Hyper-Minimization for Deterministic Weighted Tree Automata

Andreas Maletti
(Universität Leipzig)
Daniel Quernheim
(Universität Stuttgart)

Hyper-minimization is a state reduction technique that allows a finite change in the semantics. The theory for hyper-minimization of deterministic weighted tree automata is provided. The presence of weights slightly complicates the situation in comparison to the unweighted case. In addition, the first hyper-minimization algorithm for deterministic weighted tree automata, weighted over commutative semifields, is provided together with some implementation remarks that enable an efficient implementation. In fact, the same run-time O(m log n) as in the unweighted case is obtained, where m is the size of the deterministic weighted tree automaton and n is its number of states.

In Zoltán Ésik and Zoltán Fülöp: Proceedings 14th International Conference on Automata and Formal Languages (AFL 2014), Szeged, Hungary, May 27-29, 2014, Electronic Proceedings in Theoretical Computer Science 151, pp. 314–326.
Published: 21st May 2014.

ArXived at: http://dx.doi.org/10.4204/EPTCS.151.22 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org