
Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 355–369, doi:10.4204/EPTCS.151.25

c© Antti Valmari
This work is licensed under the
Creative Commons Attribution License.

A Simple Character String Proof
of the “True but Unprovable” Version

of Gödel’s First Incompleteness Theorem

Antti Valmari
Tampere University of Technology, Department of Mathematics

PO Box 553, FI-33101 Tampere, FINLAND

Antti.Valmari@tut.fi

A rather easy yet rigorous proof of a version of Gödel’s firstincompleteness theorem is presented.
The version is “each recursively enumerable theory of natural numbers with 0, 1,+, ·, =,∧, ¬, and∀
either proves a false sentence or fails to prove a true sentence”. The proof proceeds by first showing
a similar result on theories of finite character strings, andthen transporting it to natural numbers,
by using them to model strings and their concatenation. Proof systems are expressed via Turing
machines that halt if and only if their input string is a theorem. This approach makes it possible to
present all but one parts of the proof rather briefly with simple and straightforward constructions.
The details require some care, but do not require significantbackground knowledge. The missing
part is the widely known fact that Turing machines can perform complicated computational tasks.

Mathematics Subject Classification 2010:03F40 Gödel numberings and issues of incompleteness

1 Introduction

Kurt Gödel’s first incompleteness theorem [2] is certainlyone of the most important results in mathemat-
ical logic. Together with an improvement by Barkley Rosser [11], the theorem says thatany recursive
sufficiently strong theory of natural numbers either provesa contradiction, or leaves both some sentence
and its negation without a proof. (We postpone discussion on Gödel’s original formulationto Section 8,
because it uses a concept that cannot be explained briefly at this stage. “Recursive” and other background
concepts are informally introduced in Section 2.)

More recently, the theorem has often been presented in the form any recursively enumerable suffi-
ciently expressive theory of natural numbers either provesa sentence that does not hold or fails to prove
a sentence that does hold. This form is not equivalent to Gödel’s and Rosser’s formulation. In some
sense it promises less and in some sense more. However, it is easier to prove and perhaps also easier to
understand. It makes the assumption of sufficient expressiveness (explained in Section 2) instead of the
stronger assumption of sufficient strength (explained in Section 8). This is the version discussed in the
major part of this paper. It is compared to Gödel’s and Rosser’s formulation in Section 8.

Both Gödel’s original proof and most of the modern expositions are long and technical. On the other
hand, its overall strategy can be explained rather briefly and is intuitively inspiring. As a consequence,
the proof is one of the most popularized ones. We only mentionhere the excellent book by Douglas R.
Hofstadter [3]. Unfortunately, to really grasp the result,the technicalities are necessary.

The goal of this paper is to present arigorousproof which, excluding one detail, can be checkedin full
by a reader withlittle background(but not necessarily with little effort). We hope that our proof makes
the result accessible to a wider audience than before. The skipped detail is the fact that some simple

http://dx.doi.org/10.4204/EPTCS.151.25
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

356 Character String proof of First Incompleteness Theorem

things can be computed by so-called Turing machines. Its rigorous proof would take many dull pages.
On the other hand, Turing machines have been very widely accepted as a universal theoretical model
of computation. Therefore, as long as it is obvious that something could be programmed in a modern
programming language, it is common practice to skip the proof that a Turing machine can compute it.

Our trick is to first prove that theories of finite character strings with string literals, concatenation, and
equality are incomplete. Then we derive the incompletenessof natural number arithmetic as a corollary.
In this way, the main constructions of the proof are made using finite character strings, while other
proofs make them using natural numbers. This makes our constructions much simpler and much more
understandable. The presentation of our proof in this paperis not remarkably short, but this is partly due
to the fact that it is very detailed.

Some background concepts are informally explained in Section 2. Our language on finite character
strings is defined in Section 3. Not every character can be represented by itself in a string literal. There-
fore, an encoding of characters is needed. Section 4 shows that the claim “stringy is the sequence of
the encodings of the characters in stringx” can be formulated in the language. Computations of Turing
machines are encoded in Section 5. The incompleteness of theories of strings is shown in Section 6, and
of theories of arithmetic in Section 7. Section 8 compares the version of the theorem in this paper to
Gödel’s and Rosser’s versions. Discussion on related workand the conclusions are in Section 9.

An earlier, not peer-reviewed version of this paper appeared as arXiv:1402.7253v1.

2 Informal Background

A recursive theoryconsists of a language for formulating claims about some domain of discourse, to-
gether with a recursive proof system. In the case of Gödel’stheorem, the domain of discourse is the
natural numbers 0, 1, 2, . . . together with addition (+), multiplication (variably denoted with×, ·, *, or
nothing such as in 3x+1), and equality (=) with their familiar properties. Asentenceis a claim without
input, formulated in the language. For instance, “3 is a prime number” lacks input but “p is a prime
number” hasp as input. Of course, whether or not a claim can be formulated depends on the language.

When Gödel published his theorem, the notion of “recursiveproof system” had not yet developed into
its modern form. Indeed, instead of “recursive”, he used a word that is usually translated as “effective”.
Gödel meant a mathematical reasoning system for proving sentences, where any proof could be checked
against a fixed set of straigthforward rules. Proofs were checked by humans, but the requirement was that
they could do that in a mechanical fashion, without appealing to intuition on the meaning of formulae.
This makes the proof system independent of the different insights that different people might have.

Today, “in a mechanical fashion” means, in essence, “with a computer that has at least as much
memory as needed”. It suffices that there is a computer program that inputs a finite character string and
eventually halts if it is a valid proof, and otherwise runs forever. If such a program exists, then there
also is a program that systematically starts the former program on finite character strings one by one in
increasing length and executes them in parallel until a proof for the given sentence is found. (We will see
in Section 7 how all finite character strings can be scanned systematically.) If the sentence has a proof,
the program eventually finds it and halts; otherwise it runs forever in a futile attempt to find a proof.

For mathematical analysis, computers and their programs are usually formalized asTuring machines.
We will introduce Turing machines in Section 5.

We will not need the assumption that a proof system resemblesmathematical reasoning systems.
Indeed, we will not need any other assumption than machine-checkability. So we define arecursively
enumerable proof systemas any Turing machineM that reads a finite character string and does or does

Antti Valmari 357

not halt, such that if the string is not a sentence, thenM does not halt. If the string is a sentence, it is
considered as proven if and only ifM halts. Arecursive proof systemadds to this the requirement of the
existence of another Turing machine that halts precisely onthose inputs, on whichM does not halt.

Section 1 assumed that the language for expressing claims about natural numbers is sufficiently
expressive. It suffices that the language has constant symbols 0 and 1, an unbounded supply of variable
symbols, binary arithmetic operators+ and·, binary relation symbol=, binary logical operator∧ (that
is, “and”), unary logical operator¬ (that is, “not”), the so-called universal quantifier∀, and parentheses
(and). All symbols have their familiar syntactical rules and meanings. The universal quantifier is used
to formulate claims of the form∀n : P(n) (that is, “for every natural numbern, P(n) holds”).

For convenience, logical or∨ can also be used without changing the expressiveness of the language,
because it can be built from∧ and¬, sinceP∨Q is logically equivalent to¬(¬P∧¬Q). Also logical
implication→, existential quantifier∃, inequality 6=, less than<, and all familiar numeric constants 2,
3, . . . , 9, 10, 11, . . . can be used, becauseP→ Q is equivalent to¬(P∧¬Q), ∃x : P(x) is equivalent to
¬∀x : ¬P(x), x 6= y is equivalent to¬(x = y), x < y is equivalent to(∃z : x+ z+ 1= y), and any such
numeric constant has the same value as some expression of theform (1+1+ . . .+1).

3 A First-Order Language on Finite Character Strings

In this section we define our language for expressing claims aboutfinite character strings, that is, finite
sequences of characters. We usethis font when writing in that language. To make it explicit where
a string in that language ends and ordinary text continues, we put white space on both sides of the string
even if normal writing rules of English would tell us not to doso. So we write “charactersa , . . . , z
are” instead of “charactersa, . . . ,z are”.

The language uses the following characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 " \ = /= () ~ & | - > A E : + * <

We chose this set of characters for convenience. Any finite set containing at least two characters could
have been used, at the expense of a somewhat more complicatedproof. This set facilitates the use
of familiar notation for many things. The fact that its size 53 is a prime number will be exploited in
Section 7. The charactersa , . . . , z arelower case letters, and 0 , . . . , 9 aredigits.

A finite character stringor juststring is any finite sequence of characters.
An encoded characteris \0 , \1 , or any other character than" and \ . The encoded character

\0 denotes the character\ , \1 denotes" , and each remaining encoded character denotes itself. A
string literal is any sequence of characters of the form"α" , whereα is any finite sequence of encoded
characters. It denotes the corresponding sequence of (unencoded) characters. For instance,"" denotes
the empty string and"backslash=\1\0\1" denotes the stringbackslash="\" . The purpose of
encoding is to facilitate the writing of" inside a string literal, without causing confusion with the"
that marks the end of the literal.

A variable is any string that starts with a lower case letter and then consists of zero or more digits.
For instance,a , x0 , and y365 are variables but49 and cnt are not. The value of a variable is a
string. We say that the variablecontainsthe string.

A term is any non-empty finite sequence of variables and/or string literals. It denotes the concate-
nation of the strings that the variables contain and/or string literals denote. For instance,"theorem" ,
"theo""rem" and "the""""o""rem" denote the same stringtheorem . If the variable x contains
the string or , then also"the"x"em" denotestheorem .

358 Character String proof of First Incompleteness Theorem

An atomic propositionis any string of the formt=u or of the form t/=u , wheret andu are terms.
The first one expresses the claim that the strings denoted byt andu are the same string, and the sec-
ond one expresses the opposite claim. So"theorem"="theo""rem" is a true atomic proposition, and
"theorem"/="theo""rem" is not. Indeed,t/=u expresses the same claim as~t=u , where ~ is intro-
duced soon.

A formula is either an atomic proposition or any string of the following forms, whereπ and ρ
are formulae andx is a variable:(π) , ~π , π&ρ , π|ρ , π->ρ , Ax:π , and Ex:π . The
parentheses(and) are used like in everyday mathematics, to force the intendedinterpretation. In
the absence of parentheses, formulae are interpreted according to the following precedences: con-
catenation has the highest precedence, then= , ~ , & , | , -> , and : in this order. For instance,
~b=c|c="hello"&a=bc denotes the same as(~(b=c))|((c="hello")&(a=bc)) , and
Ax:~x="8"|x="8"->"u"="u" denotes the same asAx:(((~(x="8"))|(x="8"))->("u"="u")) .
All operators associate to the left, soπ->ρ->σ means the same as(π->ρ)->σ .

The formulae express the following claims:

(π) expresses the same claim asπ,
~π expresses thatπ does not hold,
π&ρ expresses thatπ andρ hold,
π|ρ expresses thatπ holds orρ holds or both hold,
π->ρ expresses that ifπ holds, then alsoρ holds,
Ax:π expresses that for any stringx, π holds, and
Ex:π expresses that there is a stringx such thatπ holds.

To improve readability, we often add spaces into a formula, like Ax: x/="8" | x="8" . We may
also split a formula onto many lines.

A first-order languageis any language whose formulae are built from atomic propositions like above.
The constants or literals, terms, and atomic propositions of a first-order language may be chosen as
appropriate to the domain of discourse. A variable of a first-order language may only contain a value in
the domain of discourse, while a variable of a higher-order language may be used more flexibly. When
talking about first-order languages in general, we use the symbols¬, ∀, and so on, and when talking
about a particular first-order language specified in this paper, we use~ , A , and so on.

We will need long formulae. To simplify reading them, we introduce abbreviations. The first abbre-
viation claims that variablea contains a character, that is, a string of length precisely one. The formula
consists ofa="x" for each encoded characterx, separated by| and surrounded by(and) . We do
not write it in full but instead write· · · to denote the missing part.

Char(a) :⇔ (a="a" | a="b" | · · · | a="<")

The abbreviation was written for variablea , but clearly a similar abbreviation can be written for any
variable. So we may use the abbreviationsChar(b) , Char(g75) , and so on.

The next abbreviation claims thatx is a substring ofy . That is, there are stringsu and v such
that string y is the same as stringu followed by string x followed by string v .

Sb(x, y) :⇔ (Eu:Ev: y=uxv)

When this abbreviation is used withu in the place ofx , some other variable has to be used instead of
u on the right hand side. That is,Sb(u, y) does not abbreviate(Eu:Ev: y=uuv) but, for instance,
(Ez:Ev: y=zuv) . The incorrect interpretation(Eu:Ev: y=uuv) contains aname clash, that
is, the variablex that is distinct fromu in y=uxv in the definition of Sb(x, y) , became the same
variable asu . In general, when interpreting an abbreviation containinga subformula of the formAx:π

Antti Valmari 359

or Ex:π , it may be necessary to replacex by some other variable, to avoid name clashes. Further
information on this issue can be found in textbooks on logic,in passages that discuss “bound” and “free”
variables.

Please keep in mind that abbreviations are not part of our language. They are only a tool for com-
pactly referring to certain formulae that are too long to be written in full. Each string that uses abbre-
viations denotes the string that is obtained by replacing the abbreviations by their definitions, changing
variable names in the definitions as necessary to avoid name clashes.

4 A Formula Expressing the Encoding of Characters

In this section we show that a formulaQ(x, y) can be written that claims thaty is the encoding ofx ,
that is, y is obtained by replacing\0 for each \ and \1 for each " in x . We start with a formula
claiming that y is obtained by replacingv for one instance ofu inside x .

RepOne(x, u, v, y) :⇔ (Ee:Ef: x=euf & y=evf)

The next formula claims that, under certain assumptions mentioned below,y is obtained by replac-
ing v for every instance ofu inside x . It converts x to y by making the replacements one by one.
It assumes thatv has no characters in common withu , so that no fake instances ofu can occur in-
side or overlappingv . Furthermore, it assumes that different instances ofu in x do not overlap, so
that the result is independent of the order in which the instances are chosen for replacement. It also as-
sumes thatp (for punctuation) is a string that does not occur insidex , y , or any intermediate result.
Furthermore,p cannot overlap with itself. We will later see howp is constructed.

The sequence of replacements is represented bys as a sequence of the formpx1px2p· · ·pxnp ,
wherex1 = x , xn = y , andx2, . . . , xn−1 are the intermediate results. The requirements onp guar-
antee thats can be decomposed into this form in precisely one way. The parts (Et: s=pxpt) and
(Et: s=tpyp) guarantee thatx1 = x andxn = y . Thanks to~Sb(u, y) , everyinstance ofu is re-
placed. The rest of the formula picks eachxi other than the last and claims thatxi+1 is obtained from it
by making one replacement. Thexi is represented byh andxi+1 by k . They are distinguished by not
containing p , being preceded byp , being separated from each other byp , and being succeeded by
p .

RepAll(x, u, v, y, p) :⇔ (Es:

(Et: s=pxpt) & (Et: s=tpyp) & ~Sb(u, y)
& Ah:Ak: (Sb(phpkp, s) & ~Sb(p, h) & ~Sb(p, k)) -> RepOne(h, u, v, k)

)

To emphasize that abbreviationsare notbut stand forstrings in our language, and that the strings
they stand for are often not easy to comprehend, we now show the string thatRepAll(x, u, v, y, p)
stands for. The real string is too long to be shown on one line,so we split it on two lines.

(Es:(Et:s=pxpt)&(Et:s=tpyp)&~(Ez:Ev:y=zuv)&Ah:Ak:((Eu:Ev:s=uphpkpv)&

~(Eu:Ev:h=upv)&~(Eu:Ev:k=upv))->(Ee:Ef:h=euf&k=evf))

To obtain the punctuation stringp , we first make variableq contain some sequence of:-characters
that does not occur insidex . Such a string exists, because the string consisting ofn+1 :-characters
meets the requirements, whenn is the length ofx .

Punct(x, q) :⇔ ((Aa: Sb(a, q) & Char(a) -> a=":") & ~Sb(q, x))

360 Character String proof of First Incompleteness Theorem

The p used above is obtained as"+"q , that is, by adding a+-character to the front of the sequence
of :-characters in variableq . So the value ofp is +::::: or some similar sequence with a different
number of:-characters. It clearly neither overlaps with itself nor occurs within x .

To guarantee thatu and v do not have characters in common, we first convert each instance of
\ to "*"q , that is, to some string of the form*:::· · ·: that does not occur insidex . Then each
*:::· · ·: is converted to\0 , then each" to *:::· · ·: , and finally each*:::· · ·: to \1 . In the
first conversion,u consists of a single character, so different instances ofu do not overlap. The same
holds for the third conversion. In the second and fourth conversion, u is *:::· · ·: , which clearly
cannot overlap with itself. Furthermore,+:::· · ·: does not overlap and is not inside*:::· · ·: , so p

cannot occur iny or any intermediate result.
We are now ready to writeQ(x, y) . In it, the value\ is represented by the string literal"\0" ,

\1 by "\01" , and so on.

Q(x, y) :⇔ (Eq: Punct(x, q)
& Ex1: RepAll(x, "\0", "*"q, x1, "+"q)
& Ex2: RepAll(x1, "*"q, "\00", x2, "+"q)
& Ex3: RepAll(x2, "\1", "*"q, x3, "+"q)
& RepAll(x3, "*"q, "\01", y, "+"q))

5 Encoding Turing Machine Computations

Turing machines are a formal model of computation. In this section we show that for each Turing
machine, there is a formulaPvble(x) that yields true if and only if the machine eventually halts,given
x as the input. We call itPvble(x) , because the Turing machine is thought to represent some proof
system such that it halts if and only ifx can be proven.

Details of the definition of Turing machines vary in the literature. To start our definition, we in-
troduce a new symbol⊔, calledblank. Let b-stringsbe defined similarly to strings, but they may also
contain blanks. So our Turing machines use 54 symbols: 53 characters and the blank. A Turing machine
consists of acontrol unit, aread/write head, and atapethat consists of an infinite number ofcells in both
directions. Each cell on the tape may contain any character or ⊔. When we say that some part of the tape
is blank, we mean that each cell in it contains⊔. At any instant of time, the read/write head is on some
cell of the tape. During a computation step, the read/write head rewrites the content of the cell and then
possibly moves to the previous or the next cell, as dictated by the control unit and the contents of the cell
before the step.

The control unit consists ofstatesandrules. The states are numbered from 0 tor, for some positive
integerr. State 0 is called thefinal state. There are 54r rules, one for each stateq other than 0 and for
each characterc and⊔. A rule is of the form(c,q) 7→ (c′,q′,d), wherec′ is any character or⊔, q′ is
any state, andd is either L , R , or N . The meaning of the rule is that if the control unit is in stateq
and the tape cell under the read/write head containsc, then the machine writesc′ on the cell, moves the
read/write head one cell to the left or right or does not move it, and the control unit enters its stateq′. If
the control unit enters state 0, then computation halts.

Initially, the tape contains a finite sequence of characters, written somewhere on the tape. This finite
sequence is the input to the machine. The rest of the tape is initially blank. Initially, the read/write head
is on the first input character (or just anywhere, if the inputis empty), and the control unit is in state 1.

At any instant of time, let theright b-string mean the content of the cell under the read/write head,
the content of the next cell to the right, and so on, up to and including the last character on the tape. If

Antti Valmari 361

the cell under the read/write head and all cells to the right are blank, then the right b-string is empty. So
the last symbol of a non-empty right b-string is always different from⊔. Let theleft b-stringbe defined
similarly, but starting at the cell immediately to the left of the read/write head, and proceeding to the left
until the first character on the tape is taken. Again, the leftb-string may be empty, and if it is not, then
its last symbol is not⊔. The contents of the tape as a whole are an infinite sequence ofblanks extending
to the left, then the left b-string reversed, then the right b-string, and then an infinite sequence of blanks
extending to the right. Initially, the left b-string is empty and the right b-string contains the input.

A halting computation corresponds to a sequence(λ0,q0,ρ0), (λ1,q1,ρ1), . . . ,(λn,qn,ρn), whereλ0

is the empty string,q0 = 1, ρ0 is the input string,qn = 0, qi 6= 0 when 0≤ i < n, and each(λi,qi ,ρi)
for 1≤ i ≤ n is obtained from(λi−1,qi−1,ρi−1) as follows. Hereλi is the left b-string andρi is the right
b-string afteri computation steps. Letc= ⊔ if ρi−1 is empty, and otherwise letc be the first symbol of
ρi−1. There is a unique rule of the form(c,qi−1) 7→ (c′,q′,d). We haveqi = q′. The b-stringsλi and
ρi are obtained by replacingc′ for the first symbol ofρi−1, with special treatment of the case thatρi−1

is empty orc′ = ⊔; and then possibly moving the first symbol of the resulting b-string to the front of
λi−1, or moving a symbol in the opposite direction, again with some special cases. The special cases are
discussed in more detail later in this section. The moving ofa symbol from the right b-string to the left
b-string models the movement of the read/write head one cellto the right, and the moving of a symbol in
the opposite direction models the movement of the read/write head one cell to the left.

We want to model this sequence in our language on strings. Thestatesqi are represented simply by
writing their numbers using the digits0 , 1 , . . . , 9 in the usual way. That is, state number 32768 is
represented by32768 . The b-stringsλi andρi are more difficult, because they may contain blanks,
but there is no blank character in our language. So we represent ⊔ with \2 and \ with \0 . To
simplify later constructions by remaining systematic withthe encoding in Section 3, we also represent
" with \1 . All other characters represent themselves. To summarize,\ , " , and⊔ on the tape of
the Turing machine are represented inλi andρi by the values\0 , \1 , and \2 , whose string literal
representations are"\00" , "\01" , and "\02" . In this sense,\ and " become doubly encoded.

So we define anencoded symbolas \0 , \1 , \2 , or any other character than\ and " . We
need not (and could not) say that⊔ is not an encoded symbol, because⊔ is not a character at all.

EChar(e) :⇔
(e="\00" | e="\01" | e="\02" | Char(e) & e/="\0" & e/="\1")

The next formula expresses thaty is obtained fromx by replacing e for its first encoded symbol,
with special treatment of the empty strings and the blank. Ifx consists of at most one encoded symbol,
x as a whole is overwritten. The result is the empty string ife is the encoded blank, and otherwise the
result is e . If x consists of more than one encoded symbols, ordinary replacement occurs.

Write(x, e, y) :⇔ (

(x="" | EChar(x)) & (e="\02" & y="" | e/="\02" & y=e)

| (Ef:Ez: x=fz & EChar(f) & z/="" & y=ez)

)

Let the encoded form of the left b-string be calledleft string, and similarly with the right b-string.
The next formula expresses the removal of the first encoded symbol from one string and its addition to the
front of another string, again with special treatment of theempty strings and the blank. The variablesf1
and f2 contain the values of the from-string before and after the operation, andt1 and t2 contain
the to-string. The encoded blank\2 is never added to the front of an empty to-string, to maintainthe
rule that the b-strings never end with the blank. If the from-string is empty, then the operation behaves
as if the encoded blank were extracted from it.

362 Character String proof of First Incompleteness Theorem

Move(f1, t1, f2, t2) :⇔ (

(f1="" & t1="" & f2="" & t2="")

| (f1="" & t1/="" & f2="" & t2="\02"t1)

| (f1="\02"f2 & t1="" & t2="")

| (Ee: EChar(e) & f1=ef2 & (e/="\02" | t1/="") & t2=et1)

)

Next we introduce a formula for each rule(c,q) 7→ (c′,q′,d). Let ċ= \0 , if c= \ ; ċ= \1 , if c= " ;
ċ= \2 , if c= ⊔ ; and otherwise ˙c= c. Let c̈= \00 , if c= \ ; c̈= \01 , if c= " ; c̈= \02 , if c= ⊔ ;
and otherwise ¨c= c. We define ˙c′ andc̈′ similarly. Let q̇ denoteq written using 0 , 1 , . . . , 9 in the
usual way, and similarly with ˙q′.

We consider first the case whered= N. The first part of the formula checks that the rule triggers, that
is, the current state isq and the symbol under the read/write head isc, taking into accout the possibility
that the right string is empty. The second part of the formulagives the state of the control unit, the right
string, and the left string new values as dictated by the rule.

Rulec′,q′,N
c,q (l1, r1, q1, l2, r2, q2) :⇔ (

q1="q̇" & (r1="" & "c̈"="\02" | Ex: r1="c̈"x)

& q2="q̇′" & Write(r1, "c̈′", r2) & l2=l1

)

Rules withd = R or d = L are similar, but the moving of the read/write head is also represented.

Rule
c′,q′,R
c,q (l1, r1, q1, l2, r2, q2) :⇔ (

q1="q̇" & (r1="" & "c̈"="\02" | Ex: r1="c̈"x)

& q2="q̇′" & Er: Write(r1, "c̈′", r) & Move(r, l1, r2, l2)
)

Rulec′,q′,L
c,q (l1, r1, q1, l2, r2, q2) :⇔ (

q1="q̇" & (r1="" & "c̈"="\02" | Ex: r1="c̈"x)

& q2="q̇′" & Er: Write(r1, "c̈′", r) & Move(l1, r, l2, r2)
)

Let λ̈i andρ̈i be obtained fromλi andρi by replacing each symbolc in them withc̈. The computation
of the Turing machine is represented as a stringc of the form

"λ̈0"ρ̈0\3q̇0"λ̈1"ρ̈1\3q̇1"· · ·"λ̈n"ρ̈n\3q̇n" .
Because the ˙qi consist of just digits and thëλi andρ̈i have been encoded," and \3 cannot occur inside
them. So they can be used for separating theλ̈i , ρ̈i , andq̇i from each other.

We are ready to write the formula that claims that the Turing machine halts on inputx . It says
that there is a sequencec that models the computation. First,c starts with the empty left string, the
encoded input string as the right string, and 1 as the state. Second, c ends with 0 as the state. Finally,
each "λ̈i"ρ̈i\3q̇i"λ̈i+1"ρ̈i+1\3q̇i+1" satisfies some rule. Thatq1 and q2 do not pick more fromc

than they should follows from the fact that the rules check that they consist of digits only.

Pvble(x) :⇔ (Ec:

(Et:Ey: Q(x, y) & c="\1\1"y"\031\1"t) & (Et: c=t"\030\1")

& (Al1:Ar1:Aq1: Al2:Ar2:Aq2:

~Sb("\1", l1) & ~Sb("\1", r1) & ~Sb("\1", l2) & ~Sb("\1", r2)
& Sb("\1"l1"\1"r1"\03"q1"\1"l2"\1"r2"\03"q2"\1", c)

-> (Rule1 (l1, r1, q1, l2, r2, q2)
| · · · | Rule54r (l1, r1, q1, l2, r2, q2)))

)

Antti Valmari 363

6 Incompleteness of Theories of Finite Character Strings

In this section we prove that any recursively enumerable proof system for our language on strings either
fails to prove some true sentence, or proves some false sentence.

Please remember thatQ(x, y) and Pvble(x"\1"y"\1") are abbreviations used in this paper to
improve readability, and not as such strings in our language. They stand for some strings in our language
that are too long to be written explicitly in this paper. Eachof these two long strings has a corresponding
encoded string, which is obtained by replacing\0 for each \ and \1 for each " . We denote them
with Q̇(x, y) and Ṗvble(x"\1"y"\1") . Also remember thatQ(x, y) claims thaty is the encoded
form of x . Therefore,

Q(Q(x, y), Q̇(x, y)) and Q(Pvble(x"\1"y"\1"), Ṗvble(x"\1"y"\1")) hold.

We can now write Gödel’s famous self-referential sentencein our framework as follows.

Ex:Ey: Q(x, y) & ~Pvble(x"\1"y"\1") & x=

"Ex:Ey: Q̇(x, y) & ~Ṗvble(x"\1"y"\1") & x="

Let α be any string andβ be its encoded form. Thenx="β" says that the variablex has the valueα .
Therefore, the last part of Gödel’s sentence says that the value of x is the following string, withQ(x, y)
and Pvble(x"\1"y"\1") replaced by the strings they stand for:

Ex:Ey: Q(x, y) & ~Pvble(x"\1"y"\1") & x=

This and Q(x, y) together say that the value ofy is the following string, with Q̇(x, y) and
Ṗvble(x"\1"y"\1") replaced by the strings they stand for:

Ex:Ey: Q̇(x, y) & ~Ṗvble(x"\1"y"\1") & x=

The string literal"\1" denotes the string" . Thus the value ofx"\1"y"\1" is the value of
x followed by " followed by the value ofy followed by " . Remembering that spaces and divi-
sion to lines are only for simplifying reading and not part ofthe real string, we see that the value
of x"\1"y"\1" is Gödel’s sentence. Furthermore,~Pvble(x"\1"y"\1") claims thatx"\1"y"\1"
is not provable. To summarize, the other parts of Gödel’s sentence makex"\1"y"\1" be Gödel’s sen-
tence, and~Pvble(x"\1"y"\1") says that it is not provable. Altogether, Gödel’s sentenceclaims that
Gödel’s sentence is not provable.

The formula Pvble() specifies a proof system for strings. Gödel’s sentence is not a single sentence,
instead, each proof system for strings has its ownPvble() and thus its own Gödel’s sentence. Gödel’s
sentence of a proof system for strings claims that Gödel’s sentence of that system is not provable in that
system.

The Turing machine that halts immediately independently ofthe input represents a proof system for
strings that proves every sentence. This proof system is useless, because for any sentence that it proves,
it also proves its negation. So it proves many false sentences. However, it serves as an example of a proof
system that proves its own Gödel’s sentence.

Consider now any proof system for strings that proves its ownGödel’s sentence. Because the sen-
tence claims that the system does not prove it, the system hasproven a false sentence. Consider then any
proof system for strings that does not prove its own Gödel’ssentence. Its Gödel’s sentence thus expresses
a true claim, and is thus a true sentence that the system does not prove.

We have proven the following.

Theorem 1 Each recursively enumerable proof system for the first-order language on finite character
strings with string literals, concatenation, and=, either proves a false sentence or fails to prove a true
sentence.

364 Character String proof of First Incompleteness Theorem

That is, there is no recursively enumerable proof system forstrings that proves precisely the true sen-
tences and nothing else. No recursively enumerable proof system for strings can precisely capture the
true claims on strings that can be expressed in our language.This is the incompleteness theorem for
strings.

7 Incompleteness of Natural Number Arithmetic

In this section we show that natural number arithmetic can simulate strings and their concatenation, and
conclude that also natural number arithmetic is incomplete.

Our language on natural number arithmetic uses the same characters as our language on strings in
Section 3. Anumber literalis either 0 or any non-empty finite sequence of digits that does not startwith
0 . A variable is any string that starts with a lower case letter and then consists of zero or more digits.
The value of a variable is a natural number. Atermis a variable, a number literal, or any of the following,
wheret andu are terms:(t) , t+u , or t*u . The parentheses are used in the familiar way,+ denotes
addition, and* denotes multiplication. Furthermore,* has higher precedence than+ , that is, t+u*v
denotes the same ast+(u*v) . Atomic propositions and formulae are defined like in Section 3.

We now introduce a one-to-one correspondence between strings and natural numbers. Letp= 53,
and let the 53 characters in the character set be given numbers from 1 to 53. Ifc′i is a character, then let
its number be denoted withci . The stringc′1c′2 · · ·c

′
n has the number

num(c′1c′2 · · ·c
′
n) = c1pn−1+c2pn−2+ . . .+cn−2p2+cn−1p+cn .

So the empty string has the number 0, and the number of any string consisting of precisely one character
is the number of that character. Letιn denote the string of lengthn whose every character has number 1.
We havenum(ιn) = pn−1+ . . .+ p+1, andι0 is the empty string.

We have to show that this mapping is indeed one-to-one. To do that, for each stringc′1c′2 · · ·c
′
n we

introduce asuccessorand prove that the number of the successor is always one bigger than the number
of the string itself. Ifci = p for every 1≤ i ≤ n, then the successor is defined asιn+1. We have

num(ιn+1)
− num(c′1c′2 · · ·c

′
n)

=
pn + pn−1 + . . . + p+ 1

− ppn−1 − ppn−2 − . . . − p·1
= 1 .

In the opposite case, at least one ofc1, . . . ,cn is not p. Let j be the last such index, that is, 1≤ j ≤ n,
c j 6= p, andci = p when j < i ≤ n. The successor is defined as the stringd′

1d′
2 · · ·d

′
n, wheredi = ci when

1≤ i < j, d j = c j +1, anddi = 1 when j < i ≤ n. We have

num(d′
1d′

2 · · ·d
′
n)−num(c′1c′2 · · ·c

′
n) =

c1pn−1 + . . . + c j−1pn− j+1 + (c j +1)pn− j + pn− j−1 + . . . + p+ 1
− c1pn−1 − . . . − c j−1pn− j+1 − c j pn− j − ppn− j−1 − ppn− j−2 − . . . − p·1

= 1 .

We see that the empty string, its successor, the successor ofthat string, and so on are in one-to-one
correspondence with the natural numbers 0, 1, 2, and so on. Itremains to be proven that this sequence
of strings covers all strings. It does not contain any stringtwice, because the corresponding natural
numbers are all distinct. So it contains infinitely many distinct strings. For anyn, there is only a finite
number of strings of lengthn. So the sequence cannot get stuck at any lengthn. The only case where the
successor is of different length than the string itself is when the successor isιn+1. So the sequence covers
at leastι0, ι1, ι2, and so on. Betweenιn andιn+1, including ιn but notιn+1, the sequence goes through

Antti Valmari 365

num(ιn+1)−num(ιn) = pn strings of lengthn. The number of strings of lengthn is pn, so the sequence
goes through all of them.

We have shown that our correspondence between strings and natural numbers is one-to-one.
Our next task is to represent concatenation of strings as a formula on their numbers. The definition

of numyields immediately

num(c′1 · · ·c
′
nd′

1 · · ·d
′
m) = pmnum(c′1 · · ·c

′
n)+num(d′

1 · · ·d
′
m) .

To present this in our language, we have to extractpm from num(d′
1 · · ·d

′
m) only using the language.

Let y= num(d′
1 · · ·d

′
m). We havenum(ιm) ≤ y< num(ιm+1), that is,pm−1+ . . .+1≤ y< pm+ . . .+1.

Multiplying this by p−1 we getpm−1≤ y(p−1) < pm+1−1, to which addingy+1 yields pm+y≤
yp+1< pm+1+y. If m′ > m, thenpm′

+y≤ yp+1 does not hold, and ifm′ <m, thenyp+1< pm′+1+y
does not hold. Therefore,k= pm if and only if k is a power ofp andk+y≤ yp+1< pk+y.

A prime number is a natural number greater than 1 that cannot be represented as a product of two
natural numbers greater than 1. Ifp is a prime number andpm = xy, then, for some 0≤ i ≤ m, x = pi

andy= pm−i. Therefore, and because 53 is a prime number, the property that k is a power of 53 can be
formulated as follows.

Pow53(k) :⇔ (Ax:Ay: k=x*y -> x=1 | Ez: x=53*z)

Thatx< y can be expressed as follows.

lt(x, y) :⇔ (Ei: y=x+i+1)

Based on these considerations, ifx and y are the numbers of two strings, then the number of the
concatenation of the strings is obtained as follows.

Cat(x, y, z) :⇔
(Ek: Pow53(k) & lt(y*53+1, 53*k+y) & ~lt(y*53+1, k+y) & z=k*x+y)

Atomic propositions in our language on strings are of the form t1 · · · tm=u1 · · ·un or t1 · · · tm/=u1 · · ·un ,
wheret1, . . . ,tm, u1, . . . ,un are variables or string literals. They can be replaced as shown below for = ,
where t and u are two variable names that are different from theti andu j .

(Et:Eu: t=u

& (Eu: Cat(u, tm, t) & Et: Cat(t, tm−1, u) & Eu: Cat(u, tm−2, t) & . . .)

& (Et: Cat(t, un, u) & Eu: Cat(u, un−1, t) & Et: Cat(t, un−2, u) & . . .)

)

There is a Turing machineT1 that inputs a sentence in the language on strings, replaces each string
literal by its number, and replaces each atomic propositionas shown above. (We could have made this
easier for the Turing machine but harder for the reader by, inSection 3, not allowing more than one
character in any string literal, not allowing more than one variable and/or string literal in a term, and
instead declaring that<x+y:z> expresses thatxy=z.) If there is a Turing machineT2 that halts on the
true sentences in the language on natural numbers and fails to halt on false sentences, then there is a
Turing machineT that first runsT1 and then runsT2 on the result. By construction,T halts if and only
if its input string is a true sentence in the language on strings. But we proved in Section 6 that such a
Turing machine does not exist. Therefore,T2 does not exist. We have proven the following.

Theorem 2 Each recursively enumerable proof system for the first-order language on natural numbers
with 0, 1, +, ·, and=, either proves a false sentence or fails to prove a true sentence.

366 Character String proof of First Incompleteness Theorem

8 Versions of G̈odel’s First Incompleteness Theorem

We proved that any recursively enumerable theory of naturalnumbers with zero, one, addition, multipli-
cation, equality, logical and, logical not, and the universal quantifier either proves a false sentence or fails
to prove a true sentence. Although this theorem is widely called Gödel’s first incompleteness theorem,
it falls short of what Gödel presented in [2]. It assumes that the truth or falsehood of a sentence can be
reasonably talked about, even if the theory does not prove either. (When we say that a theory proves a
sentence false, we mean that the theory proves the negation of the sentence.) This assumption has been
criticized. Perhaps for this reason, Gödel went beyond this version. To discuss this, we first make the
following observation.

In the presence of truth and falsehood as we usually considerthem, a sentence and its negation cannot
both be true. Furthermore, for each sentence, either it or its negation is true. A theory isconsistentif and
only if in no case it proves both a sentence and its negation. Atheory iscompleteif and only if in each
case it proves the sentence or its negation. (The word “complete” is used in more than one meaning in
mathematical logic. This is the meaning we use here.) Therefore, if a theory proves only true sentences
and proves all of them, then it is consistent and complete.

The notions of consistency and completeness do not rely on a pre-defined notion of truth of a sen-
tence. However, they do not together mean the same as “provesonly true sentences and proves all of
them”, because it may be that the theory fails to prove a true sentence and instead proves its false nega-
tion. Indeed, there are consistent and complete theories whose language is the same as the language of
natural number arithmetic. An example is obtained by letting 0 denotefalse, 1 denotetrue, + denote
∨, and· denote∧, and by adopting the usual axioms and inference rules of= and propositional logic
together with two special rules: “∀x : P(x) is equivalent toP(0) ·P(1)” and “∃x : P(x) is equivalent to
P(0)+P(1)”. This theory could well be called a first-order theory of truth values. It proves sentences
that are false from the point of view of natural number arithmetic, such as 1+1= 1 (which represents
true∨ true = true). It is a consistent and complete theory, but a wrong theory for natural number arith-
metic although it has the same language.

Another way to look at this is that the replacement of the notions of truth and falsehood by com-
pleteness and consistency disconnect the language from natural numbers, leaving only two uninterpreted
constant symbols 0 and 1, and two uninterpreted binary operator symbols+ and·. The mere fact that the
symbols look familiar does not give them any formal properties. Instead, to make them again have a link
with natural number arithmetic, some axioms and inference rules are needed.

In conclusion, the right liberation of the incompleteness result from the notion of pre-defined truth
is that no “sufficiently strong” theory of natural number arithmetic is consistent and complete. Here
“sufficient strength” has two aspects. First, the notion of first-order theories has a standard set of logical
axioms and inference rules. It is assumed. Second, enough properties of natural numbers are assumed
in the form of axioms, to ensure that the theory indeed is a theory of natural numbers instead of, say,
the theory of truth values sketched above. Not much is needed. A rather weak axiom system known as
Robinson arithmeticsuffices [10, 12]. It is otherwise the same as the well-known Peano arithmetic, but
the induction axiom has been replaced by the axiom “each natural number is either 0 or the result of
adding 1 to some natural number.”

Gödel did not prove the theorem in the form stated above. Instead of consistency, he used the stronger
notion calledω-consistency. A theory is notω-consistent if and only if it is not consistent or, for some
formulaP with one free variablex, it proves both∃x : P(x) and each one of¬P(0), ¬P(1), ¬P(2),
That a theory proves each one of¬P(0), ¬P(1), ¬P(2), . . . does not necessarily imply that it proves
their conjunction∀x : ¬P(x), because no proof can go through an infinite number of cases one by one

Antti Valmari 367

(proofs must be finite), and a common pattern that would facilitate proving them simultaneously in a
single proof does not necessarily exist. Even so, intuitionsays that if none ofP(0), P(1), P(2), and so
on holds, then there is nox such thatP(x) holds, that is,¬∃x : P(x) holds. So a healthy theory of natural
number arithmetic must be not only consistent, but alsoω-consistent.

Gödel’s result was that such a theory cannot be complete. Let Prf(x,y) denote the claim that natural
numberx is the encoding of a proof of the sentence encoded by natural numbery. This claim can be
formulated in natural number arithmetic. Furthermore, ifPrf(x,y) holds, thenPrf(x,y) can be proven,
and if¬Prf(x,y) holds, then¬Prf(x,y) can be proven. Together with the requirement of “effectivity”, this
implies that the proof system must be recursive in the sense of Section 2. That is, there is a mechanical
test which, for any string, tells whether it is a valid proof,where also the answer “no” is given explicitly
instead of just never answering anything. Although this assumption is strictly stronger than recursive
enumerability, proof systems typically satisfy it.

The proof system must also facilitate the simple reasoning steps in the sequel.
Gödel’s self-referential sentence is¬∃x : Prf(x,g), whereg is its own encoding as a natural number.

Assume first that the proof system proves¬∃x : Prf(x,g). Then there is a natural numberp that is
the encoding of some proof of¬∃x : Prf(x,g). By the strength assumption above, the proof system
provesPrf(p,g). From it the proof system can conclude∃x : Prf(x,g). So it proves both∃x : Prf(x,g)
and its negation, and is thus not consistent. The case remains where the proof system does not prove
¬∃x : Prf(x,g). Then no natural number is the encoding of a proof of¬∃x : Prf(x,g). By the strength
assumption above, the proof system proves¬Prf(0,g), ¬Prf(1,g), and so on. If the proof system is
ω-consistent, then it does not prove∃x : Prf(x,g). So it leaves both∃x : Prf(x,g) and¬∃x : Prf(x,g)
without a proof, and is thus incomplete.

Later Rosser found a modification to the proof that allows to replaceω-consistency with con-
sistency [11]. We call his self-referential sentence R. It is ∀x : (Prf(x, r) → ∃y : y ≤ x∧ Prf(y, r̄)),
wherer is the encoding of R and ¯r is the encoding of¬R. If p is the encoding of a proof of R, then
the system proves R,Prf(p, r), and∃y : y ≤ p∧ Prf(y, r̄). If such any indeed exists, then the proof
whose encoding isy yields ¬R, so the system proves a contradiction. Otherwise, the system proves
¬Prf(0, r̄)∧¬Prf(1, r̄)∧ ·· ·∧¬Prf(p, r̄), yielding¬∃y : y≤ p∧Prf(y, r̄), a contradiction again.ω-con-
sistency is not needed, because¬Prf(0, r̄)∧ ·· ·∧¬Prf(p, r̄) is a finite expression and thus a sentence.

If p is the encoding of a proof of¬R, then the system provesPrf(p, r̄) and∃x : (Prf(x, r)∧¬∃y :
y ≤ x∧Prf(y, r̄)), yielding ∃x : Prf(x, r) ∧¬(p ≤ x). Like above, the system proves one or another
contradiction, depending on whether any of 0, 1, . . . ,p−1 is the encoding of a proof of R.

In conclusion, if the system is consistent, then it proves neither R nor¬R, and is thus incomplete.
The above proof of Rosser’s theorem uses the symbol≤ that is not part of the first-order language

on arithmetic. It can be expressed as mentioned in Section 2.The crucial property is that ifc is a natural
number constant, then no other natural numbers than 0, 1, . . ., c have the properties thatx ≤ c and
¬(c+1≤ x). This can be proven from Peano arithmetic, but in the case of other axiom systems, specific
axioms on≤ may be needed.

In his original publication [2] Gödel also sketched a proofof a corollary that is now known as Gödel’s
second incompleteness theorem. It says that natural numberarithmetic does not prove its own consis-
tency, if it indeed is consistent. What is more, no recursiveconsistent theory that contains natural number
arithmetic proves its own consistency. The significance of this result is the following. Some mathemat-
ical principles are easy to accept, while some others have raised doubts. The questionable principles
would become more acceptable, if, with a proof that only useseasily acceptable principles, they were
proven to not yield contradictions. Gödel’s second incompleteness theorem rules out perhaps not all, but
at least the most obvious approaches to such proofs.

368 Character String proof of First Incompleteness Theorem

9 Related Work and Conclusions

We have shown that any recursively enumerable first-order theory of finite character strings with concate-
nation and equality either proves a false sentence or fails to prove a true sentence. From this we derived
a similar result about natural number arithmetic with addition, multiplication, and equality, obtaining the
“either proves a false sentence or fails to prove a true sentence” version of Gödel’s first incompleteness
theorem.

A halting testeris a Turing machine that reads any Turing machineM together with its inputI and
tells whetherM halts, if executed onI . In addition to inventing his machines, Alan Turing proved that
there is no halting tester [13]. (The modern version of this proof is very simple.)

Our proof of Gödel’s theorem is based on encoding each claimof the form “M halts onI ” as a
sentence in natural number arithmetic. It is not the first such proof. If each encoded sentence “M halts on
I ” or its negation were provable by a system that only proves true sentences, then a halting tester would be
obtained by letting a Turing machine test all finite character strings until it finds a proof of halting or non-
halting. Therefore, the system has an unprovable true sentence. Essentially the same reasoning can be
expressed in another words by pointing out that the set of provable sentences is recursively enumerable,
but the set of true sentences is not recursively enumerable,because the true sentences of the form “M
does not halt onI ” cannot be enumerated. So truth and provability do not match. This proof is given in,
e.g., [4, p. 354] (leaving the (A) mentioned below as a doublystarred exercise!) and [7, pp. 288–291],
underlies the proof in [8, p. 134], and is at least hinted at in[6, p. 64].

Two major difficult technicalities in Gödel’s proof are (A)to show that reasoning or computation
can be encoded as properties of natural numbers (so-calledGödel numbering), and (B) to give a formula
access to its own number. The proof based on non-existence ofhalting testers makes (B) trivial. It makes
it necessary to check or believe that, givenM andI , a Turing machine can perform the construction in
(A). Fortunately, it is rather obvious.

Because natural number arithmetic has no direct construct for expressing finite sequences of natural
numbers, (A) is surprisingly difficult. To do (A), often the Chinese Remainder Theorem is used. That
brings discussion so far from the main topic that some expositions simply skip the issue. Alternatively,
one may add the exponentiation operatornm to the theory, as was done in [8, p. 135]. In [7], Dexter Kozen
made (A) relatively easy by using a slightly less straighforward representation for halting computations
than we did in Section 5, and treating natural numbers essentially as finite sequences ofp-ary digits,
wherep is a prime. Numbers that were known to be powers ofp, but not known which power, were
used to extract individual digits. Thanks to padding with blanks, the representation of each configuration
during a computation used the same number of digits. As a consequence, there was a numberc such that
if y extracts a digit in a configuration, thenyc extracts the corresponding digit in the next configuration.

Our proof made (A) and (B) easy by doing them in a formalism that is very amenable to them. The
most advanced number-theoretic property needed in the whole proof is that if a number is a power of
prime p, then all its factors other than 1 are divisible byp. The Chinese Remainder Theorem was not
used and the exponentiation operator was not added to the language. Turing machines were referred to
twice: as the basis of the definition of “recursively enumerable proof system”, and as devices that can
perform a simple syntactic transformation.

It seems obvious that the incompleteness of theories of finite character strings can also be proven
with the approach in [4, 7, 8]. Then one may continue like in Section 7. In this combined approach, the
formula Q(x, y) would not be needed (but the computability of (A) by a Turing machine would).

Neil D. Jones has proven the incompleteness of first-order theories of nested lists with concatena-
tion [5, p. 202]. Also this proof is based on the non-existence of halting testers. The counterpart of (A)

Antti Valmari 369

is trivial, because the formalism supports it directly. Nested lists are a strong formalism that can easily
express natural numbers, so this result is not surprising.

Finite character strings with concatenation may at first sight seem a poor formalism: a data type with
infinitely many distinct values could not be much simpler. Onthe other hand, all computation reduces
to the manipulation of finite character strings both in theory (Turing machines) and in practice (files are
finite sequences of bytes). So the incompleteness of first-order theories of finite character strings with
concatenation seems too obvious to be a new result. To prove it, it suffices to cite Gödel and then show
that strings can simulate arithmetic. Such simulations have been studied at least in [1, 9]. However,
neither publication explicitly mentions the incompleteness of strings and, indeed, the author has failed to
find any mention of it in the literature. What is more, in this paper the proof was simplified by simulating
in the opposite direction, that is, by proving the incompleteness of strings directly and then deriving the
incompleteness of arithmetic as a corollary. This idea seems to be new.

Even if it turns out that the approach of this paper is not novel, we hope that the paper helps the
readers understand Gödel’s famous result.

Acknowledgements. This version of the paper has benefited from the good commentsgiven by the
anonymous reviewers.

References

[1] J. Corcoran, W. Frank & M. Maloney (1974):String Theory. J. Symb. Log.39(4), pp. 625–637, doi:10.
2307/2272846.

[2] K. Gödel (1931):Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I.
Monatsh. Math. Phys.38(1), pp. 173–198, doi:10.1007/BF01700692. In German.

[3] D.R. Hofstadter (1979):Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books.

[4] J.E. Hopcroft & J.D. Ullman (1979):Introduction to Automata Theory, Languages and Computation.
Addison-Wesley.

[5] N.D. Jones (1997):Computability and Complexity – From a Programming Perspective. Foundations of
computing series, MIT Press.

[6] S.C. Kleene (1943):Recursive Predicates and Quantifiers. Trans. Amer. Math. Soc.53(1), pp. 41–73,
doi:10.1090/S0002-9947-1943-0007371-8.

[7] D. Kozen (1997):Automata and Computability. Undergraduate texts in computer science, Springer, doi:10.

1007/978-1-4612-1844-9.

[8] C.H. Papadimitriou (1994):Computational Complexity. Addison-Wesley.

[9] W.V. Quine (1946):Concatenation as a Basis for Arithmetic. J. Symb. Log.11(4), pp. 105–114, doi:10.
2307/2268308. Available athttp://projecteuclid.org/euclid.jsl/1183395170.

[10] R.M. Robinson (1950):An Essentially Undecidable Axiom System. In: Proceedings of the International
Congress of Mathematics 1950, pp. 729–730.

[11] J.B. Rosser (1936):Extensions of Some Theorems of Gödel and Church. J. Symb. Log.1(3), pp. 87–91,
doi:10.2307/2269028. Available athttp://projecteuclid.org/euclid.jsl/1183142131.

[12] A. Tarski, A. Mostowski & R.M. Robinson (1953):Undecidable Theories. North Holland.

[13] A. Turing (1936):On Computable Numbers, With an Application to the Entscheidungsproblem. Proceedings
of the London Mathematical Society42, pp. 230–265. Correction in 43 (1937), 544–546.

http://dx.doi.org/10.2307/2272846
http://dx.doi.org/10.2307/2272846
http://dx.doi.org/10.1007/BF01700692
http://dx.doi.org/10.1090/S0002-9947-1943-0007371-8
http://dx.doi.org/10.1007/978-1-4612-1844-9
http://dx.doi.org/10.1007/978-1-4612-1844-9
http://dx.doi.org/10.2307/2268308
http://dx.doi.org/10.2307/2268308
http://projecteuclid.org/euclid.jsl/1183395170
http://dx.doi.org/10.2307/2269028
http://projecteuclid.org/euclid.jsl/1183142131

	1 Introduction
	2 Informal Background
	3 A First-Order Language on Finite Character Strings
	4 A Formula Expressing the Encoding of Characters
	5 Encoding Turing Machine Computations
	6 Incompleteness of Theories of Finite Character Strings
	7 Incompleteness of Natural Number Arithmetic
	8 Versions of Gödel's First Incompleteness Theorem
	9 Related Work and Conclusions

