
Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 327–341, doi:10.4204/EPTCS.151.23

K-Position, Follow, Equation and K-C-Continuation Tree
Automata Constructions

Ludovic Mignot
Laboratoire LITIS - EA 4108 Université
de Rouen, Avenue de l’Université 76801
Saint-Étienne-du-Rouvray Cedex, France
ludovic.mignot@univ-rouen.fr

Nadia Ouali Sebti
Laboratoire LITIS - EA 4108 Université
de Rouen, Avenue de l’Université 76801
Saint-Étienne-du-Rouvray Cedex, France
nadia.ouali-sebti@univ-rouen.fr

Djelloul Ziadi∗

Laboratoire LITIS - EA 4108 Université
de Rouen, Avenue de l’Université 76801
Saint-Étienne-du-Rouvray Cedex, France
djelloul.ziadi@univ-rouen.fr

There exist several methods of computing an automaton recognizing the language denoted by a
given regular expression: In the case of words, the position automaton P due to Glushkov, the
c-continuation automaton C due to Champarnaud and Ziadi, the follow automaton F due to Ilie and
Yu and the equation automaton E due to Antimirov. It has been shown that P and C are isomorphic
and that E (resp. F) is a quotient of C (resp. of P).

In this paper, we define from a given regular tree expression the k-position tree automaton P and
the follow tree automaton F . Using the definition of the equation tree automaton E of Kuske and
Meinecke and our previously defined k-C-continuation tree automaton C , we show that the previous
morphic relations are still valid on tree expressions.

1 Introduction

Regular expressions are used in numerous domains of applications in computer science. They are an
easy and compact way to represent potentially infinite regular languages, that are well-studied objects
leading to efficient decision problems. Among them, the membership test, that is to determine whether
or not a given word belongs to a language. Given a regular expression E with n symbols and a word w, to
determine whether w is in the language denoted by E can be polynomially performed (with respect to n)
via the computation of a finite state machine, called an automaton, that can be seen as a symbol-labelled
graph with initial and final states. There exist several methods to compute such an automaton.

The first approach is to determine particular properties over the syntactic structure of the regular
expression E. Glushkov [8] proposed the computation of four position functions Null, First, Last, and
Follow, which once computed, lead to the computation of a (n+1)- state automaton. Ilie and Yu showed
in [9] how to reduce it by merging similar states. Another method is to compute the transition function
of the automaton as follows: associating a regular expression with a state s, any path labelled by a
word w brings the automaton from the state s into a finite set of states S′ = {s′1, . . . ,s′k} such that these
states denote the quotient w−1(L(s)) of the language L(s) by w, that contains the word w′ such that ww′

belongs to L(s). Basically, it is a computation that tries to determine what words w′ can be accepted after
reading a prefix w. The first author that introduced such a process is Brzozowski [2]. He showed how

∗D. Ziadi was supported by the MESRS - Algeria under Project 8/U03/7015.

http://dx.doi.org/10.4204/EPTCS.151.23

328 K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions

to compute a regular expression denoting w−1(L(E)) from the expression E: this expression, denoted
by dw(E), is called the derivative of E with respect to w. Furthermore, the set of dissimilar derivatives,
combined with reduction according to associativity, commutativity and idempotence of the sum, is finite
and can lead to the computation of a deterministic finite automaton. Antimirov [1] extended this method
to the computation of partial derivatives, that are no longer expressions but sets of expressions. These
so-called derived terms produce the equation automaton. Finally, by deriving expressions after having
them indexed, Champarnaud and Ziadi [4] computed the c-continuation automaton.

The different morphic links between these four automata have been studied too: Ilie and Yu showed
that the follow automaton is a quotient of the position automaton; Champarnaud and Ziadi proved that the
position automaton and the c-continuation automaton are isomorphic and that the equation automaton is
a quotient of the position automaton. Finally, using a join of the two previously defined quotients, Garcia
et al. presented in [7] an automaton that is smaller than both the follow and the equation automata.

In this paper, we extend the study of these morphic links to different computations of tree automata.
We define two new tree automata constructions, the k-position automaton and the follow automaton,
and we study their morphic links with two other already known automata constructions, the equation au-
tomaton of Kuske and Meinecke [11] and our k-C-continuation automaton [14,15]. Notice that a position
automaton and a reduced automaton have already been defined in [12]. However, they are not isomorphic
with the automata we define in this paper. This study is motivated by the development of a library of
functions for handling rational kernels [6] in the case of trees. The first problem consists in converting a
regular tree expression into a tree transducer. Section 2 recalls basic definitions and properties of regular
tree languages and regular tree expressions. In Section 3, we define two new automata computations, the
k-position automaton and the follow automaton and recall the definition of the equation automaton and
of the k-C-continuation automaton; we also present the morphic links between these four methods in this
section. Section 4 is devoted to the comparison of the follow automaton and of the equation automaton;
it is proved that there are no morphic link between them. Moreover, we extend the computation of the
Garcia et al. equivalence leading to a smaller automaton in this section.

2 Preliminaries

Let (Σ,ar) be a ranked alphabet, where Σ is a finite set and ar represents the rank of Σ which is a
mapping from Σ into N. The set of symbols of rank n is denoted by Σn. The elements of rank 0 are
called constants. A tree t over Σ is inductively defined as follows: t = a, t = f (t1, . . . , tk) where a is
any symbol in Σ0, k is any integer satisfying k ≥ 1, f is any symbol in Σk and t1, . . . , tk are any k trees
over Σ. We denote by TΣ the set of trees over Σ. A tree language is a subset of TΣ. Let Σ≥1 = Σ\Σ0
denote the set of non-constant symbols of the ranked alphabet Σ. A Finite Tree Automaton (FTA) [5, 11]
A is a tuple (Q,Σ,QT ,∆) where Q is a finite set of states, QT ⊂ Q is the set of final states and ∆ ⊂⋃

n≥0(Q×Σn×Qn) is the set of transition rules. This set is equivalent to the function ∆ from Qn×Σn to
2Q defined by (q, f ,q1, . . . ,qn) ∈ ∆⇔ q ∈ ∆(q1, . . . ,qn, f). The domain of this function can be extended
to (2Q)n × Σn as follows: ∆(Q1, . . . ,Qn, f) =

⋃
(q1,...,qn)∈Q1×···×Qn

∆(q1, . . . ,qn, f). Finally, we denote
by ∆∗ the function from TΣ → 2Q defined for any tree in TΣ as follows: ∆∗(t) = ∆(a) if t = a with
a ∈ Σ0, ∆∗(t) = ∆(∆∗(t1), . . . ,∆∗(tn), f) if t = f (t1, . . . , tn) with f ∈ Σn and t1, . . . , tn ∈ TΣ. A tree is
accepted by A if and only if ∆∗(t)∩QT 6= /0. The language L (A) recognized by A is the set of
trees accepted by A i.e. L (A) = {t ∈ TΣ | ∆∗(t)∩QT 6= /0}. Let ∼ be an equivalence relation over
Q. We denote by [q] the equivalence class of any state q in Q. The quotient of A w.r.t. ∼ is the
tree automaton A/∼ = (Q/∼,Σ,QT /∼,∆/∼) where: Q/∼ = {[q] | q ∈ Q}, QT /∼ = {[q] | q ∈ QT}, ∆/∼ =

Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi 329

{([q], f , [q1], . . . , [qn]) | (q, f ,q1, . . . ,qn) ∈ ∆}. Notice that a transition ([q], f , [q1], . . . , [qn]) in ∆/∼ does
not imply a transition (q, f ,q1, . . . ,qn) in ∆. Moreover, the relation ∼ is not necessarily a congruence
w.r.t. the transition function: in this paper, we will deal with specific equivalence relations (similarity
relations) that turn to be congruences. This particular considerations will be clarified in Subsection 3.2.

For any integer n≥ 0, for any n languages L1, . . . ,Ln ⊂ TΣ, and for any symbol f ∈ Σn, f (L1, . . . ,Ln)
is the tree language { f (t1, . . . , tn) | ti ∈ Li}. The tree substitution of a constant c in Σ by a language L⊂ TΣ

in a tree t ∈ TΣ, denoted by t{c← L}, is the language inductively defined by: L if t = c; {d} if t = d
where d ∈ Σ0 \{c}; f (t1{c← L}, . . . , tn{c← L}) if t = f (t1, . . . , tn) with f ∈ Σn and t1, . . . , tn any n trees
over Σ. Let c be a symbol in Σ0. The c-product L1 ·c L2 of two languages L1,L2 ⊂ TΣ is defined by
L1 ·c L2 =

⋃
t∈L1
{t{c← L2}}. The iterated c-product is inductively defined for L⊂ TΣ by: L0c = {c} and

L(n+1)c = Lnc ∪L ·c Lnc . The c-closure of L is defined by L∗c =
⋃

n≥0 Lnc .
A regular expression over a ranked alphabet Σ is inductively defined by E= 0, E∈Σ0, E= f (E1, · · · ,En),

E = (E1+E2), E = (E1 ·c E2), E = (E1
∗c), where c ∈ Σ0, n ∈ N, f ∈ Σn and E1,E2, . . . ,En are any n reg-

ular expressions over Σ. Parenthesis can be omitted when there is no ambiguity. We write E1 = E2 if
E1 and E2 graphically coincide. We denote by RegExp(Σ) the set of all regular expressions over Σ.
Every regular expression E can be seen as a tree over the ranked alphabet Σ∪{+, ·c,∗c | c ∈ Σ0} where
+ and ·c can be seen as symbols of rank 2 and ∗c has rank 1. This tree is the syntax-tree TE of E. The
alphabetical width ||E || of E is the number of occurrences of symbols of Σ in E. The size |E | of E
is the size of its syntax tree TE. The language JEK denoted by E is inductively defined by J0K = /0,
JcK = {c}, J f (E1,E2, · · · ,En)K = f (JE1K, . . . ,JEnK), JE1+E2K = JE1K∪ JE2K, JE1 ·c E2K = JE1K ·c JE2K,
JE1
∗cK = JE1K∗c where n ∈ N, E1,E2, . . . ,En are any n regular expressions, f ∈ Σn and c ∈ Σ0. It is

well known that a tree language is accepted by some tree automaton if and only if it can be denoted
by a regular expression [5, 11]. A regular expression E defined over Σ is linear if every symbol of
rank greater than 1 appears at most once in E. Note that any constant symbol may occur more than
once. Let E be a regular expression over Σ. The linearized regular expression E in E of a regular ex-
pression E is obtained from E by marking differently all symbols of a rank greater than or equal to
1 (symbols of Σ≥1). The marked symbols form together with the constants in Σ0 a ranked alphabet
PosE(E) the symbols of which we call positions. The mapping h is defined from PosE (E) to Σ with
h(PosE (E)m) ⊂ Σm for every m ∈ N. It associates with a marked symbol f j ∈ PosE (E)≥1 the sym-
bol f ∈ Σ≥1 and for a symbol c ∈ Σ0 the symbol h(c) = c. We can extend the mapping h naturally to
RegExp(PosE (E))→RegExp(Σ) by h(a) = a, h(E1+E2) = h(E1)+h(E2), h(E1 ·c E2) = h(E1) ·c h(E2),
h(E∗c

1) = h(E1)
∗c , h(f j(E1, . . . ,En)) = f (h(E1), . . . ,h(En)), with n ∈ N, a ∈ Σ0, f ∈ Σn, f j ∈ PosE (E)n

such that h(f j) = f and E1, . . . ,En any regular expressions over PosE (E).

3 Tree Automata from Regular Expressions

In this section, we show how to compute from a regular expression E four tree automata accepting
JEK: we introduce two new constructions, the K-position automaton and the follow automaton of E, and
then we recall two already-known constructions, the equation automaton [11] and the C-continuation
automaton [14].

Regular languages defined over ranked alphabet Σ are exactly the languages denoted by a regular
expression on Σ. There may exist many distinct regular expressions which denote the same regular
language. Two regular expressions are said to be equivalent if they denote the same language. To
simplify handling regular expressions, we define trivial identities for which regular expressions denote
the same language. Let E1 . . .En be n regular expressions over a ranked alphabet Σ and c be a symbol in

330 K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions

Σ0. It can be trivially shown that:
JE1+0K = J0+E1K = JE1K, JE1 ·c0K = E1c←0, JJ0 ·c E1K = J0K, J0∗cK = JcK, J f (E1, . . . ,0, . . . ,En)K = J0K,
where Ec←0 is obtained by substituting the expression 0 to any symbol c in an expression E.
Consequently, we extend the equivalence = as follows:

E1+0 = 0+E1 = E1, E1 ·c0 = E1c←0, 0 ·c E1 = 0, 0∗c = c, f (E1, . . . ,0, . . . ,En) = 0.
It is easy to see that these equalities preserve the language. Consequently, any regular expression E
denotes the same language as a regular expression E ′ with no occurrence of 0 in E′ or E′ = 0.

In the following of this section, E is a regular expression over a ranked alphabet Σ. The set of symbols
in Σ that appear in an expression F is denoted by ΣF .

3.1 The K-Position Tree Automaton

In this section, we show how to compute the K-position tree automaton of a regular expression E, recog-
nizing JEK. This is an extension of the well-known position automaton [8] for word regular expressions
where the K represents the fact that any k-ary symbol is no longer a state of the automaton, but is ex-
ploded into k states. The same method was presented independently by McNaughton and Yamada [13].
Its computation is based on the computations of particular position functions, defined in the following.

In what follows, for any two trees s and t, we denote by s 4 t the relation ”s is a subtree of t”. Let
t = f (t1, . . . , tn) be a tree. We denote by root(t) the root of t, by k-child(t) the kth child of f in t, that is
the root of tk if it exists, and by Leaves(t) the set of the leaves of t, i.e. {s ∈ Σ0 | s 4 t}.

Let E be linear, 1 ≤ k ≤ m be two integers and f be a symbol in Σm. The set First(E) is the subset
of Σ defined by {root(t) ∈ Σ | t ∈ JEK}; The set Follow(E, f ,k) is the subset of Σ defined by {g ∈ Σ |
∃t ∈ JEK,∃s 4 t, root(s) = f ,k-child(s) = g}; The set Last(E) is the subset of Σ0 defined by Last(E) =⋃
t∈JEK

Leaves(t).

Example 1. Let Σ = Σ0∪Σ1∪Σ2 be defined by Σ0 = {a,b,c}, Σ1 = { f ,h} and Σ2 = {g}. Let us consider
the regular expression E and its linearized form defined by:

E = (f (a)∗a ·a b+h(b))∗b +g(c,a)∗c ·c (f (a)∗a ·a b+h(b))∗b ,
E = (f1(a)∗a ·a b+h2(b))∗b +g3(c,a)∗c ·c (f4(a)∗a ·a b+h5(b))∗b .

The language denoted by E is JEK = {b, f1(b), f1(f1(b)), f1(h2(b)),h2(b),h2(f1(b)),h2(h2(b)), . . . ,
g3(b,a),g3(g3(b,a),a),g3(f4(b),a),g3(h5(b),a), f4(f4(b)), f4(h5(b),h5(f4(b)),h5(h5(b)), . . .}.

Consequently, First(E) = {b, f1,h2,g3, f4,h5} and Follow(E, f1,1) = {b, f1,h2}, Follow(E,h2,1) =
{b, f1,h2}, Follow(E,g3,1) = {b,g3, f4,h5}, Follow(E,g3,2) = {a}, Follow(E, f4,1) = {b, f4,h5},
Follow(E,h5,1) = {b, f4,h5}.

Let us first show that the position functions First and Follow are inductively computable.
Lemma 1. Let E be linear. The set First(E) can be computed as follows:

First(0) = /0, First(a) = {a}, First(f (E1, · · · ,Em)) = { f},
First(E1+E2) = First(E1)∪First(E2), First(E1

∗c) = First(E1)∪{c},

First(E1 ·c E2) =

{
(First(E1)\{c})∪First(E2) if c ∈ JE1K,
First(E1) otherwise.

Lemma 2. Let E be linear, 1 ≤ k ≤ m be two integers and f be a symbol in Σm. The set of symbols
Follow(E, f ,k) can be computed inductively as follows:

Follow(0, f ,k) = Follow(a, f ,k) = /0,

Follow(g(E1, . . . ,En), f ,k) =

First(Ek) if f = g,
Follow(El, f ,k) if ∃l | f ∈ ΣEl ,
/0 otherwise .

Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi 331

Follow(E1+E2, f ,k) =

Follow(E1, f ,k) if f ∈ ΣE1 ,
Follow(E2, f ,k) if f ∈ ΣE2 ,
/0 otherwise .

Follow(E1 ·c E2, f ,k) =

(Follow(E1, f ,k)\{c})∪First(E2) if c ∈ Follow(E1, f ,k),
Follow(E1, f ,k) if f ∈ ΣE1 ∧ c /∈ Follow(E1, f ,k),
Follow(E2, f ,k) if f ∈ ΣE2 ∧ c ∈ Last(E1),
/0 otherwise,

Follow(E∗c
1 , f ,k) =

{
Follow(E1, f ,k)∪First(E1) if c ∈ Follow(E1, f ,k),
Follow(E1, f ,k) otherwise,

The two functions First and Follow are sufficient to compute the K-position tree automaton of E.

Definition 1. Let E be linear. The K-position automaton PE is the automaton (Q,Σ,QT ,∆) defined by
Q = { f k | f ∈ Σm∧1≤ k ≤ m}∪{ε1} with ε1 a new symbol not in Σ, QT = {ε1},

∆ = {(f k,g,g1, . . . ,gn) | f ∈ Σm∧ k ≤ m∧g ∈ Σn∧g ∈ Follow(E, f ,k)}
∪ {(ε1, f , f 1, . . . , f m) | f ∈ Σm∧ f ∈ First(E)}
∪ {(ε1,c) | c ∈ Σ0∧ c ∈ First(E)}
∪ {(f k,c) | f ∈ Σm∧ k ≤ m∧ c ∈ Follow(E, f ,k)}

In order to show that the K-position tree automaton of E accepts JEK, we characterize the membership
of a tree t in the language denoted by E using the functions First and Follow.

Proposition 1. Let E be linear. A tree t belongs to JEK if and only if:

1. root(t) ∈ First(E) and

2. for every subtree f (t1, . . . , tm) of t, for any integer k in {1, . . . ,m}, root(tk) ∈ Follow(E, f ,k).

Let us show how to link the characterization in Proposition 1 with the transition sequences in PE.

Proposition 2. Let E be linear and PE = (Q,Σ,QT ,∆). Let t = f (t1, . . . , tm) be a term in TΣ. Then the
two following propositions are equivalent:

1. ∀g(s1, . . . ,sl)4 t, ∀p≤ l, root(sp) ∈ Follow(E,g, p),

2. ∀1≤ k ≤ m, f k ∈ ∆∗(tk).

As a direct consequence of the two previous propositions, it can be shown that the K-position au-
tomaton of E recognizes the language denoted by E.

Theorem 1. If E is linear, then L (PE) = JEK.

This construction can be extended to expressions that are not necessarily linear using the linearization
and the mapping h. The K-Position Automaton PE associated with E is obtained by replacing each
transition (f k

j ,gi,g1
i , . . . ,g

n
i) of the tree automaton PE by (f k

j ,h(gi),g1
i , . . . ,g

n
i).

Corollary 1. h(JEK) = h(L (PE)) = L (PE) = JEK.

Example 2. Let E = (f (a)∗a ·a b+ h(b))∗b + g(c,a)∗c ·c (f (a)∗a ·a b+ h(b))∗b be the regular expression
of Example 1. The k-Position Automaton PE associated with E is given in Figure 1. The set of states is
Q = {ε1, f 1

1 ,h
1
2,g

1
3,g

2
3, f 1

4 ,h
1
5}. The set of final states is QT = {ε1}. The set of transition rules ∆ is

f1(f 1
1)→ f 1

1 f1(f 1
1)→ ε1 f1(h1

2)→ ε1 f1(h1
2)→ f 1

1 h2(f 1
1)→ ε1 b→ f 1

1 b→ h1
2

h2(f 1
1)→ h1

2 h2(h1
2)→ ε1 h2(h1

2)→ h1
2 g3(f 1

4 ,g
2
3)→ ε1 g3(h1

5,g
2
3)→ ε1 b→ g1

3 a→ g2
3

f4(f 1
4)→ ε1 f4(f 1

4)→ f 1
4 f4(h1

5)→ ε1 f4(h1
5)→ f 1

4 h5(f 1
4)→ ε1 b→ h1

5 b→ f 1
4

b→ ε1 h5(f 1
4)→ h1

5 h5(h1
5)→ h1

5 g3(g1
3,g

2
3)→ ε1 h5(h1

5)→ ε1

The number of states is |Q|= 7 and the number of transition rules is |∆|= 26.

332 K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions

f1ε1 h2

f 1
1

h1
2

b

b

g3

b

g1
3g2

3a b

h5

h1
5

b

f4

f 1
4 b

Figure 1: The k-Position Automaton PE.

3.2 The Follow Tree Automaton

In this section, we define the follow tree automaton which is a generalisation of the Follow automaton
introduced by L. Ilie and S. Yu in [9] in the case of words, and that it is a quotient of the K-position
automaton, similarly to the case of words. Notice that in this automaton, states are no longer positions,
but sets of positions.

Definition 2. Let E be linear. The Follow Automaton of E is the tree automaton FE = (Q,Σ,QT ,∆)
defined as follows

Q = {First(E)}∪
⋃

f∈ΣE m
{Follow(E, f ,k) | 1≤ k ≤ m}, QT = {First(E)},

∆ = {(Follow(E,g, l), f ,Follow(E, f ,1), . . . ,Follow(E, f ,m) | f ∈ ΣE m∧ f ∈ Follow(E,g, l)∧
g ∈ Σn∧ l ≤ n}

∪ {(I,c) | c ∈ I∧ c ∈ Σ0}
Let us show that FE is a quotient of PE w.r.t. a similarity relation ; since this kind of quotient

preserves the language, this method is consequently a proof of the fact that the language denoted by E is
recognized by FE.

A similarity relation over an automaton A = (Q,Σ,QT ,∆) is an equivalence relation ∼ over Q such
that for any two states q and q′ in Q: q ∼ q′ ⇒ ∀ f ∈ Σn, ∀(q1, . . . ,qn) ∈ Qn, (q, f ,q1, . . . ,qn) ∈ ∆ ⇔
(q′, f ,q1, . . . ,qn) ∈ ∆. In other words, two similar states admit the same predecessors w.r.t. any symbol.

Proposition 3. Let A be an automaton and∼ be a similarity relation over A . Then L (A/∼) =L (A).

The quotient from PE to FE is defined by the following similarity relation. Notice that we extend
the definition of the function Follow to the position ε1 by Follow(E,ε1,1) = First(E). Let E be linear
and PE = (Q,Σ,QT ,∆). The Follow Relation is the relation ∼F defined for any two states f k and gl in
Q by f k ∼F gl ⇔ Follow(E, f ,k) = Follow(E,g, l).

Proposition 4. Let E be linear. The relation ∼F is the largest similarity relation over PE .

Proposition 5. Let E be linear. The finite tree automaton PE�∼F is isomorphic to FE.

As a direct consequence of the previous results, the following theorem can be shown.

Theorem 2. Let E be linear. Then L (FE) = JEK.

Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi 333

Finally, this method can be extended to expressions that are not necessarily linear as follows. The Follow
Automaton FE associated with E is obtained by replacing each transition (I, f j,Follow(E, f j,1), . . . ,
Follow(E, f j,m)) of FE by (I,h(f j),Follow(E, f j,1), . . . ,Follow(E, f j,m)).

Corollary 2. L (FE) = JEK.

Example 3. The Follow Automaton FE associated with E = (f (a)∗a ·a b+h(b))∗b +g(c,a)∗c ·c (f (a)∗a ·a
b+h(b))∗b of Example 1 is given in Figure 2.

The set of states is Q = {{a},{b, f1,h2},{b, f1,h2,g3, f4,h5},{b,g3, f4,h5},{b, f4,h5}} and QT =
{{b, f1,h2,g3, f4,h5}}. The set of transition rules ∆ is
f ({b, f1,h2})→{b, f1,h2} h({b, f1,h2})→{b, f1,h2,g3, f4,h5} b→{b, f1,h2,g3, f4,h5}
h({b, f1,h2})→{b, f1,h2} f ({b, f4,h5})→{b, f4,h5} b→{b,g3, f4,h5}
f ({b, f4,h5})→{b,g3, f4,h5} f ({b, f4,h5})→{b, f1,h2,g3, f4,h5} a→{a}
h({b, f4,h5})→{b, f1,h2,g3, f4,h5} h({b, f4,h5})→{b, f4,h5} b→{b, f1,h2}
h({b, f4,h5})→{b,g3, f4,h5} f ({b, f1,h2})→{b, f1,h2,g3, f4,h5} b→{b, f4,h5}
g({b,g3, f4,h5},{a})→{b,g3, f4,h5} g({b,g3, f4,h5},{a})→{b, f1,h2,g3, f4,h5}

The number of states is |Q|= 5 and the number of transition rules is |∆|= 17.

f{b, f1,h2,g3, f4,h5}

g{a}

a

b h {b, f1,h2} b

b

{b, f4,h5}

{b,g3, f4,h5}

h

b

f

Figure 2: The Follow Automaton FE.

3.3 The Equation Tree Automaton

In [11], Kuske and Meinecke extend the notion of word partial derivatives [1] to tree partial derivatives in
order to compute from E a tree automaton recognizing JEK. Due to the notion of ranked alphabet, partial
derivatives are no longer sets of expressions, but sets of tuples of expressions.
Let N = (E1, . . . ,En) be a tuple of regular expressions, F and G be some regular expressions and c ∈ Σ0.
Then N ·c F is the tuple (E1 ·c F, . . . ,En ·c F). For a set S of tuples of regular expressions, S ·c F is the
set S ·c F = {N ·c F |N ∈S }. Finally, SET(N) = {E1, · · · ,Em} and SET(S) =

⋃
N ∈S SET(N).

Let f be a symbol in Σ>0. The set f−1(E) of tuples of regular expressions is defined as follows:
f−1(0) = /0, f−1(F +G) = f−1(F)∪ f−1(G), f−1(F∗c) = f−1(F) ·c F∗c ,

f−1(g(E1, · · · ,En)) =

{
{(E1, · · · ,En)} if f = g,
/0 otherwise,

f−1(F ·c G) =

{
f−1(F) ·c G if c /∈ JFK
f−1(F) ·c G∪ f−1(G) otherwise.

334 K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions

The function f−1 is extended to any set S of regular expressions by f−1(S) =
⋃

E∈S f−1(E).
The partial derivative of E w.r.t. a word w ∈ Σ∗≥1, denoted by ∂w(E), is the set of regular expressions
inductively defined by:

∂w(E) =

{E} if w = ε,
SET(f−1(∂u(E))) if w = u f , f ∈ Σ≥1,u ∈ Σ∗≥1, f−1(∂u(E)) 6= /0,
{0} if w = u f , f ∈ Σ≥1,u ∈ Σ∗≥1, f−1(∂u(E)) = /0.

The Equation Automaton of E is the tree automaton AE = (Q,Σ,QT ,∆) defined by Q = {∂w(E) | w ∈
Σ∗≥1}, QT = {E}, and

∆ = {(F, f ,G1, . . . ,Gm) | F ∈ Q, f ∈ Σm,m≥ 1,(G1, . . . ,Gm) ∈ f−1(F)}
∪ {(F,c) | F ∈ Q∧ c ∈ (JFK∩Σ0)}

Example 4. Let E = (f (a)∗a ·a b+h(b))∗b︸ ︷︷ ︸
F

+g(c,a)∗c︸ ︷︷ ︸
G

·c (f (a)∗a ·a b+h(b))∗b︸ ︷︷ ︸
F

(Example 1).

∂h(E) = {b ·b F}, ∂ f (E) = {((a ·a f (a)∗a) ·a b) ·b F} ∂ f f (E) = {((a ·a f (a)∗a) ·a b) ·b F},
∂ f h(E) = {b ·b F} , ∂g(E) = {(a ·c G) ·c F, (c ·c G) ·c F} ∂h f (E) = {((a ·a f (a)∗a) ·a b) ·b F}
∂gh(E) = {b ·b F} ∂hh(E) = {((a ·a f (a)∗a) ·a b) ·b F}, ∂g f (E) = {((a ·a f (a)∗a) ·a b) ·b F}

∂gg(E) = {(a ·c G) ·c F, (c ·c G) ·c F},
The set of states Q is q0 =E, q1 = ((a ·a f (a)∗a) ·a b) ·b F, q2 = b ·b F, q3 = (c ·c G) ·c F, q4 = (a ·c G) ·c F.

The set of final states is QT = {q0}. The set of transition rules is
b→ q0 b→ q1 b→ q3 b→ q2 f (q1)→ q0
h(q2)→ q0 g(q3,q4)→ q0 h(q2)→ q1 g(q3,q4)→ q4 f (q1)→ q1
h(q2)→ q2 f (q1)→ q2 f (q1)→ q4 h(q2)→ q4 a→ q4

The number of states is |Q| = 5 and the number of transition rules is |∆| = 15. The Equation Au-
tomaton associated with E is given in Figure 3.

hq0

gq4a

b f q1

fh

q2 b

f

b

h

q3

g

b

Figure 3: The Equation Automaton AE.

3.4 The k-C-Continuation Tree Automaton

In [11], Kuske and Meinecke show how to efficiently compute the equation tree automaton of a regular
expression via an extension of Champarnaud and Ziadi’s C-Continuation [3, 4, 10]. In [14, 15], we
show how to inductively compute them. We also show how to efficiently compute the k-C-Continuation
tree automaton associated with a regular expression. In this section, we prove that this automaton is
isomorphic to the k-position tree automaton, similarly to the case of words.

Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi 335

Definition 3 ([14, 15]). Let E 6= 0 be linear. Let k and m be two integers such that 1≤ k ≤ m. Let f be
in (ΣE∩Σm). The k-C-continuation C f k(E) of f in E is the regular expression defined by:

C f k(g(E1, · · · ,Em)) =

{
Ek if f = g
C f k(E j) if f ∈ ΣE j

C f k(E1+E2) =

{
C f k(E1) if f ∈ ΣE1

C f k(E2) if f ∈ ΣE2

C f k(E1 ·c E2) =

C f k(E1) ·c G if f ∈ ΣE1

C f k(E2) if f ∈ ΣE2

and c ∈ Last(E1)
0 otherwise

C f k(F∗c) =C f k(F) ·c F∗c

By convention, we set Cε1(E) = E.

Let us now show how to compute the k-C-Continuation tree automaton.

Definition 4 ([14, 15]). Let E 6= 0 be linear. The automaton CE = (QC ,ΣE ,{Cε1(E)},∆C) is defined by

• QC = {(f k,C f k(E)) | f ∈ Σm,1≤ k ≤ m}∪{(ε1,Cε1(E))},

•
∆C = {((x,Cx(E)),g,((g1,Cg1(E)), . . . ,(gm,Cgm(E)))) | g ∈ ΣE m,

m≥ 1,(Cg1(E), . . . ,Cgm(E)) ∈ g−1(Cx(E))}
∪ {((x,Cx(E)),c) |,c ∈ JCx(E)K∩Σ0}

The C-Continuation tree automaton CE associated with E is obtained by relabelling the transitions
of CE using the mapping h.

Theorem 3 ([14, 15]). The automaton CE accepts JEK.

Example 5. Let E = (f (a)∗a ·a b+ h(b))∗b + g(c,a)∗c ·c (f (a)∗a ·a b+ h(b))∗b defined in Example 1 and
E = (f1(a)∗a ·a b+h2(b))∗b︸ ︷︷ ︸

F1

+g3(c,a)∗c︸ ︷︷ ︸
G2

·c (f4(a)∗a ·a b+h5(b))∗b︸ ︷︷ ︸
F3

.

f(ε1,C
ε1 (E)) h

(f 1
1 ,C f 1

1
(E)) f

h

(h1
2,Ch1

2
(E))

b

b

g

b

(g1
3,Cg1

3
(E))(g2

3,Cg2
3
(E))

g

a

b

h

(h1
5,Ch1

5
(E))

b

f h

f
(f 1

4 ,C f 1
4
(E)) b

Figure 4: The k-C-Continuation Automaton CE.

336 K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions

The computation of the k-C-Continuations of E using the Definition 3 is given in Table 1.

C f 1
1
(E) = ((a ·a f1(a)∗a) ·a b) ·b F1 h(C f 1

1
(E)) = ((a ·a f (a)∗a) ·a b) ·b F,

Ch1
2
(E) = b ·b F1 h(Ch1

2
(E)) = b ·b F,

Cg1
3
(E) = (c ·c g3(c,a)∗c) ·c F3 h(Cg1

3
(E)) = (c ·c g(c,a)∗c) ·c F,

Cg2
3
(E) = (a ·c g3(c,a))∗c) ·c F3 h(Cg2

3
(E)) = (a ·c g(c,a))∗c) ·c F,

C f 1
4
(E) = ((a ·a f4(a)∗a) ·a b) ·b F3 h(C f 1

4
(E)) = ((a ·a f (a)∗a) ·a b) ·b F,

Ch1
5
(E) = b ·b F3 h(Ch1

5
(E)) = b ·b F.

Table 1: The k-C-Continuations of E.

The set of states of the automaton CE is Q = {(ε1,Cε1(E)),(f 1
1 ,C f 1

1
(E)),(h1

2,Ch1
2
(E)),

(g1
3,Cg1

3
(E)),(g2

3,Cg2
3
(E)),(f 1

4 ,C f 1
4
(E)),(h1

5,Ch1
5
(E))}.

The set of transition rules ∆ is
f ((f 1

1 ,C f 1
1
(E)))→ (ε1,Cε1(E)) f ((f 1

4 ,C f 1
4
(E)))→ (ε1,Cε1(E)) b→ (f 1

1 ,C f 1
1
(E))

g((g1
3,Cg1

3
(E)),(g2

3,Cg2
3
(E)))→ (ε1,Cε1(E)) h((h1

5,Ch1
5
(E)))→ (ε1,Cε1(E)) b→ (ε1,Cε1(E))

f ((f 1
1 ,C f 1

1
(E)))→ (f 1

1 ,C f 1
1
(E)) h((h1

2,Ch1
2
(E)))→ (h1

2,Ch1
2
(E)) b→ (g1

3,Cg1
3
(E))

h((h1
2,Ch1

2
(E)))→ (ε1,Cε1(E)) f ((f 1

1 ,C f 1
1
(E)))→ (h1

2,Ch1
2
(E)) b→ (h1

2,Ch1
2
(E))

f ((f 1
4 ,C f 1

4
(E)))→ (f 1

4 ,C f 1
4
(E)) f ((f 1

4 ,C f 1
4
(E)))→ (h1

5,Ch1
5
(E)) a→ (g2

3,Cg2
3
(E))

h((h1
2,Ch1

2
(E)))→ (f 1

1 ,C f 1
1
(E)) h((h1

5,Ch1
5
(E)))→ (h1

5,Ch1
5
(E)) b→ (h1

5,Ch1
5
(E))

f ((f 1
4 ,C f 1

4
(E)))→ (g1

3,Cg1
3
(E)) h((h1

5,Ch1
5
(E)))→ (f 1

4 ,C f 1
4
(E)) b→ (f 1

4 ,C f 1
4
(E))

g((g1
3,Cg1

3
(E)),(g2

3,Cg2
3
(E)))→ (g1

3,Cg1
3
(E)) h((h1

5,Ch1
5
(E)))→ (g1

3,Cg1
3
(E))

The number of states is |Q|= 5 and the number of transition rules is |∆|= 15. The k-C-Continuation
Automaton associated with E is given in Figure 4.

Let ∼e be the equivalence relation over the set of states of CE defined for any two states (f k
j ,C f k

j
(E))

and (gp
i ,Cgp

i
(E)) by (f k

j ,C f k
j
(E))∼e (g

p
i ,Cgp

i
(E))⇔ h(C f k

j
(E)) = h(Cgp

i
(E)).

Proposition 6 ([14, 15]). The automaton CE�∼e is isomorphic to AE.

Example 6. Using the equivalence-relation ∼e over the set of states of k-C-Continuation Automaton CE
(Figure 4) we see that h(C f 1

1
(E)) = h(C f 1

4
(E)) and h(Ch1

2
(E)) = h(Ch1

5
(E)). The automaton CE�∼e is

given in Figure 5.

Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi 337

h{h(C
ε1 (E))}

g

{h(Cg2
3
(E))}a

b f {h(C f 1
1
(E)),h(C f 1

4
(E))}

fh

{h(Ch1
2
(E)),h(Ch1

5
(E))}

b

f

b

h

{h(Cg1
3
(E))}

g

b

Figure 5: The Automaton CE�∼e .

In order to show that the k-C-continuation tree automaton of E is isomorphic to the k-position au-
tomaton of E, we first show the link between the position functions and the C-continuations.

Proposition 7 ([14, 15]). Let E be linear, 1 ≤ k ≤ m be two integers and f be a position in ΣE ∩Σm.
Then Follow(E, f ,k) = First(C f k(E)).

Lemma 3. Let E be linear and g be a symbol in Σ≥1. Then g−1(E) 6= /0⇔ g ∈ First(E).

Corollary 3. Let E be linear, 1 ≤ k ≤ m be two integers and f and g be two symbols in Σ. Then,
g−1(C f k(E)) 6= /0⇔ g ∈ First(C f k(E)).

Lemma 4. Let E be linear, 1 ≤ k ≤ m be two integers and f and g be two symbols in Σ. Then,
g−1(C f k(E)) 6= /0⇔ g ∈ Follow(E, f ,k).

Proposition 8. Let E be linear. The automaton CE is isomorphic to PE.

This proposition can be extended to expressions that are not necessarily linear since CE and PE are
relabelings of CE and PE.

Corollary 4. The automaton CE is isomorphic to PE.

We define the similarity relation denoted by ≡ over the set of states of the automaton CE as follows:
(f k,C f k(E))≡ (gp,Cgp(E))⇔ Follow(E, f ,k) = Follow(E,g, p).

Corollary 5. The finite tree automaton CE�≡ is isomorphic to the follow automaton FE.

4 Comparison between the Equation and the Follow Automata

We discuss in this section two examples to compare the equation and the follow automata.
Let Σ = Σ0∪Σ1 be the ranked alphabet defined by Σ0 = {a} and Σ1 = { f1, . . . , fn}. Let us consider

the linear regular expression E = ((f1(a)∗a ·a f2(a)∗a) ·a . . .) ·a fn(a)∗a))∗a defined over Σ. Then the size
of E is |E | = 4n− 1 and its alphabet width is ||E || = n+ 1. We have First(E) = {a, f1, f2, . . . , fn} and
Follow(E, f1,1) = Follow(E, f2,1) = . . .= Follow(E, fn,1) = {a, f1, f2, . . . , fn}.
The partial derivatives associated with E are:

∂ f1(E) = {(((a ·a f1(a)∗a ·a f2(a)∗a) ·a . . .) ·a fn(a)∗a) ·a E}
∂ f2(E) = {((a ·a f2(a)∗a ·a . . .) ·a fn(a)∗a) ·a E}, . . .

338 K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions

∂ fn(E) = {(a ·a fn(a)∗a) ·a E}.
The K-position automaton associated with E has n+1 states.
The follow automaton associated with E has 1 state.
The equation automaton associated with E has: n+1 states.

Let F = (f (a)∗a + f (a)∗a + · · ·+ f (a)∗a)︸ ︷︷ ︸
f (a)∗a n-times

be a regular expression defined over the ranked alphabet

Σ = Σ0∪Σ1 such that Σ0 = {a} and Σ1 = { f}. We have |E |= 4n−1 and ||E ||= n+1. The linearized
form associated with F is F = (f1(a)∗a + f2(a)∗a + · · ·+ fn(a)∗a). The set First(F) = {a, f1, f2, . . . , fn},
Follow(F, f1,1) = {a, f1}, Follow(F, f2,1) = {a, f2}, . . . , and Follow(F, fn,1) = {a, fn}.
The partial derivatives associated with F are ∂ f (F) = {a ·a f (a)∗a}, ∂ f f (F) = {a ·a f (a)∗a}.
The K-position automaton associated with F has n+1 states.
The follow automaton associated with F has: n+1 states.
The equation automaton associated with F has: 2 states.

From these examples we state that the two automata are incomparable:
Proposition 9. The Follow tree automaton and the Equation Tree Automaton are incomparable though
they are derived from two isomorphic automata, i.e. Neither is a quotient of the other.

4.1 A smaller automaton

In [7] P. Garcı́a et al. proposed an algorithm to obtain an automaton from a word regular expression.
Their method is based on the computation of both the partial derivatives automaton and the follow au-
tomaton. They join two relations, the first relation is over the states of the word follow automaton and
the second relation is over the word c-continuations automaton, in one relation denoted by ≡V . What we
propose is to extend the relation ≡V to the case of trees as follows:

C f k
j
(E)≡V Cgp

i
(E)⇔

{
(∃Chl

m
(E)∼F C f k

j
(E) | Chl

m
(E)∼e Cgp

i
(E))

∨ (∃Chl
m
(E)∼F Cgp

i
(E)) | Chl

m
(E)∼e C f k

j
(E))

The idea is to define the follow relation ∼F over the states of the c-continuation automaton CE
as follows: C f k

j
(E)∼F Cgp

i
(E)⇔ Follow(C f k

j
(E), f j,k) = Follow(Cgp

i
(E),gi, p) such that we keep all the

equivalent k-C-Continuations in the merged states. The obtained automaton is denoted by CE�∼F . Then
apply the equivalence relation ∼e (apply the mapping h) over the states of the automaton CE�∼F and
merge the states which have at least one expression in common.
Example 7. Let E = (f (a)∗a ·a b+ h(b))∗b + g(c,a)∗c ·c (f (a)∗a ·a b+ h(b))∗b defined in Example 1 and
E = (f1(a)∗a ·a b+h2(b))∗b︸ ︷︷ ︸

F1

+g3(c,a)∗c︸ ︷︷ ︸
G2

·c (f4(a)∗a ·a b+h5(b))∗b︸ ︷︷ ︸
F3

.

C f 1
1
(E) = ((a ·a f1(a)∗a) ·a b) ·b (f1(a)∗a ·a b+h2(b))∗b ,

Ch1
2
(E) = b ·b (f1(a)∗a ·a b+h2(b))∗b ,

Cg1
3
(E) = (c ·c g3(c,a)∗c) ·c (f4(a)∗a ·a b+h5(b))∗b ,

Cg2
3
(E) = (a ·c g3(c,a))∗c) ·c (f4(a)∗a ·a b+h5(b))∗b ,

C f 1
4
(E) = ((a ·a f4(a)∗a) ·a b) ·b (f4(a)∗a ·a b+h5(b))∗b ,

Ch1
5
(E) = b ·b (f4(a)∗a ·a b+h5(b))∗b .

Applying ∼F over the states of CE we obtain: C f 1
1
(E) ∼F Ch1

2
(E) then the two states are merged,

C f 1
4
(E)∼F Ch1

5
(E) so they are merged. The states Cg1

3
(E) and Cg2

3
(E) are not merged with anyone.

The number of states is |Q|= 5 and the number of transition rules is |∆|= 15.

Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi 339

The quotient automaton of this automaton by the equivalence relation ∼F is given in Figure 6.

f{C
ε1 (E)}

g

{Cg1
3
(E)}

g

b

{Cg2
3
(E)}

a

b h {C f 1
1
(E),Ch1

2
(E)} b

b

{C f 1
4
(E),Ch1

5
(E)}

f

h

Figure 6: The Automaton CE�∼F .

The quotient automaton of the automaton CE�∼F by the equivalent relation ∼e is given in Figure 7.
The number of states is |Q|= 4 and the number of transition rules is |∆|= 14.

f{h(C
ε1 (E))}

g

{h(Cg2
3
(E))}

a

h

b

{h(C f 1
1
(E)),h(Ch1

2
(E)),h(C f 1

4
(E)),h(Ch1

5
(E))} b

b

{h(Cg1
3
(E))}

g

f

h

Figure 7: The resulting automaton.

340 K-Position, Follow, Equation and K-C-Continuation Tree Automata Constructions

5 Conclusion

In this paper we define and recall different constructions of tree automata from a regular expression.
The different automata and their relations (quotient, isomorphism) defined in this paper are repre-

sented in Figure 8.

Regular Expression E

k-C-Continuation k-Position

Equation Automaton Follow Automaton

≡
∼F

∼e

C f k (E) First(E)

Follow(E) {Follow(E)}

{First(E)}f−1(E)

∂w(E)

Figure 8: Relation between Automata

Looking for reductions of the set of states, we applied the algorithm by Garcı́a et al. [7] which
allowed us to compute an automaton the size of which is bounded above by the size of the smaller of the
follow and the equation automata.

References
[1] Valentin M. Antimirov (1996): Partial Derivatives of Regular Expressions and Finite Automaton Con-

structions. Theor. Comput. Sci. 155(2), pp. 291–319. Available at http://dx.doi.org/10.1016/

0304-3975(95)00182-4.
[2] Janusz A. Brzozowski (1964): Derivatives of Regular Expressions. J. ACM 11(4), pp. 481–494. Available at

http://doi.acm.org/10.1145/321239.321249.
[3] Jean-Marc Champarnaud & Djelloul Ziadi (2001): From C-Continuations to New Quadratic Algorithms

for Automaton Synthesis. IJAC 11(6), pp. 707–736. Available at http://dx.doi.org/10.1142/

S0218196701000772.
[4] Jean-Marc Champarnaud & Djelloul Ziadi (2002): Canonical derivatives, partial derivatives and finite au-

tomaton constructions. Theor. Comput. Sci. 289(1), pp. 137–163. Available at http://dx.doi.org/10.
1016/S0304-3975(01)00267-5.

[5] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Loding, S. Tison & M. Tommasi (2007):
Tree Automata Techniques and Applications. Available on: http://www.grappa.univ-lille3.fr/tata.

[6] Corinna Cortes, Patrick Haffner & Mehryar Mohri (2004): Rational Kernels: Theory and Algorithms. Jour-
nal of Machine Learning Research 5, pp. 1035–1062. Available at http://www.ai.mit.edu/projects/
jmlr/papers/volume5/cortes04a/cortes04a.pdf.

[7] Pedro Garcı́a, Damián López, José Ruiz & Gloria Inés Alvarez (2011): From regular expressions to smaller
NFAs. Theor. Comput. Sci. 412(41), pp. 5802–5807. Available at http://dx.doi.org/10.1016/j.tcs.
2011.05.058.

http://dx.doi.org/10.1016/0304-3975(95)00182-4
http://dx.doi.org/10.1016/0304-3975(95)00182-4
http://doi.acm.org/10.1145/321239.321249
http://dx.doi.org/10.1142/S0218196701000772
http://dx.doi.org/10.1142/S0218196701000772
http://dx.doi.org/10.1016/S0304-3975(01)00267-5
http://dx.doi.org/10.1016/S0304-3975(01)00267-5
http://www.grappa.univ-lille3.fr/tata
http://www.ai.mit.edu/projects/jmlr/papers/volume5/cortes04a/cortes04a.pdf
http://www.ai.mit.edu/projects/jmlr/papers/volume5/cortes04a/cortes04a.pdf
http://dx.doi.org/10.1016/j.tcs.2011.05.058
http://dx.doi.org/10.1016/j.tcs.2011.05.058

Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi 341

[8] V.-M. Glushkov (1961): The abstract theory of automata. Russian Mathematical Surveys 16, pp. 1–53.
[9] Lucian Ilie & Sheng Yu (2003): Follow automata. Inf. Comput. 186(1), pp. 140–162. Available at http:

//dx.doi.org/10.1016/S0890-5401(03)00090-7.
[10] Ahmed Khorsi, Faissal Ouardi & Djelloul Ziadi (2008): Fast equation automaton computation. J. Discrete

Algorithms 6(3), pp. 433–448. Available at http://dx.doi.org/10.1016/j.jda.2007.10.003.
[11] Dietrich Kuske & Ingmar Meinecke (2011): Construction of tree automata from regular expressions. RAIRO

- Theor. Inf. and Applic. 45(3), pp. 347–370. Available at http://dx.doi.org/10.1051/ita/2011107.
[12] Éric Laugerotte, Nadia Ouali Sebti & Djelloul Ziadi (2013): From Regular Tree Expression to Position

Tree Automaton. In Adrian Horia Dediu, Carlos Martı́n-Vide & Bianca Truthe, editors: LATA, Lecture
Notes in Computer Science 7810, Springer, pp. 395–406. Available at http://dx.doi.org/10.1007/
978-3-642-37064-9_35.

[13] R. McNaughton & H. Yamada (1960): Regular Expressions and State Graphs for Automata. IEEE Trans. on
Electronic Computers 9, pp. 39–47.

[14] Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi (2014): An Efficient Algorithm for the Equation Tree Au-
tomaton via the k-C-Continuations. In A. Beckmann, E. Csuhaj varjù & K. Meer (Eds.), editors: Computabil-
ity in Europe- 10th International Conference, CiE 2014, Budapest, Hungary, June 23-27, 2014. Proceedings,
Lecture Notes in Computer Science 8493, Springer, pp. 303–313.

[15] Ludovic Mignot, Nadia Ouali Sebti & Djelloul Ziadi (2014): An Efficient Algorithm for the Equation Tree
Automaton via the k-C-Continuations. CoRR abs/1401.5951.

http://dx.doi.org/10.1016/S0890-5401(03)00090-7
http://dx.doi.org/10.1016/S0890-5401(03)00090-7
http://dx.doi.org/10.1016/j.jda.2007.10.003
http://dx.doi.org/10.1051/ita/2011107
http://dx.doi.org/10.1007/978-3-642-37064-9_35
http://dx.doi.org/10.1007/978-3-642-37064-9_35

	1 Introduction
	2 Preliminaries
	3 Tree Automata from Regular Expressions
	3.1 The K-Position Tree Automaton
	3.2 The Follow Tree Automaton
	3.3 The Equation Tree Automaton
	3.4 The k-C-Continuation Tree Automaton

	4 Comparison between the Equation and the Follow Automata
	4.1 A smaller automaton

	5 Conclusion

