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In this paper we define a new descriptional complexity measure for Deterministic Finite Automata,
BC-complexity, as an alternative to the state complexity. We prove that for two DFAs with the
same number of states BC-complexity can differ exponentially. In some cases minimization of DFA
can lead to an exponential increase in BC-complexity, on theother hand BC-complexity of DFAs
with a large state space which are obtained by some standard constructions (determinization of NFA,
language operations), is reasonably small. But our main result is the analogue of the ”Shannon effect”
for finite automata: almost all DFAs with a fixed number of states have BC-complexity that is close
to the maximum.

State complexity of deterministic finite automata (DFA) [1][5] has been analyzed for more than 50 years
and all this time has been the main measure to estimate the descriptional complexity of finite automata.
Minimization algorithm [6] for it was developed as well as methods to prove upper and lower bounds for
various languages.

It is hard to find any evidence of another complexity measure for finite automata. Transition com-
plexity [3] could be one, it counts the number of transitions, but there is not much use of it for DFAs (it
is proportional to the state complexity), it is used in the nondeterministic case.

But intuitively not all DFAs with the same number of states have the same complexity. We try to
illustrate it with the following example.

Consider a DFA that recognizes a language in the binary alphabet which consists of words in which
there is an even number of ones among the last 1000 input letters. One can easily prove that it needs 21000

states, however such a DFA can easily be implemented by keeping its state space in a 1000 bit register
which remembers the last 1000 input letters.

On the other hand, consider a ”random” DFA with a binary inputtape and 21000 states. There is
essentially no better way to describe it as with its state transition table which consists of 21001 lines
which (as it is widely assumed) is more than particles in our universe.

It is easy to represent a large number of states in a compact form: 2n states fit inton state bits of
the state register. This is true for the ”random” DFA as well.But the computation performed by the
transition function on this register can be very easy in somecases and hard in some other. Therefore
it seems natural to introduce a complexity measure for DFAs which measures the complexity of the
transition function.

Automata with a large state space which is kept in a state register have been used before, but not in the
widest sense. One example of such a usage is FAPKC [8] (FiniteAutomata Public Key Cryptosystem), a
public key cryptosystem developed in the 80’s by Renji Tao. In FAPKC the state space of an automaton
is considered to be a vector space and the transition function is expressed as a polynomial over a finite
field.

In this paper we consider the following model: we arbitrarily encode the state space into a bit vector
(state register) and express the transition function as a Boolean circuit. The BC-complexity of the DFA
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is (approximately) the complexity of this circuit and this notion extends to regular languages in a natural
way.

BC-complexity was first analyzed in [9] where it was considered for transducers. Here we define it
for DFAs what allows to extend the definition to regular languages.

The main result of this paper is the Shannon effect for the BC-complexity of regular languages: it
turns out that most of the languages have BC-complexity thatis close to the maximum. To obtain it we
first estimate upper (and lower) bounds for BC-complexity compared to state complexity (Theorem. 3.3),
afterwards by counting argument we show that the complexityof most of the languages is around this
upper bound.

Influence of state minimization to BC-complexity were analyzed already in [9] for transducers and
for DFAs it is essentially the same: it turns out that for someregular languages BC-complexity of
their minimal automaton is much (superpolynomially) larger than BC-complexity for some other (non-
minimal) DFA that recognizes it. Finally we look how BC-complexity behaves if we do some standard
constructions on automata (determinization of an NFA, language operations).

1 Preliminaries

1.1 Finite Automata and Regular Languages

We use a standard notion of DFA [4], it is a tuple(Q,Σ,δ ,q0,Q̃), whereQ is the state space,Σ is the
input alphabet,δ : Σ×Q→ Q is the transition function,q0 ∈ Q is the start state and̃Q⊆ Q is the set of
accepting states.

DFA starts computation in the stateq0 and in each step it reads an input letterx∈ Σ and changes its
state. If the current state of a DFA isq∈ Q and it reads an input letterx∈ Σ then it moves to stateδ (x,q).
If after reading the input word DFA is in a stateq∈ Q̃ then this word is accepted, otherwise it is rejected.
DFA A recognizes languageL iff it accepts all words from this language and rejects all words not in the
language. Two DFAs that recognize the same language are called equivalent.

The state complexity of a DFA is the number of states in its state spaceCs(A) = |Q|. For each DFAA
there is a unique minimal DFAM(A) which is equivalent toA and has minimal state complexity. There
is an effective minimization algorithm for finding it [1].

We will need the estimation of the number of DFAs withs states. DenoteAs to be the number of
pairwise non-equivalent minimal DFAs withs states overk-letter alphabet. In [2] it is estimated to be
larger than 2s−1(s−1)s(k−1)s, we will use the following reduced estimation (true fors≥ 3) which will
be sufficient for us:

Theorem 1.1 ([2]) As ≥ 2ss(k−1)s for s≥ 3.

1.2 Boolean circuits

We will use the standard notion of a Boolean circuit and restrict our attention to circuits in the standard
base (&,∨, ¬). The size of the circuitC(F) is the number of gates plus the number of outputs of the
circuit F. Boolean circuitF with n inputs andm outputs represents a Boolean function(y1, . . . ,ym) =
F(x1, . . . ,xn) in a natural way.

Each function f : {0,1}n → {0,1}m can be represented by a Boolean circuit in (infinitely many)
different ways. The complexity of this functionC( f ) is the size of the smallest circuit that represents this
function.
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We will also need a formula for the upper bound of the number ofdifferent Boolean circuits with
a given complexityC. DenoteN(n,m,C) to be the number of circuits withn input variables,m output
variables and no more thanC gates, that correspond to different Boolean functions. Then:

Theorem 1.2
N(n,m,C)≤ 9C+n(C+n)C+m

Proof Assign to inputs numbers from 1 ton, and numbers fromn+ 1 to n+C to the gates. Each
gate is characterised with its two inputs (at most(n+C)2 possibilities) and type (AND, OR, NOT, 3
possibilities). There are no more than(n+C)m ways how to assign outputs of the circuit and each circuit
is countedC! times, one for each numbering of gates. Therefore the totalnumber of circuits can be
estimated as:

N(n,m,C)<
(3(C+n)2)C · (C+n)m

C!
< 9C(1+

n
C
)C(C+n)C+m,

here we have used, thatC! >CC/3C for all C.
Further, as(1+1/x)x < e< 9 for arbitraryx> 0, then

(1+
n
C
)C = ((1+

n
C
)

C
n )n < 9n

from where the result follows.�

A classical result about Boolean functions states that mostof functions f : {0,1}n → {0,1}m have
approximately the same circuit complexity which is close tomaximum. This property is called Shannon
effect.

Theorem 1.3 ([7]) For any Boolean function f: {0,1}n →{0,1}m

C( f ).
m2n

n+ logm
,

For almost all Boolean functions f: {0,1}n →{0,1}m

C( f )&
m2n

n+ logm
.

Here and further log= log2 and we use the notation

f (n). g(n)⇔ lim
n→∞

f (n)
g(n)

≤ 1.

2 Encodings and Representations of a DFA

Classical representations of automata are table forms or state transition diagrams. They are essentially
the same, a state diagram can be thought of as a visualizationof a table form. Table form lists the
transition function of an automaton as a table where each line corresponds to a pair of state and input
letter. In state transition diagram each state is denoted bya circle and for each transition(q,x) → q′ an
arrow is drawn from stateq to stateq′ above which letterx is written.

Both of these representations show each state of an automaton separately, therefore with these meth-
ods it is not possible to effectively describe an automaton with a large number of states.
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One can encodesstates into⌈log(s)⌉ (or more) state bits which can be kept in astate register. Also,
input letters can be encoded as a bit vectors. Every automaton has infinitely many such encodings.

The transition function in this case will take as an input a state register and an encoded input letter,
and produce a (next) state register. It is thus a Boolean function and it is natural to represent it with a
Boolean circuit.

Another question is how to represent the set of accepting states Q̃. We represent it by a Boolean
circuit implementing its characteristic function. Therefore a representation of a DFA will consist of an
encoding of its state space and input alphabet and two circuits: one for its transition function and one
for the characteristic function of the set of accepting states. We call these circuitstransition circuitand
acceptance circuit, respectively.

An encodingE(X) of a set X onto a binary string is an injective mappingfX : X → {0,1}bX where
bX is the length of the encoding. As the mapping is injective then bX ≥ ⌈log|X|⌉.

An encoding of a DFA consists of an encoding of its input alphabet fΣ and an encoding of the
state spacefQ which we call input encoding and state encoding, respectively. Additionally for the state
encoding we ask that the start state is encoded as a string of all zeros fQ(q0) = 0bQ.

Definition Let A = (Q,Σ,δ ,q0,Q̃) be a given DFA and( fΣ, fQ) be its encoding. A pair of Boolean
circuits(F,G) is a representation ofA under encoding( fΣ, fQ) iff

• F hasbΣ +bQ input variables andbQ output variables,

• G hasbQ input variables and one output variable,

• for all x∈ Σ andq∈ Q if q′ = δ (x,q), then fQ(q′) = F( fΣ(x), fQ(q)),

• G( fQ(q)) = 1 ⇐⇒ q∈ Q̃ for all q∈ Q.

In other words, transition circuitF reads encoded inputfΣ(x) as its firstbΣ input bits, encoded state
fQ(q) as following bQ input bits and has encoded next statefQ(q′) as itsbQ output bits. Acceptance
circuit G reads encoded statefQ(q) and outputs 1 as its only output bit iffq∈ Q̃.

As noted before minimal values forbΣ andbQ are⌈log(|Σ|)⌉ and⌈log(|Q|)⌉ respectively, but they
can be larger as well. Whether allowing them to be larger gives a possibility to construct smaller repre-
sentations of DFAs, is an interesting open question.

It is natural to encode the state spaceQ with |Q| lexicographically first bit strings of length⌈log|Q|⌉,
in such a case we will say that the state encoding is minimal. The notion of minimal input encoding is
introduced similarly. We call an encoding of a DFAminimal encodingif both encodings: state and input
are minimal.

3 BC-complexity

In this section we define the main concept of this paper, BC-complexity of a DFA. We start from the
bottom:

Definition BC-complexity of a representation of a DFA(F,G) is the sum of complexities of its transition
circuit and acceptance circuit and the number of state bits:

CBC((F,G)) =C(F)+C(G)+bQ.

The number of state bitsbQ is included in the definition to avoid situation that an automaton has a
large number of states but zero BC-complexity. It is naturalto assume that it costs something to create
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a circuit even if it has no gates and this is one of the possibilities how to reflect this in the definition.
Another possibility would be to use the complexity of ”wires” instead of the complexity of gates for the
underlying circuits, but we prefer to use the standard complexity for the circuits.

Definition BC-complexity of a DFAA, CBC(A), is the minimal BC-complexity of its representations:

CBC(A) = min{CBC((F,G)) : (F,G) representsA}.

Although the name ”circuit complexity” also sounds reasonable, we use the abbreviation ”BC-
complexity” to avoid confusion with the circuit complexityof regular languages.

Definition BC-complexity of a regular languageL is the minimal BC-complexity of all DFAs that rec-
ognizeL:

CBC(L) = min{CBC(A) : A recognizesL}.
First we observe that we can optimize our acceptance circuitby rearranging states. If we encode

states in such a way that all accepting states have smaller index than rejecting states (or vice versa) then
the acceptance circuit can be reduced to a comparison operation whose complexity is not greater than 4n
wheren is the number of state bits.

But this is not the best optimization that can be achieved by rearranging states. For the upper bound
in the following Theorem 3.1 different arrangement is used.

Theorem 3.1 If |Σ|= k≥ 2 then for any DFA A with s states,

⌈log(s)⌉ ≤CBC(A). (k−1)s.

If |Σ|= 1 then for any DFA A with s states,

⌈log(s)⌉ ≤CBC(A).
s

logs
.

Proof Lower bound. For any representation(F,G) there arebQ ≥ ⌈logs⌉ state bits, therefore BC-
complexity cannot be smaller than⌈logs⌉.

For upper bound if we just construct an optimal representation (F,G) under some arbitrary minimal
encoding (with⌈logs⌉ state bits) then the BC-complexity of this representation according to Theorem 1.3
can be estimated as

CBC((F,G)) ≤C(F)+C(G)+ ⌈logs⌉. ks⌈logs⌉
log(ks⌈logs⌉) +

s
logs

+ ⌈logs⌉. ks

To improve the result to(k−1)swe will choose a specific minimal encoding where states are ordered
in a way that for one input letter the corresponding transition function is simple. Denoteq to be the
encoding of the current state,q′ to be the encoding of the next state andx to be the encoding of the input
letter. We split the transition circuitF in two partsF1 andF2 where partF1 computes the next state for
one specific input lettera and partF2 does it for otherk−1 input letters.

If we look at the state transition graph for the lettera then it splits into connected components each
of which has the form

q1 → q2 → . . .qm−1 → qm → q j

where 1≤ j ≤ m. Each such component is uniquely defined with two numbersm (the number of states
in it) and j (the length of the ”tail”), we callm to be the length of a component. We order all these
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components bym and j lexicographically what naturally leads to the ordering of states. Consider all
components with parameters(m, j) and denote byM = M(m, j) the index (encoding) of the first state of
the first such component and byN = N(m, j) the index of the last state of the last such component.

The transition function isq′ = q+ 1 except for the last stateqm of each component for which it is
q′ = q− (m− j). As each of these components havemstates thenq corresponds to the last state of some
component iffq+1= M modm.

The circuitF1 should compute the following functionq′ = F1(q):
q’ = q+1

for all pairs (m, j)

if M(m, j)<=q<=N(m, j) and q+1 == M(m, j) mod m:

q’ = q-(m-j)

HereM andN are the boundaries within which all components with parameters (m, j) are placed.
It is easy to check that circuits for subtractionq′ = q− (m− j) and comparison(M ≤ q ≤ N) are of
sizeO(logs), for modulo comparisonq+1= M modm it is of sizeO(logs2). Therefore the total size
of the circuitF1 is K ∗ clogs2 whereK is the number of different pairs(m, j) that correspond to some
components that are present in the transition graph andc is some constant. We need to estimate the
maximum value ofK.

One can easily see that maximum value ofK is obtained when each component with parameters
(m, j) appears exactly once and all the smallest components are used. Letu be the maximum length of a
component (maximal value ofm) under the condition that all the possible smallest components are used.
For eachm there arempossible different types of components (1≤ j ≤ m) thereforeK ≤ u(u+1)/2.

On the other hand the total length of all components up to the lengthu−1 should be less thans:

u−1

∑
m=1

m2 =
(u−1)u(2u−1)

6
≤ s

whence it follows thatu≤ 2 3
√

s. Therefore

K ≤ u(u+1)
2

≤ 2 3
√

s(2 3
√

s+1)
2

≤ 4s
2
3

.
The size of the transition circuitF2 for the otherk−1 input letters can be estimated from Theorem 1.3:

C(F2).
(k−1)s⌈logs⌉

log((k−1)s⌈logs⌉) . (k−1)s.

The size of the acceptance circuit can be estimated (from Theorem 1.3) asC(G). s
logs.

After reordering of states we also have to ensure that the start state is 0. This can increase the
complexity of both circuits by no more than 3logs (it is necessary to add at mostn negations to the input
of the transition circuitF, the output of the transition circuitF, and the input of the acceptance circuit
G). There are also logs state bits which are included in the computation of BC-complexity. We omit
these terms of logarithmic order in the computation of BC-complexity because asymptotically they are
negligible.

The BC-complexity of the automaton therefore can be estimated as

CBC(A)≤C(F)+C(G)+bQ . 4c(logs)2s2/3+
s

logs
+(k−1)s

If k≥ 2 then the dominant term of this expression is(k−1)s andCBC(A) . (k−1)s. For one letter
alphabet the dominant term iss/ logs, thereforeCBC(A). s

logs. �
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Consider languageLn in binary alphabetΣ = {0,1} such thatx∈ Ln iff |x| = k andxk−n+1 = 1 (the
n-th letter from the end is ”1”). The state complexity of this language is 2n, one has to remember in a
state register the lastn input letters. But the BC-complexity of it isn. CircuitsF,G that represent the
natural encoding of a DFAAn that recognizesLn have no gates, they are shown in figure 1. Therefore the
BC-complexity of (the representation(F,G) of) An is the number of state bits which isn. This example
shows that the lower bound of Theorem 3.1 is strictly reachable.

Figure 1: Representation(F,G) of the DFAAn

Further we try to reach the upper bound. First we find a language (based on the Shannon function)
for which the BC-complexity is at leasts/ log2(s), afterwards by counting argument we show that BC-
complexity for most languages is close to(k−1)s. That matches the upper bound of Theorem 3.1 and
can be thought of as the Shannon effect for BC-complexity.

Denote byShn the Shannon function onn bits: lexicographically first Boolean function withn input
bits and one output bit with maximal complexity of its minimal circuit. Consider a languageLSh

n that
consists of all wordsx1x2 . . .xk in binary alphabet such thatShn(xk−n+1,xk−n+2, . . . ,xk) = 1. State com-
plexity of this language is not larger than 2n: it is enough to remember the lastn input letters. But its
BC-complexity is at least 2n/n2.

Theorem 3.2 BC-complexity of LSh
n is at least2n/n2.

Proof Let (F,G) be a pair of Boolean circuits that represents some DFAAn recognizingLSh
n . Assume

F has one input bit that represents input letter from the tape and m= bQ state bits. By concatenating
n circuits F together with one circuitG as in figure 2. (state bit output ofj-th circuit is passed as state
bit input of j + 1-st) one can obtain a circuit whose size is not larger thannC(F) +C(G) and which
computes Shannon functionShn on itsn input bits. From Theorem 1.3 the complexity of this circuit is at
least 2n/n. FromnC(F)+C(G)> 2n/n we get thatC(F)+C(G)> 2n/n2. �

Figure 2: Circuit construction for the Shannon functionShn
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Theorem 3.2 shows that for some languageLSh
n with s states its BC-complexity is at leasts/(logs)2.

Next theorem is an extension of this result. With the use of nonconstructive methods (counting argument)
one can show that this value can be raised up to(k−1)s. But in the beginning we will need a formula to
estimate the number of automata with a given BC-complexity.

Theorem 3.3 Fix Σ and denoteA(c) to be the class of those minimal DFAs whose BC-complexity is less
than c. If|Σ|= k≥ 2 then for anyε > 0

lim
s→∞

|A((1− ε)(k−1)s)|
|As|

= 0

If |Σ|= 1 then for anyε > 0

lim
s→∞

|A((1− ε) s
logs)|

|As|
= 0

Proof By Theorem 1.1As ≥ 2ss(k−1)s. Denotel = 2k, it is clear that no more thanl input bits for data
input will be used for the representation for which BC-complexity is minimal. If more bits are used, then
some of them will be equal as there are only 2k functions that mapsk inputs letters to{0,1}(bits).

Figure 3: Merged acceptance and transition circuits

Consider a representation(F,G) of some encodingE(A) of A. Merge these two circuitsF andG
and obtain one circuitH with bQ+bΣ inputs andbQ+1 output bits, the firstbQ of which correspond to
the output of the transition circuitF, but the last output bit corresponds to the output of the acceptance
circuit G (Figure 3). The complexity of this circuitH is C(F)+C(G), for any two minimal automata
these ”merged” circuits will be different.

Now we want to estimate the number of representations with BC-complexity less thatc. Such rep-
resentations have at least⌈logs⌉ and no more thanc state bits. The complexity of the ”merged” circuit
H for a representation withbQ state bits cannot be more thanc−bQ, the number of such circuitsH from
theorem 1.2 is not larger than

N(bQ+bΣ,bQ+1,c−bQ)< N(bQ+ l ,bQ+1,c−bQ)< 9c+l (c+ l)c+1.

Therefore the number of representations with complexityc is not larger than

c

∑
bQ=1

N(bQ+ l ,bQ+1,c−bQ)< c9c+l (c+ l)c+1 < 9c+l (c+ l)c+2.

To prove the theorem we have to show that

lim
s→∞

9c+l (c+ l)c+2

2ss(k−1)s
= 0
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or what is equivalent to that

lim
s→∞

log
(

9c+l (c+ l)c+2
)

− log
(

2ss(k−1)s
)

=−∞

for the stated values ofc.
For k≥ 2 if we substitutec= (1− ε)(k−1)s then after simplification we obtain an equation of the

form
lim
s→∞

−εslogs+O(s) =−∞

which is true. The same happens in the casek= 1 if we substitutec= (1− ε)s/(logs). �

We have shown in Theorem 3.1 that BC-complexity for any regular language with state complexitys
and input alphabet of sizek≥ 2 is not ”much larger” than(k−1)s. Theorem 3.3 states that for minimal
encodings recognition of almost all such languages would require circuits of size around(k−1)s. This
can be thought of as the ”Shannon effect” for the BC-complexity of automata: for almost all automata
its value is close to the maximum.

4 Minimization of BC-complexity

For the state complexity of DFA an efficient minimization algorithm [6] is well known which, given a
DFA, finds the state complexity of it as well as the the minimalDFA itself. This is in a big contrast with
complexity measures of general programs (Turing machines)for which their complexity (space or time)
cannot be determined by any means in the general case.

It is easy to notice that finding the BC-complexity of a DFA is NP-hard.

Theorem 4.1 Finding the BC-complexity of a DFA given its arbitrary representation is NP-hard.

Proof We will reduce SAT problem to finding minimal BC-complexity of a DFA. Given a SAT problem
instance that containsn variables, consider a DFA withn state bits (2n states), that works in one letter
alphabet, its state transition function is a ”circle”, thatgoes through all the states, and accepting states
are those, for which this SAT instance gives positive output.

Now assume that this SAT instance is not satisfiable — then this DFA never accepts and therefore
its minimal DFA has 1 state (0 state bits) and its BC-complexity is 0. If this SAT instance is satisfiable,
then any representation of it will have some state bits and therefore its BC-complexity will be at least
1. Therefore if one could efficiently find BC-complexity of a given DFA, he could also solve any SAT
problem.�

Further we show one interesting property of BC-complexity —that for some DFAs BC-complexity
is significantly smaller than for their equivalent minimal DFAs. The theorem is based on the conjecture
that PSPACE6⊆ P/Poly. The proof of this theorem for transducers can be found in [9], for DFAs it is
almost the same and is omitted here. Denote byM(L) the minimal DFA recognizing languageL.

Theorem 4.2 If there is a polynomial p(x) such that CBC(M(L))< p(CBC(L)) for all regular languages
L then PSPACE⊆ P/Poly.

It means that in some cases by minimizing the number of states(minimizing state complexity) BC-
complexity of the transition function can increase superpolynomially. And on the other hand, sometimes
allowing equivalent states in the automaton helps to keep BC-complexity small.
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5 BC-complexity applications

5.1 Nondeterministic automata

Theorems 3.3 and 3.1 suggest that for most DFAs ink-letter alphabet withs states BC-complexity is
around(k−1)s. But in many cases when DFAs with a large state space are constructed by some standard
method, it turns out that their BC-complexity is exponentially smaller than this maximal expected value
— it is of orderPolylog(s). Further we look at some of these standard constructions starting with the
determinization of an NFA.

Theorem 5.1 If a language R over alphabetΣ, |Σ|= k can be recognized by an NFA N with n states and
t transitions, then it can also be recognized by a DFA A for which CBC(A)≤ t +(k+1)n+k logk.

Proof Consider a DFAA that is obtained by a standard construction from NFAN. Its set of states is
the powerset of the set of states ofN. The state space ofA will consist of 2n states (may be some of
them will not be reachable), which can be encoded inn state bits. Each state bit of an encoding ofA will
correspond to one state ofN. For input letters we choose arbitrary minimal input encoding into logk bits.

The transition circuit ofA can be obtained from the transition function ofN. NFA N after reading
input letterx ∈ Σ will be in stateqi , if there is a stateq j , in which it was before (NFA can be in many
states simultaneously) and from which reading input letterx leads to stateqi . Denote byQi

a subset of
states ofN from which reading lettera leads to stateqi . Denote byQt a subset of states in whichN is
after readingt letters. IfN reads input lettera in stept then:

qi ∈ Qt+1 ↔ (Qt ∩Qi
a) 6= /0.

In the circuit it means that ifx denotes the encoded input letter then

q′i =
∨

a∈Σ
((x= a)&

∨

q∈Qi
a

q).

To construct allk subcircuitsx= a we need logk negations andk(logk−1) conjunctions.
The size of the block &

∨

q∈Qi
a
q is the number of transitions entering stateq on input a therefore

the total number of these inner disjunctions and conjunctions for all output bitsq′i is t. There are also
(k− 1)n outer disjunctions

∨

a∈Σ. In total the complexity of the transition circuit is not larger than
k(logk−1)+ logk+(k−1)n+ t ≤ t +(k−1)n+k logk.

Acceptance circuitG is a disjunction of all the final states ofN, the complexity of this it is not larger
thann−1. AlsobQ = n have to be added to the BC-complexity. Therefore the total BC-complexity ofA
is not larger thant +(k+1)n+k logk. �

As the number of transitions is not larger thankn2 then

Corollary 5.2 If a language R in alphabetΣ, |Σ| = k can be recognized with an NFA N with n states,
then it can also be recognized with a DFA A for which CBC(A)≤ kn2+(k+1)n+k logk.

5.2 Language operations

State complexity of language operations has been studied long ago, e.g. in [10]. The result of some of
the operations (e.g. reversing) can lead to exponentially larger automata than the original one. Here we
analyze how BC-complexity changes with languages operations and observe that in those cases when
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the state complexity increases exponentially it leads to automata whose state transition function is very
structured therefore its BC-complexity is exponentially smaller than state complexity.

For all operations we assume that we are given two languagesL1 andL2 andm=Cs(L1), n=Cs(L2),
a=CBC(L1), b=CBC(L2), k= |Σ|. We start with the union and intersection.

Theorem 5.3 If L3 = L1∪L2 or L3 = L1∩L2 then CBC(L3)≤ a+b+1.

Proof Assume circuits(F1,G1) represent a DFA recognizingL1 and(F2,G2) represent a DFA recogniz-
ing L2. The transition function for a DFA recognizingL3 would consist of circuitsF1 andF2 working in
parallel. The acceptance circuit consists of circuitsG1 andG2 working on corresponding parts of bit vec-
tor followed by a disjunction (for union) or conjunction (for intersection) gate. The number of state bits
is the sum of state bits for representations(F1,G1) and(F2,G2). The complexity of such a representation
is C(F1)+C(F2)+C(G1)+C(G2)+1+bQ = a+b+1. �

The complement of the language can be computed by the same pair of circuits as the language itself
with negation added at the end of the acceptance circuit.

Theorem 5.4 If L3 = Σ∗ \L1 then CBC(L3)≤ a+1.

A word x1x2 . . .xn belongs to the reverse languageLR
1 iff xn . . .x2x1 belongs toL1. NFA N recognizing

LR
1 can be obtained from the DFAA recognizingL1 by setting the start state ofN to be any accepting state

of A, settingq0 of A to be the only accepting state ofN and reversing all the arrows. DFA recognizing
LR

1 can be obtained fromN by running the standard process of determinization.

Theorem 5.5 CBC(LR
1)≤ (2k+1)m+k logk

Proof This follows directly from Theorem 5.1 and the fact, that NFAobtained by reversing all the
transitions has exactlykmtransitions.�

LanguageL1L2 which is the concatenation of languagesL1 andL2 consists of all wordsuwsuch that
u∈ L1 andw∈ L2.

Theorem 5.6 CBC(L1L2)≤ a+(2k+1)n+k logk

Proof Assume DFAA1 recognizesL1, DFA A2 recognizesL2. NFA that recognizesL1L2 can be obtained
from A1 andA2 by addingε-transitions from all the accepting states ofA1 to the start state ofA2. The
standard construction of DFA from this NFA can be optimized —it will consist of circuitsF1 andG1

representingA1 together with a circuitN(A2) constructed fromA2 as from NFA as in Theorem 5.1.
Circuit G1 sets state bit corresponding to stateq0 of A2 to ”1” iff A1 is in accepting state.

By Theorem 5.1C(N(A2))≤ t+(k+1)n+k logk and, sinceA2 is a deterministic automaton,t = kn.
Together it gives thatCBC(L1L2)≤C(F1)+C(G1)+C(N(A2))≤ a+kn+(k+1)n+k logk= a+(2k+
1)n+k logk. �

Theorem 5.7 CBC(L∗
1)≤ km2+(k+1)m+k logk.

Proof NFA recognizingL∗
1 can be obtained from DFA recognizingL1 by addingε-transitions from all

the accepting states to the start state. The resulting NFA therefore also hasmstates and the result follows
from Corollary 5.2.�
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Operation State complexity BC-complexity
L1∪L2 mn a+b+1
L1∩L2 mn a+b+1
Σ∗−L1 m a+1

LR 2m (2k+1)m+k logk
L1L2 (2m−1)2n−1 a+(2k+1)n+k logk
L∗

1 2m−1+2m−2 km2+(k+1)m+k logk

Table 1: State complexity and BC-complexity of language operations

6 Conclusions and open problems

In this paper a new measure of complexity, BC-complexity of DFAs and regular languages, was consid-
ered. Transition function of a DFA as well as the characteristic function of the set of accepting states
are expressed as Boolean circuits and their circuit complexity is taken as a complexity measure (BC-
complexity) of this DFA. It turns out that BC-complexity canvary exponentially for DFA with the same
number of states (Theorem 3.1). Theorem 3.3 states that almost all DFAs BC-complexity is close to
maximum (”Shannon effect”).

In all asymptotic constructions minimal encodings for state and input alphabet where used, but it is
not known if minimal encodings are always optimal. We think that sometimes they are not, but showing
an example where other encoding than minimal would be more efficient (in the sense of minimizing
BC-complexity) is an interesting open question.

In section 4 it was shown that BC-complexity of a regular language can be much smaller than the
BC-complexity of the minimal DFA that recognizes it. On the other hand, DFAs with a large state space
that are obtained in many standard operations (determinization of NFA, language operations), have a
”good” structure so that their BC-complexity can be relatively small.
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