

so there arek, l ∈ N such thatw ∈ {tk, tk}{tk+l+1, tk+l+1}{tk+l+2, tk+l+2}
ω . By Observation 13 and

Corollary 22, we obtain

(LSD,USD)(t,w) = (LSD,USD)(t[2k+l+2. .∞],w[2k+l+2. .∞])

= (LSD,USD)( t[2k+l+2. .∞]
︸ ︷︷ ︸

∈{tk+l+2,tk+l+2}ω

,(w[2k+2k+l+1. .∞]
︸ ︷︷ ︸

∈{tk+l+2,tk+l+2}ω

)[2k+l+1−2k. .∞])

∈

([
1
4
,
3
4

]

,

[
1
4
,
3
4

])

,

as desired.

6 Future work

Using the Fife automaton for overlap-free infinite binary words, we computed similarity densities of long
prefixes of all overlap-free infinite binary words (up to a certain length) with prefixes oft. Inspection of
the compuation results immediately suggests the followingimprovement to Theorem 18.
Conjecture 24. For all overlap-freew ∈ Σω

2 \{t, t}, we have1
3 ≤ LSD(w, t)≤ USD(w, t)≤ 2

3.
Note that the bounds in Conjecture 24 are tight due to Proposition 17. Computational evidence also

suggests that these bounds are also tight for many other overlap-free infinite binary words.
However, Conjecture 24 cannot be proved just by using the technique we used to prove Theorem 18.

This is because the bounds in Lemma 20 (and, more transparently, Corollary 21) are tight. For example,
SD(t2, t3[1. .4]) =SD(0110,1101)= 1

4. More generally, for anyn∈N, we have SD(tn+2, tn+3[2n. .2n+2+
2n−1]) = 1

4.
On the other hand, our proof of Theorem 18 never used the overlap-free property directly; we merely

used it indirectly via the Fife automaton. As such, our proofof Theorem 18 works for all images of FBE
provided the argument to FBE is of the form required for one ofthe four cases presented in the proof,
regardless of whether the resulting word is overlap-free. Namely, we have the following more general,
but much more cumbersome, theorem.
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Theorem 25. For all x ∈ {1,2,3,4}Σ∗
50

ω ∪0∗{2(31),4(13)}ω

∪ 0∗{2(31)∗{ε ,3},4(13)∗{ε ,1}}0{1,3}{0,1,3}ω ∪ (0∗{1,3})2{0,1,3}ω

and

w ∈

{

{FBE(x,0),FBE(x,1)}, if x ends in0ω ;

{FBE(x)}, otherwise,

we have
1
4
≤ LSD(w, t)≤ USD(w, t)≤

3
4
.

Note that Theorem 25 is indeed more general than Theorem 18, since, for example,13ω is not a
valid path in the Fife automaton for overlap-free infinite binary words (indeed, FBE(13ω) begins with
the overlap01010) and FBE(13ω) also is not just a shift oft or t, but Theorem 25 nevertheless implies
that 1

4 ≤ LSD(FBE(13ω), t)≤ USD(FBE(13ω), t)≤ 3
4.

Together, Conjecture 24 and Theorem 25 suggest the following more general question.

Question 26. For eachn∈ N\{0,1}, r,s∈ [0,1], andx ∈ Σω
n , let

Sn,r,s(x) := {y ∈ Σω
n : r ≤ LSD(x,y) ≤ USD(x,y) ≤ s}.

What areS2, 1
4 ,

3
4
(t) andS2, 1

3 ,
2
3
(t)?

Another avenue of investigation is to consider what makest so special in the sense of Theorem 18.
As mentioned in the introduction, Theorem 18 is false if we replace t with an arbitrary overlap-free
infinite binary word. However, perhaps there are specific words other thant andt that do share similar
properties. In other words, we raise the following question.

Question 27. Let O denote the set of all overlap-free infinite binary words.
What is{x ∈ Σω

2 : O ⊆ S2, 1
4 ,

3
4
(x)}? What if we replace14,

3
4 with 1

3,
2
3?

A third avenue of investigation is to consider what occurs inwords that avoid higher powers in place
of being overlap-free (which are essentially(2+ ε)- or 2+-powers). In fact, there is a Fife automa-
ton characterizing7

3-power-free infinite binary words having the same encoding mechanism as the Fife
automaton for overlap-free infinite binary words but with more states and different transitions [3, 9].
However, initial inspection of the automaton for7

3-power-free infinite binary words suggests that our
proof of Theorem 18 cannot be extended to account for all7

3-power-free infinite binary words because
there are many more edges labeled2 and4 in the Fife automaton for73-power-free infinite binary words,
resulting in valid paths that contain infinitely many2s and4s, but our proof of Theorem 18 heavily relied
on there being at most one occurrence of2 or 4 (which must be preceeded by a string of0s if it occurs)
in the path taken through the automaton so that the infinite binary word corresponding to the path even-
tually “lags behind” the prefixestn of t in the sense that each successiventh symbol in the path can only
generate positions prior to 2n. Nevertheless, computational evidence suggests that Theorem 18 and even
Conjecture 24 can be generalized even further.

Conjecture 28. For all 7
3-power-freew ∈ Σω

2 \{t, t}, 1
3 ≤ LSD(w, t)≤ USD(w, t)≤ 2

3.

Finally, we revisit the notion, already mentioned in Remark7, that LSD and USD are not new
ideas, and not just in number theory. In fact, 1−LSD is a pseudometric onΣN, called the Besicovitch
pseudometric, which has already been studied from the perspective of discrete dynamical systems such as
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[2]. Also studied in [2] is the Weyl pseudometric, which suggests the following slightly different notion
of similarity density, considering all blocks of a given size instead of just blocks from the beginning.

LSDWeyl(x,y) = lim inf
n→∞

inf
k∈N

SD(x[k. .k+n−1],y[k. .k+n−1]),

USDWeyl(x,y) = limsup
n→∞

sup
k∈N

SD(x[k. .k+n−1],y[k. .k+n−1]).

With this notion of Weyl similarity density, analogous to the Besicovitch case, we have that 1−LSDWeyl

is the Weyl pseudometric. The Besicovitch and Weyl pseudometrics share some topological properties,
but the Besicovitch pseudometric is complete while the Weylpseudometric is not [2]. This fact sug-
gests one might be able to shed further light on some of the questions above by also considering the
Weyl similarity density; perhaps several different notions of similarity density, when taken together, can
characterize the overlap-free infinite binary words.

Acknowledgments.We are grateful to Chao Hsien Lin for having suggested the question we study here.
We thank the referees for a careful reading, and Joel Ouaknine and Stefan Kiefer for having pointed out
the paper [2].
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