More Structural Characterizations of Some Subregular Language Families by Biautomata

Markus Holzer
Sebastian Jakobi

We study structural restrictions on biautomata such as, e.g., acyclicity, permutation-freeness, strongly permutation-freeness, and orderability, to mention a few. We compare the obtained language families with those induced by deterministic finite automata with the same property. In some cases, it is shown that there is no difference in characterization between deterministic finite automata and biautomata as for the permutation-freeness, but there are also other cases, where it makes a big difference whether one considers deterministic finite automata or biautomata. This is, for instance, the case when comparing strongly permutation-freeness, which results in the family of definite language for deterministic finite automata, while biautomata induce the family of finite and co-finite languages. The obtained results nicely fall into the known landscape on classical language families.

In Zoltán Ésik and Zoltán Fülöp: Proceedings 14th International Conference on Automata and Formal Languages (AFL 2014), Szeged, Hungary, May 27-29, 2014, Electronic Proceedings in Theoretical Computer Science 151, pp. 271–285.
Published: 21st May 2014.

ArXived at: bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to:
For website issues: