
Z. Ésik and Z. Fülöp (Eds.): Automata and Formal Languages 2014 (AFL 2014)
EPTCS 151, 2014, pp. 94–108, doi:10.4204/EPTCS.151.6

c© M. Barash, A. Okhotin
This work is licensed under the
Creative Commons Attribution License.

Grammars with two-sided contexts∗

Mikhail Barash
Department of Mathematics and Statistics, University of Turku, Turku FI-20014, Finland

Turku Centre for Computer Science, Turku FI-20520, Finland

mikbar@utu.fi

Alexander Okhotin
Department of Mathematics and Statistics, University of Turku, Turku FI-20014, Finland

alexander.okhotin@utu.fi

In a recent paper (M. Barash, A. Okhotin, “Defining contexts in context-free grammars”, LATA
2012), the authors introduced an extension of the context-free grammars equipped with an operator
for referring to the left context of the substring being defined. This paper proposes a more general
model, in which context specifications may be two-sided, that is, both the left and the right contexts
can be specified by the corresponding operators. The paper gives the definitions and establishes the
basic theory of such grammars, leading to a normal form and a parsing algorithm working in time
O(n4), wheren is the length of the input string.

1 Introduction

The context-free grammars are a logic for representing the syntax of languages, in which the properties
of longer strings are defined by concatenating shorter strings with known properties. Disjunction of
syntactic conditions is represented in this logic as multiple alternative rules defining a single symbol.
One can further augment this logic with conjunction and negation operations, leading toconjunctive
grammars[13] and Boolean grammars[15]. These grammars are context-free in the general sense
of the word, as they define the properties of each substring independently of the context, in which it
occurs. Furthermore, most of the practically important features of ordinary context-free grammars, such
as efficient parsing algorithms, are preserved in their conjunctive and Boolean variants [15, 18]. These
grammar models have been a subject of recent theoretical studies [1, 8, 10, 12, 24].

Not long ago, the authors [3, 4] proposed an extension of the context-free grammars with special
operators for expressing the form of theleft context, in which the substring occurs. For example, a rule
A → BC& ✁D asserts that every string representable asBC in a left context of the form described by
D therefore has the propertyA. These grammars were motivated by Chomsky’s [6, p. 142] well-known
idea of a phrase-structure rule applicable only in some particular contexts. Chomsky’s own attempt to
implement this idea by string rewriting resulted in a model equivalent to linear-space Turing machines, in
which the “nonterminal symbols”, meant to represent syntactic categories, could be freely manipulated
as tape symbols. In spite of the name “context-sensitive grammars”, the resulting model was unsuitable
for describing the syntax of languages, and thus failed to represent the idea of a rule applicable in a
context.

Taking a new start with this idea, the authors [4] definedgrammars with one-sided contexts, follow-
ing the logical outlook on grammars, featured in the work of Kowalski [11, Ch. 3] and of Pereira and

∗Supported by the Academy of Finland under grant 257857.

http://dx.doi.org/10.4204/EPTCS.151.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

M. Barash, A. Okhotin 95

Warren [19], and later systematically developed by Rounds [21]. A grammar defines the truth value
of statements of the form “a certain string has a certain property”, and these statements are deduced
from each other according to the rules of the grammar. The resulting definition maintains the underlying
logic of the context-free grammars, and many crucial properties of grammars are preserved: grammars
with one-sided contexts have parse trees, can be transformed to a normal form and have a cubic-time
parsing algorithm [4]. However, the model allowed specifying contexts only on one side, and thus it
implemented, so to say, only one half of Chomsky’s idea.

This paper continues the development of formal grammars with context specifications by allowing
contexts in both directions. The proposedgrammars with two-sided contextsmay contain such rules as
A→ BC& ✁D& ✄E, which define any substring of the formBC preceded by a substring of the formD
and followed by a substring of the formE. If the grammar contains additional rulesB→ b, C→ c, D→ d
andE → e, then the above rule forA asserts that a substringbc of a stringw = dbcehas the property
A. However, this rule will not produce the same substringbc occurring in another stringw′ = dbcd,
because its right context does not satisfy the conjunct✄E. Furthermore, the grammars allow expressing
the so-calledextended right context(Qα), which defines the form of the current substring concatenated
with its right context, as well as the symmetrically definedextended left context(Pα).

In Section 2, this intuitive definition is formalized by deduction of propositions of the formA
(

u〈w〉v
)

,
which states that the substringw occurring in the context betweenu andv has the propertyA, whereA is
a syntactic category defined by the grammar (“nonterminal symbol” in Chomsky’s terminology). Then,
each rule of the grammar becomes a schema for deduction rules, and a stringw is generated by the
grammar, if there is a proof of the propositionS

(

ε〈w〉ε
)

. A standard proof tree of such a deduction
constitutes a parse tree of the stringw.

The next Section 3 presents basic examples of grammars with two-sided contexts. These examples
model several types of cross-references, such as declaration of identifiers before or after their use.

The paper then proceeds with developing a normal form for these grammars, which generalizes
the Chomsky normal form for ordinary context-free grammars. In the normal form, every rule is a
conjunction of one or morebase conjunctsdescribing the form of the current substring (either as a
concatenation of the formBC or as a single symbola), with any context specifications (✁D, PE, QF,
✄H). The transformation to the normal form, presented in Section 4, proceeds in three steps. First, all
rules generating the empty string in any contexts are eliminated. Second, all rules with an explicit empty
context specification (✁ε , ✄ε) are also eliminated. The final step is elimination of any rules of the form
A→ B& . . ., where the dependency ofA onB potentially causes cycles in the definition.

Once the normal form is established, a simple parsing algorithm for grammars with two-sided con-
texts with the running timeO(n4) is presented in Section 5. While this paper has been under preparation,
Rabkin [20] has developed a more efficient and more sophisticated parsing algorithm for grammars with
two-sided contexts, with the running timeO(n3).

2 Definition

Ordinary context-free grammars allow using the concatenation operation to express the form of a string,
and disjunction to define alternative forms. In conjunctivegrammars, the conjunction operation may be
used to assert that a substring being defined must conform to several conditions at the same time. The
grammars studied in this paper further allow operators for expressing the form of the left context (✁, P)
and the right context (✄, Q) of a substring being defined.

Definition 1. A grammar with two-sided contexts is a quadruple G= (Σ,N,R,S), where

96 Grammars with two-sided contexts

Figure 1: A substringw of a stringuwv: four types of contexts.

• Σ is the alphabet of the language being defined;

• N is a finite set of auxiliary symbols (“nonterminal symbols”in Chomsky’s terminology), which
denote the properties of strings defined in the grammar;

• R is a finite set of grammar rules, each of the form

A→ α1 & . . .& αk &✁β1 & . . .& ✁βm& Pγ1 & . . .& Pγn &

&Qκ1 & . . .& Qκm′ & ✄δ1 & . . .& ✄δn′ ,
(1)

with A∈ N, k> 1, m,n,m′,n′ > 0 andαi ,βi ,γi ,κi ,δi ∈ (Σ∪N)∗;

• S∈ N is a symbol representing well-formed sentences of the language.

If all rules in a grammar have only left contexts (that is, ifm′ = n′ = 0), then this is a grammar with
one-sided contexts [4]. If no context operators are ever used (m= n= m′ = n′ = 0), this is a conjunctive
grammar, and if the conjunction is also never used (k= 1), this is an ordinary context-free grammar.

For each rule (1), each termαi , ✁βi , Pγi , Qκi and✄δi is called aconjunct. Denote byu〈w〉v
a substringw ∈ Σ∗, which is preceded byu ∈ Σ∗ and followed byv ∈ Σ∗, as illustrated in Figure 1.
Intuitively, such a substring is generated by a rule (1), if

• eachbase conjunctαi = X1 . . .Xℓ gives a representation ofw as a concatenation of shorter sub-
strings described byX1, . . . ,Xℓ, as in context-free grammars;

• each conjunct✁βi similarly describes the form of theleft context u;

• each conjunctPγi describes the form of theextended left context uw;

• each conjunctQκi describes theextended right context wv;

• each conjunct✄δi describes theright context v.

The semantics of grammars with two-sided contexts are defined by a deduction system of elementary
propositions (items) of the form “a stringw∈ Σ∗ written in a left contextu∈ Σ∗ and in a right context
v ∈ Σ∗ has the propertyX ∈ Σ∪N”, denoted byX

(

u〈w〉v
)

. The deduction begins with axioms: any
symbol a ∈ Σ written in any context has the propertya, denoted bya

(

u〈a〉v
)

for all u,v ∈ Σ∗. Each
rule in R is then regarded as a schema for deduction rules. For example, a ruleA→ BC allows making
deductions of the form

B
(

u〈w〉w′v
)

,C
(

uw〈w′〉v
)

⊢G A
(

u〈ww′〉v
)

(for all u,w,w′,v∈ Σ∗),

which is essentially a concatenation ofw andw′ that respects the contexts. If the rule is of the form
A→ BC& ✁D, this deduction requires an extra premise:

B
(

u〈w〉w′v
)

,C
(

uw〈w′〉v
)

,D
(

ε〈u〉ww′v
)

⊢G A
(

u〈ww′〉v
)

.

M. Barash, A. Okhotin 97

And if the rule isA→ BC& QF, the deduction proceeds as follows:

B
(

u〈w〉w′v
)

,C
(

uw〈w′〉v
)

,F
(

u〈ww′v〉ε
)

⊢G A
(

u〈ww′〉v
)

.

The general form of deduction schemata induced by a rule inR is defined below.
Definition 2. Let G= (Σ,N,R,S) be a grammar with two-sided contexts. Define the following deduction
system of items of the form X

(

u〈w〉v
)

, with X ∈ Σ∪N and u,w,v∈ Σ∗. There is a single axiom scheme
⊢G a

(

u〈a〉v
)

, for all a ∈ Σ and u,v∈ Σ∗. Each rule (1) in R defines the following scheme for deduction
rules:

I ⊢G A
(

u〈w〉v
)

,

for all u,w,v∈ Σ∗ and for every set of items I satisfying the below properties:
• For every base conjunctαi = X1 . . .Xℓ, with ℓ > 0 and Xj ∈ Σ∪N, there should exist a partition

w= w1 . . .wℓ with Xj
(

uw1 . . .w j−1〈w j〉w j+1 . . .wℓv
)

∈ I for all j ∈ {1, . . . , ℓ}.

• For every conjunct✁βi = ✁X1 . . .Xℓ there should be such a partition u= u1 . . .uℓ, that
Xj
(

u1 . . .u j−1〈u j〉u j+1 . . .uℓwv
)

∈ I for all j ∈ {1, . . . , ℓ}.

• Every conjunctPγi = PX1 . . .Xℓ should have a corresponding partition uw= x1 . . .xℓ with
Xj
(

x1 . . .x j−1〈x j〉x j+1 . . .xℓv
)

∈ I for all j ∈ {1, . . . , ℓ}.

• For every conjunct✄δi andQκi, the condition is defined symmetrically.
Then the language generated by a symbol A∈ N is defined as

LG(A) = {u〈w〉v | u,w,v∈ Σ∗, ⊢G A
(

u〈w〉v
)

}.

The language generated by the grammar G is the set of all strings with empty left and right contexts
generated by S: L(G) = {w | w∈ Σ∗, ⊢G S

(

ε〈w〉ε
)

}.
The following trivial example of a grammar is given to illustrate the definitions.

Example 1. Consider the grammar with two-sided contexts that defines the singleton language{abca}:

S → aS| Sa| BC

A → a

B → b& ✁A

C → c& ✄A

The deduction given below proves that the stringabcahas the propertyS.

⊢ a
(

ε〈a〉bca
)

(axiom)

⊢ b
(

a〈b〉ca
)

(axiom)

⊢ c
(

ab〈c〉a
)

(axiom)

⊢ a
(

abc〈a〉ε
)

(axiom)

a
(

ε〈a〉bca
)

⊢ A
(

ε〈a〉bca
)

(A→ a)

b
(

a〈b〉ca
)

,A
(

ε〈a〉bca
)

⊢ B
(

a〈b〉ca
)

(B→ b& ✁A)

a
(

abc〈a〉ε
)

⊢ A
(

abc〈a〉ε
)

(A→ a)

c
(

ab〈c〉a
)

,A
(

abc〈a〉ε
)

⊢C
(

ab〈c〉a
)

(C→ c& ✄A)

B
(

a〈b〉ca
)

,C
(

ab〈c〉a
)

⊢ S
(

a〈bc〉a
)

(S→ BC)

a
(

ε〈a〉bca
)

,S
(

a〈bc〉a
)

⊢ S
(

ε〈abc〉a
)

(S→ aS)

S
(

ε〈abc〉a
)

,a
(

abc〈a〉ε
)

⊢ S
(

ε〈abca〉ε
)

(S→ Sa)

98 Grammars with two-sided contexts

Figure 2: A parse tree of the stringabcaaccording to the grammar in Example 1.

Another possible definition of grammars with contexts is by directly expressing them in first-order
logic over positions in a string [21]. Nonterminal symbols becomebinary predicates, with the arguments
referring to positions in the string. Each predicateA(x,y) is defined by a formulaϕA(x,y) that states the
condition of a substring delimilited by positionsx andy having the propertyA. There are built-in unary
predicatesa(x), for eacha∈ Σ, which assert that the symbol in positionx in the string isa, and binary
predicatesx< y andx= y for comparing positions. Arguments to predicates are givenasterms, which
are either variables (t = x) or constants referring to the first and the last positions (t = begin, t = end), and
which may be incremented (t +1) or decremented (t −1). Each formula is constructed from predicates
using conjunction, disjunction and first-order existential quantification.

Example 2. The grammar from Example 1 is expressed by the following formulae defining predicates
S(x,y), B(x,y), A(x,y) andC(x,y).

S(x,y) = (a(x)∧S(x+1,y)) ∨ (S(x,y−1)∧a(y)) ∨ (∃z(x< z< y∧B(x,z)∧C(z,y)))

A(x,y) = a(x)∧x+1= y

B(x,y) = b(x)∧x+1= y∧A(begin,x)

C(x,y) = c(x)∧x+1= y∧A(y,end)

The membership of a stringw is expressed by the statementS(begin,end), which may be true of false.

3 Examples

This section presents several examples of grammars with two-sided contexts generating important syn-
tactic constructs. All examples use ordinary context-freeelements, such as a grammar for{anbn | n> 0},
and combine these elements using the new context operators.This leads to natural specifications of lan-
guages in the style of classical formal grammars.

Consider the problem of checking declaration of identifiersbefore their use: this construct can be
found in all kinds of languages, and it can be expressed by a conjunctive grammar [16, Ex. 3]. The

M. Barash, A. Okhotin 99

variant of this problem, in which the identifiers may be declared before or aftertheir use, is also fairly
common: consider, for instance, the declaration of classesin C++, where an earlier defined method can
refer to a class member defined later. However, no conjunctive grammar expressing this construct is
known.

A grammar with one-sided contexts for declarations before or after use has recently been constructed
by the authors [4]. That grammar used context specifications, along with iterated conjunction, to express
what would be more naturally expressed in terms of two-sidedcontexts. In the model proposed in this
paper, the same language can be defined in a much more natural way.

Example 3(cf. grammar with one-sided contexts [4, Ex. 4]). Consider the language

{u1 . . .un | for everyui , either ui ∈ a∗c, or ui = bkc and there existsj ∈ {1, . . . ,n} with u j = akc}.

Substrings of the formakc represent declarations, while every substring of the formbkc is a reference to
a declaration of the formakc.

This language is generated by the following grammar.

S → AS| CS| DS| ε C → B& PEFc
A → aA | c D → B& QHcE
B → bB | c F → aFb | cE
E → AE | BE | ε H → bHa | cE

The idea of the grammar is thatSshould generate a substringu1 . . .uℓ〈uℓ+1 . . .un〉ε , with 06 ℓ 6 n
andui ∈ a∗c∪b∗c, if and only if every reference inuℓ+1 . . .un has a corresponding declaration somewhere
in the whole stringu1 . . .un. The rules forSdefine all substrings satisfying this condition inductively on
their length, until the entire stringε〈u1 . . .un〉ε is defined. The ruleS→ ε defines the base case: the string
u1 . . .un〈ε〉ε has the desired property. The ruleS→ CSappends a reference of the formb∗c, restricted
by an extended left contextPEFc, which ensures that this reference has a matchingearlier declaration;
hereE represents the prefix of the string up to that earlier declaration, while F matches the symbolsa
in the declaration to the symbolsb in the reference. The possibility of alater declaration is checked
by another ruleS→ DS, which adds a reference of the formb∗c with an extended right contextQHcE,
whereH is used to match thebs forming this reference to theas in the later declaration.

The next example abstracts another syntactic mechanism—function prototypes—found in the C pro-
gramming language and, under the name offorward declarations, in the programming language Pascal.

Example 4. Consider the language

{

u1 . . .un

∣

∣ for everyui , either ui = akc and there existsj > i, such thatu j = dkc, (2a)

or ui = bkc and there existsj < i, for whichu j = akc
}

. (2b)

A substring of the formakc represents a function prototype and a substringdkc represents its body.
Calls to functions are expressed as substringsbkc. Condition (2a) means that every prototype must be
followed by its body, and restriction (2b) requires that references are only allowed to declared prototypes.

This language can be generated by the following grammar withtwo-sided contexts.

S → US| VS| DS| ε D → dD | c E → AE | BE | DE | ε
A → aA | c U → A& QHcE H → aHd | cE
B → bB | c V → B& PEFc F → aFb | cE

100 Grammars with two-sided contexts

The rulesS→USandU → A& QHcE append a prototypeakc and the extended right context of the
form akc. . .dkc. . . ensures that this prototype has a matching body somewherelater within the string.
The rulesS→VSandV →B& PEFcappend a referencebkc, and the context specification. . .akc. . .bkc
checks that it has a matching prototypeealier in the string. Function bodiesdkc are added by the rule
S→ DS. Using these rules,Sgenerates substrings of the formu1 . . .uℓ〈uℓ+1 . . .un〉ε , with 06 ℓ6 n and
ui ∈ a∗c∪ b∗c∪ d∗c, such that every prototypeui = akc in uℓ+1 . . .un has a corresponding bodydkc in
ui+1 . . .un and every referenceui = bkc in uℓ+1 . . .un has a corresponding prototypeakc in u1 . . .ui−1.

The next example gives a grammar with contexts that defines reachability on graphs. Sudbor-
ough [22] defined a linear context-free grammar for a specialencoding of the graph reachability problem
on acyclic graphs, in which every arc goes from a lower-numbered vertex to a higher-numbered vertex.
The grammar presented below allows any graphs and uses a direct encoding. This example illustrates
the ability of grammars with contexts to define various kindsof cross-references.
Example 5. Consider encodings of directed graphs as strings of the formbsai1b j1 ai2b j2 . . . ainb jn at , with
s, t > 1, n> 0, ik, jk > 1, where each blockaib j denotes an arc from vertex numberi to vertex numberj,
while the prefixbs and the suffixat marks as the source vertex andt as the target. Then the following
grammar defines all graphs with a path froms to t.

S → FDCA | F
A → aA | c D → B& PBCE | B& QFDCA | B& QF
B → bB | c E → aEb| DCA
C → ABC | ε F → bFa | bCa

The grammar is centered around the nonterminalD, which generates all such substrings
bsai1b j1 . . .aik〈b jk〉aik+1b jk+1 . . .ainb jnat that there is a path fromjk to t in the graph. If this path is empty,
then jk = t. Otherwise, the first arc in the path can be listed either to the left or to the right ofbk. These
three cases are handled by the three rules forD. Each of these rules generatesb jk by the base conjunct
B, and then uses an extended left or right context operator to matchb jk to the tail of the next arc or toat .

The ruleD → B& PBCE considers the case when the next arc in the path is located to the left of
b jk. Let this arc beaiℓb jℓ , for someℓ < k. Then the extended left contextBCE covers the substring
bsai1b j1 . . .aiℓb jℓ . . .aikb jk. The concatenationBC skips the prefixbsai1b j1 . . .aiℓ−1b jℓ−1, and then the non-
terminal E matchesaiℓ to b jk, verifying that iℓ = jk. After this, the ruleE → DCA ensures that the
substringb jℓ is generated byD, that is, that there is a path fromjℓ to t. The concatenationCA skips the
inner substringaiℓ+1b jℓ+1 . . .aik.

The second ruleD→B& QFDCAsearches for the next arc to the right ofb jk . Let this be anℓ-th arc in
the list, withℓ > k. The extended right contextFDCA should generate the suffixb jk . . .aiℓb jℓ . . .ainb jnat .
The symbolF covers the substringb jk . . .aiℓ , matchingb jk to aiℓ . Then,D generates the substringb jℓ ,
checking that there is a path fromjℓ to t. The concatenationCAskips the rest of the suffix.

Finally, if the path is of length zero, that is,jk = t, then the ruleD → B& QF usesF to matchb jk to
the suffixat in the end of the string.

Once the symbolD checks the path from any vertex to the vertext, for the initial symbolS, it is
sufficient to matchbs in the beginning of the string to any arca jkb jk, with jk = s. This is done by the rule
S→ FDCA, which operates in the same way as the second rule forD. The case ofsandt being the same
node is handled by the ruleS→ F.

All the above examples use identifiers given in unary, which are matched by rules of the same kind
as the rules defining the language{anbn | n> 0}. These examples can be extended to use identifiers over
an arbitrary alphabetΣ, owing to the fact that there is a conjunctive grammar generating the language
{w#w | w∈ Σ∗ }, for some separator #/∈ Σ [13, 16].

M. Barash, A. Okhotin 101

4 Normal form

An ordinary context-free grammar can be transformed to the Chomsky normal form, with the rules
restricted toA→ BC andA→ a, with B,C∈ N anda∈ Σ. This form has the following generalization to
grammars with contexts.

Definition 3. A grammar with two-sided contexts G= (Σ,N,R,S) is said to be in the binary normal
form, if each rule in R is of one of the forms

A→ B1C1& . . .& BkCk& ✁D1& . . .& ✁Dm& PE1& . . .& PEn& QF1& . . .& QFn′ & ✄H1& . . .& ✄Hm′,

A→ a& ✁D1& . . .& ✁Dm& PE1& . . .& PEn& QF1& . . .& QFn′ & ✄H1& . . .& ✄Hm′,

where k> 1, m,n,n′,m′ > 0, Bi,Ci,Di ,Ei,Fi ,Hi ∈ N, a∈ Σ.

The transformation to the normal form consists of three stages: first, removing allempty conjunctsε ;
secondly, eliminatingempty contexts(✁ε , ✄ε); finally, getting rid ofunit conjunctsof the formB, with
B∈ N.

The first step is the removal of all rules of the formA → ε & . . ., so that no symbols generateε ,
while all non-empty strings are generated as before. As generation of longer strings may depend on the
generation ofε , already for ordinary context-free grammars, such a transformation requires adding extra
rules that simulate the same dependence without actually generating any empty strings.

Example 6. Consider the following context-free grammar, which definesthe language
{abc,ab,ac,a,bcd,bd,cd,d}.

S → aA | Ad

A → BC

B → ε | b

C → ε | c

SinceB generates the empty string, the ruleA→ BC can be used to generate justC; therefore, once the
rule B → ε is removed, one should add a new ruleA → C, in which B is omitted. Similarly one can
remove the ruleC→ ε and add a “compensatory” ruleA→ B. Since bothB andC generateε , so doesA
by the ruleA→ BC. Hence, extra rulesS→ a andS→ d, whereA is omitted, have to be added.

An algorithm for carrying out such a transformation first calculates the set of nonterminals that
generate the empty string, known as NULLABLE (G)⊆ N, and then uses it to reconstruct the rules of the
grammar.

This set is calculated as a least upper bound of an ascending sequence of sets NULLABLE i(G).
The set NULLABLE 1(G) = {A ∈ N | A → ε ∈ R} contains all nonterminals which directly define the
empty string. Every next set NULLABLE i+1(G) = {A∈ N | A→ α ∈ R, α ∈ NULLABLE ∗

i (G)} contains
nonterminals that generateε by the rules referring to other nullable nonterminals. Thisknowledge is
given by the Kleene star of NULLABLE i(G).

For the grammar in Example 6, the calculation of the set NULLABLE (G) proceeds as follows:

NULLABLE 0(G) = ∅,

NULLABLE 1(G) =
{

B,C
}

,

NULLABLE 2(G) =
{

B,C,A
}

,

102 Grammars with two-sided contexts

and NULLABLE (G) = NULLABLE 2(G).
The same idea works for conjunctive grammars as well [13]. For grammars with contexts [4], the

generation of the empty string additionally depends on the left contexts, in which the string occurs.
This requires an elaborated version of the set NULLABLE (G), formed of nonterminals along with the
information about the left contexts in which they may defineε .

In order to eliminate null conjuncts in case of grammars withtwo-sided contexts, one has to consider
yet another variant of the set NULLABLE (G), which respects both left and right contexts.
Example 7. Consider the following grammar with two-sided contexts, obtained by adding context re-
strictions to the grammar in Example 6; this grammar defines the languageL = {abc,ac,bcd,bd}.

S → aA | Ad

A → BC

B → ε & ✁D | b

C → ε & ✄E | c

D → a

E → d

In this grammar, the nonterminalB generates the empty string only in a left context of the form defined
by D, while C defines the empty string only in a right context of the formE. In those contexts where
both BandC generateε , so canA, by the ruleA→ BC.

The information about the left and right contexts, in which anonterminal generates the empty string,
is to be stored in the set NULLABLE (G), which is defined as a subset of 2N ×N× 2N. An element
(U,A,V) of this set represents an intuitive idea thatA definesε in a left context of the form described by
each nonterminal inU , and in a right context of the form given by nonterminals inV.

For the grammar in Example 7, such a set NULLABLE (G) is constructed as follows.

NULLABLE 0(G) = ∅

NULLABLE 1(G) =
{

({D},B,∅),(∅,C,{E})
}

NULLABLE 2(G) =
{

({D},B,∅),(∅,C,{E}),({D},A,{E})
}

Then NULLABLE (G) = NULLABLE 2(G). The elements({D},B,∅) and (∅,C,{E}) are obtained di-
rectly from the rules of the grammar, and the element({D},A,{E}) represents the “concatenation”BC
in the rule forA. Note the similarity of this construction to the one for the ordinary grammar in Exam-
ple 6: the construction given here is different only in recording information about the contexts.

The above “concatenation” of triples({D},B,∅) and (∅,C,{E}) should be defined to accu-
mulate both left and right contexts. This can be regarded as ageneralization of the Kleene star
to sets of triples, denoted by NULLABLE ⋆(G). Formally, NULLABLE ⋆(G) is the set of all triples
(U1 ∪ . . .∪Uℓ, A1 . . .Aℓ, V1 ∪ . . . ∪Vℓ) with ℓ > 0 and (Ui,Ai ,Vi) ∈ NULLABLE (G). The symbolsAi

are concatenated, while their left and right contexts are accumulated. In the special case whenℓ= 0, the
concatenation of zero symbols is the empty string, and thus∅

⋆ =
{

(∅,ε ,∅)
}

.
Before giving a formal definition of the set NULLABLE (G), assume, for the sake of simplicity, that

context operators are only applied to single nonterminal symbols, that is, every rule is of the form

A→ α1 & . . .& αk & ✁D1& . . .& ✁Dm& PE1& . . .& PEn& QF1& . . .& QFm′ & ✄H1& . . .& ✄Hn′ , (3)

with A∈ N, k > 1, m,n,m′,n′ > 0, αi ∈ (Σ∪N)∗ andDi,Ei,Fi ,Hi ∈ N. As will be shown in Lemma 3,
there is no loss of generality in this assumption.

M. Barash, A. Okhotin 103

Definition 4. Let G= (Σ,N,R,S) be a grammar with two-sided contexts with all rules of the form (3).
Construct the sequence of setsNULLABLE i(G)⊆ 2N ×N×2N, for i > 0, as follows.

Let NULLABLE 0(G) = ∅. Every next setNULLABLE i+1(G) contains the following triples:
for every rule (3) and for every k triples(U1,α1,V1), . . . , (Uk,αk,Vk) in NULLABLE ⋆

i (G),
the triple

(

{D1, . . . ,Dm,E1, . . . ,En} ∪ {U1, . . . ,Uk}, A, {F1, . . . ,Fm′ ,H1, . . . ,Hn′} ∪ {V1, . . . ,Vk}
)

is in
NULLABLE i+1(G).

Finally, let NULLABLE (G) =
⋃

i>0 NULLABLE i(G).
The next lemma explains how exactly the set NULLABLE (G) represents the generation of the empty

string by different nonterminals in different contexts.
Lemma 1. Let G= (Σ,N,R,S) be a grammar with contexts, let A∈N and u,v∈Σ∗. Then, u〈ε〉v∈ LG(A)
if and only if there is a triple({J1, . . . ,Js},A,{K1, . . . ,Kt}) in NULLABLE (G), such thatε〈u〉v∈ LG(Ji)
for all i and u〈v〉ε ∈ LG(K j) for all j.

The plan is to reconstruct the grammar, so that for every triple ({J1, . . . ,Js},A,{K1, . . . ,Kt}) in
NULLABLE (G), and for every occurrence ofA in the right-hand side of any rule, the new grammar
contains a companion rule, in whichA is omitted and context operators forJi andKi are introduced.

The following case requires special handling in the new grammar. Assume thatA generatesε in the
empty left context (that is,u= ε in Lemma 1). This is reflected by a triple({J1, . . . ,Js},A,{K1, . . . ,Kt})
in NULLABLE (G), in which all symbolsJi also generateε in the left contextε . The latter generation
may in turn involve some further right context operators. Inthe new grammar, the left context will be
explicitly set to be empty (✁ε), whereas all those right contexts should be assembled together with the
set{K1, . . . ,Kt}, and used in the new rules, whereA is omitted. This calculation of right contexts is done
in the following special variant of the set NULLABLE .
Definition 5. Let G= (Σ,N,R,S) be a grammar. Define sets✁ε-NULLABLE i(G)⊆ N×2N, with i > 0:

✁ε-NULLABLE 0(G) = {(A,V) | (∅,A,V) ∈ NULLABLE (G)},

✁ε-NULLABLE i+1(G) =
{

(A,V ∪V1∪ . . .∪Vs)
∣

∣ ({J1, . . . ,Js},A,V) ∈ NULLABLE (G),

∃V1, . . . ,Vs ⊆ N : (Ji ,Vi) ∈✁ε-NULLABLE i(G)
}

.

Let✁ε-NULLABLE (G) =
⋃

i>0✁ε-NULLABLE i(G).
Lemma 2. Let G= (Σ,N,R,S) be a grammar, let A∈ N and v∈ Σ∗. Thenε〈ε〉v∈ LG(A) if and only if
there is a pair(A,{K1, . . . ,Kt}) in ✁ε-NULLABLE (G), such thatε〈v〉ε ∈ LG(Ki) for all i.

There is a symmetrically defined set✄ε-NULLABLE (G)⊆ 2N ×N, which characterizes the genera-
tion of ε in an empty right context.

With the generation of the empty string represented in thesethree sets, a grammar with two-sided
contexts is transformed to the normal form as follows. First, it is convenient to simplify the rules of the
grammar, so that every concatenation is of the formBC, with B,C ∈ N, and the context operators are
only applied to individual nonterminals. For this, base conjunctsα with |α | > 2 and context operators
✁α , Pα , Qα and✄α with |α |> 1 are shortened by introducing new nonterminals.
Lemma 3. For every grammar G0 = (Σ,N0,R0,S0), there exists and can be effectively constructed an-
other grammar G= (Σ,N,R,S) generating the same language, with all rules of the form:

A→ a (4a)

A→ BC (4b)

A→ B1& . . .& Bk & ✁D1& . . .& ✁Dm& PE1& . . .& PEn& QF1& . . .& QFm′ & ✄H1& . . .& ✄Hn′ (4c)

A→ ε , (4d)

with a∈ Σ and A,B,C,Di,Ei,Fi ,Hi ∈ N.

104 Grammars with two-sided contexts

Construction 1. LetG=(Σ,N,R,S) be a grammar with two-sided contexts, with all rules of the form (4).
Consider the sets NULLABLE (G), ✁ε-NULLABLE (G) and✄ε-NULLABLE (G), and construct another
grammar with two-sided contextsG′ = (Σ,N,R′,S), with the following rules.

1. All rules of the form (4a) inRare added toR′.

2. Every rule of the form (4b) inR is added toR′, along with the following extra rules, where a
nullable nonterminal is omitted and the fact that it generatesε is expressed by context operators.

A→ B& PJ1& . . .& PJs& ✄K1& . . .& ✄Kt , for ({J1, . . . ,Js},C,{K1, . . . ,Kt}) ∈ NULLABLE (G)

A→ B& PJ1& . . .& PJs& ✄ε , for ({J1, . . . ,Js},C) ∈✄ε-NULLABLE (G) with s> 1

A→C& ✁J1 & . . .& ✁Js& QK1& . . .& QKt, for ({J1, . . . ,Js},B,{K1, . . . ,Kt}) ∈ NULLABLE (G)

A→C& QK1& . . .& QKt & ✁ε , for (B,{K1, . . . ,Kt}) ∈✁ε-NULLABLE (G) with t > 1

In the first case,C definesε in left contextsJi and right contextsKi, and this restriction is im-
plemented by context operators in the new rule. Since the left context ofC includesB, extended
context operators (PJi) are used on the left, whereas the right context operators are proper (✄Ki).

The second case considers the possibility of a nullable nonterminalC, which definesε in an empty
right context. This condition is simulated by the conjunct✄ε and extended left contextsPJi .

The two last rules handle symmetrical cases, when the nonterminal B defines the empty string.

3. Every rule of the form (4c) is preserved inR′. In the original grammar, this rule (4c) may generate
strings in empty contexts, as long as symbols in the context operators (✁Di, ✄Hi) are nullable.

For any collection of pairs(D1,V1), . . . ,(Dm,Vm) ∈✁ε-NULLABLE (G), with m> 1, add the rule

A→B1& . . .& Bk& E1& . . .& En& QK1& . . .& QKt & QF1& . . .& QFm′ & ✄H1& . . .& ✄Hn′ & ✁ε ,

where{K1, . . . ,Kt}=
⋃m

i=1Vi . NonterminalsD1, . . . ,Dm defineε in the right contexts given in the
set✁ε-NULLABLE (G). This is represented by conjuncts✁ε andQKi. Extended left contextsPEi

are replaced with base conjunctsEi, because in the empty left context they have the same effect.

Symmetrically, if(U1,H1), . . . ,(Un′ ,Hn′) ∈✄ε-NULLABLE (G), with n′ > 1, then there is a rule

A→B1& . . .& Bk& F1& . . .& Fm′ & ✁D1 & . . .& ✁Dm& PE1& . . .& PEn& PK1& . . .& PKt & ✄ε ,

where{K1, . . . ,Kt}=
⋃n′

i=1Ui.

Finally, if with m, n′ > 1 and (D1,V1), . . . , (Dm,Vm) ∈ ✁ε-NULLABLE (G), (U1,H1), . . . ,
(Un′ ,Hn′) ∈✄ε-NULLABLE (G), then the setR′ contains a rule

A→ B1& . . .& Bk& E1& . . .& En& F1& . . .& Fm′ & K1& . . .& Kt & ✁ε & ✄ε ,

where{K1, . . . ,Kt} =
⋃m

i=1Vi ∪
⋃n′

j=1U j . In this case, both left and right contexts of a string
are empty. All the symbolsDi andHi defineε in the contexts specified in✁ε-NULLABLE (G)
and✄ε-NULLABLE (G). These contexts apply to the entire string and are explicitly stated as
K1& . . .& Kt in the new rule. The null contexts✁ε , ✄ε limit the applicability of this rule to the
whole string. Again, as in the two previous cases, the base conjuncts are used instead of extended
context operators.

Lemma 4. Let G= (Σ,N,R,S) be a grammar with two-sided contexts. Then the grammar G′ =
(Σ,N′,R′,S) obtained by Construction 1 generates the language L(G′) = L(G)\{ε}.

M. Barash, A. Okhotin 105

The above construction eliminates the empty string in all base conjuncts, but the resulting grammar
may still contain null context specifications (✁ε and✄ε), which state that the current substring is a prefix
or a suffix of the whole string. These operators are eliminated by the following simple transformation.
First, define a new nonterminal symbolU that generates all non-empty strings in the empty left context.
This is done by the following three rules:

U →Ua (for all a∈ Σ)

U → a& PX (for all a∈ Σ)

X → a (for all a∈ Σ)

Another symbolV generates all non-empty strings in the empty right context;it is defined by symmetric
rules. Then it remains to replace left and right null contextoperators (✁ε ,✄ε) with U andV, respectively.

The third stage of the transformation to the normal form is removing theunit conjunctsin rules of
the formA → B& . . . Already for conjunctive grammars [13], the only known transformation involves
substituting all rules forB into all rules forA; in the worst case, this results in an exponential blowup.
The same construction applies verbatim to grammars with contexts.

This three-stage transformation proves the following theorem.
Theorem 1. For each grammar with two-sided contexts G= (Σ,N,R,S) there exists and can be effec-
tively constructed a grammar with two-sided contexts G′ = (Σ,N′,R′,S) in the binary normal form, such
that L(G) = L(G′)\{ε}.

5 Parsing algorithm

Let G = (Σ,N,R,S) be a grammar with two-sided contexts in the binary normal form, and letw =
a1 . . .an ∈ Σ+, with n> 1 andai ∈ Σ, be an input string to be parsed. For every substring ofw delimited
by two positionsi, j, with 06 i < j 6 n, consider the set of nonterminal symbols generating this substring.

Ti, j =
{

A
∣

∣ A∈ N, a1 . . .ai〈ai+1 . . .a j〉a j+1 . . .an ∈ LG(A)
}

In particular, the whole stringw is in L(G) if and only if S∈ T0,n.
In ordinary context-free grammars, a substringai+1 . . .a j is generated byA if there is a ruleA →

BC and a partition of the substring intoai+1 . . .ak generated byB and ak+1 . . .a j generated byC, as
illustrated in Figure 3(left). Accordingly, each setTi, j depends only on the setsTi′, j ′ with j ′− i′ < j − i,
and hence all these sets may be constructed inductively, beginning with shorter substrings and eventually
reaching the setT0,n: this is the Cocke–Kasami–Younger parsing algorithm. For conjunctive grammars,
all dependencies are the same, and generally the same parsing algorithm applies [13]. In grammars with
only left contexts, each setTi, j additionally depends on the setsT0,i andT0, j via the conjuncts of the form
✁D andPE, respectively, which still allows constructing these setsprogressively forj = 1, . . . ,n [4].

The more complicated structure of logical dependencies in grammars with two-sided contexts is
shown in Figure 3(right). The following example demonstrates how these dependencies may form cir-
cles.
Example 8. Consider the grammar with the rules

S→ AB

A→ a& ✄B

B→ b& ✁C

C→ a

106 Grammars with two-sided contexts

i

k

j

0

A∈
?

Ti,j

C∈
?

Tk,j

B∈
?

Ti,k

E∈
?

T0,jD∈
?

T0,i

F∈
?

Ti,n

H∈
?

Tj,n

i

k

j

i k j

0

C∈
?

Tk,j

B∈
?

Ti,k A∈
?

Ti,j

i k j

Figure 3: How the membership ofA in Ti, j depends on other data, for rules (a)A → BC and (b)A →
BC& ✁D& PE& QF & ✄H.

and the input stringw= ab. It is immediately seen thatC ∈ T0,1. From this, one can infer thatB∈ T1,2,
and that knowledge can in turn be used to show thatA∈ T0,1. These data imply thatS∈ T0,2. Thus, none
of the setsT0,1 andT1,2 can be fully constructed before approaching the other.

The proposed algorithm for constructing the setsTi, j works as follows. At the first pass, it makes all
deductions⊢G A

(

a1 . . .ai〈ai+1 . . .a j〉a j+1 . . .an
)

that do not involve any contexts, and accordingly putsA
to the correspondingTi, j . This pass progressively considers longer and longer substrings, as done by the
Cocke–Kasami–Younger algorithm for ordinary grammars. During this first pass, some symbols may
be added to any setsT0, j andTi,n, and thus it becomes known that some contexts are true. This triggers
another pass over all entriesTi, j , from shorter substrings to longer ones, this time using theknown true
contexts in the deductions. This pass may result in adding more elements toT0, j andTi,n, which will
require yet another pass, and so on. Since a new pass is neededonly if a new element is added to any of
2n−1 subsets ofN, the total number of passes is at most(2n−1) · |N|+1.

These calculations are implemented in Algorithm 1, which basically deduces all true statements about
all substrings of the input string. For succinctness, the algorithm uses the following notation for multiple
context operators. For a setX = {X1, . . . ,Xℓ}, with Xi ∈N, and for an operatorQ∈ {✁,P,Q,✄}, denote
QX := QX1& . . .& QXℓ.

Theorem 2. For every grammar with two-sided contexts G in the binary normal form, Algorithm 1, given
an input string w= a1 . . .an, constructs the sets Ti, j and determines the membership of w in L(G), and
does so in timeO(|G|2 ·n4), using spaceO(|G| ·n2).

While this paper was under preparation, Rabkin [20] developed a more efficient and more sophisti-
cated parsing algorithm for grammars with two-sided contexts, with the running timeO(|G| ·n3), using
spaceO(|G| · n2). Like Algorithm 1, Rabkin’s algorithm works by proving all true statements about
the substrings of the given string, but does so using the superior method of Dowling and Gallier [7].
Nevertheless, Algorithm 1 retains some value as the elementary parsing method for grammars with two-
sided contexts—just like the Cocke–Kasami–Younger algorithm for ordinary grammars remains useful,
in spite of the asymptotically superior Valiant’s algorithm [23].

M. Barash, A. Okhotin 107

Algorithm 1. Let G = (Σ,N,R,S) be a grammar with contexts in the binary normal form. Letw =
a1 . . .an ∈ Σ+ (with n> 1 andai ∈ Σ) be the input string. LetTi, j with 06 i < j 6 n be variables, each
representing a subset ofN, and letTi, j =∅ be their initial values.

1: while any ofT0, j (16 j 6 n) or Ti,n (16 i < n) changedo
2: for j = 1, . . . ,n do
3: for all A→ a& ✁D & PE & QF & ✄H ∈ Rdo
4: if a j = a∧ D ⊆ T0, j−1 ∧ E ⊆ T0, j ∧ F ⊆ Tj,n ∧ H ⊆ Ti,n then
5: Tj−1, j = Tj−1, j ∪{A}
6: for i = j −2 to 0do
7: let P=∅ (P⊆ N×N)
8: for k= i +1 to j −1 do
9: P= P∪ (Ti,k×Tk, j)

10: for all A→ B1C1& . . .& BmCm& ✁D & PE & QF & ✄H ∈ Rdo
11: if (B1,C1), . . . ,(Bm,Cm) ∈ P ∧ D ⊆ T0,i ∧ E ⊆ T0, j ∧ F ⊆ Tj,n ∧ H ⊆ Ti,n then
12: Ti, j = Ti, j ∪{A}
13: accept if and only ifS∈ T0,n

6 Conclusion

This paper has developed a formal representation for the idea of phrase-structure rules applicable in a
context, featured in the early work of Chomsky [6]. This ideadid not receive adequate treatment at the
time, due to the unsuitable string-rewriting approach. Thelogical approach, adapted from Rounds [21]
and his predecessors, brings it to life.

There are many theoretical questions to research about the new model: for instance, one can study
the limitations of their expressive power, their closure properties, efficient parsing algorithms and sub-
families that admit more efficient parsing. Another possibility for further studies is investigating Boolean
and stochastic variants of grammars with contexts, following the recent related work [8, 12, 24].

On a broader scope, there must have been other good ideas in the theory of formal grammars that were
inadequately formalized before. They may be worth being re-investigated using the logical approach.

References

[1] T. Aizikowitz, M. Kaminski, “LR(0) conjunctive grammars and deterministic synchronized alternating push-
down automata”,Computer Science in Russia(CSR 2011, St. Petersburg, Russia, 14–18 June 2011), LNCS
6651, 345–358, DOI:10.1007/978-3-642-20712-9_27.

[2] M. Barash, “Programming language specification by a grammar with contexts”, In: S. Bensch, F. Drewes,
R. Freund, F. Otto (Eds.),Fifth Workshop on Non-Classical Models of Automata and Applications(NCMA
2013, Umeå, Sweden, 13–14 August, 2013), books@ocg.at 294, Österreichische Computer Gesellschaft
(2013), 51–67,http://users.utu.fi/mikbar/kieli.

[3] M. Barash, A. Okhotin, “Defining contexts in context-free grammars”,Language and Automata Theory and
Applications(LATA 2012, A Coruña, Spain, 5–9 March 2012), LNCS 7183, 106–118, DOI:10.1007/
978-3-642-28332-1_10.

[4] M. Barash, A. Okhotin, “An extension of context-free grammars with one-sided context specifications”,
Information and Computation, in press, DOI:10.1016/j.ic.2014.03.003.

http://dx.doi.org/10.1007/978-3-642-20712-9_27
http://users.utu.fi/mikbar/kieli
http://dx.doi.org/10.1007/978-3-642-28332-1_10
http://dx.doi.org/10.1007/978-3-642-28332-1_10
http://dx.doi.org/10.1016/j.ic.2014.03.003

108 Grammars with two-sided contexts

[5] M. Barash, A. Okhotin, “Linear grammars with one-sided contexts and their automaton representation”,
LATIN 2014: Theoretical Informatics(Montevideo, Uruguay, 31 March–4 April 2014), LNCS 8392, 190–
201, DOI:10.1007/978-3-642-54423-1_17.

[6] N. Chomsky, “On certain formal properties of grammars”,Information and Control, 2:2 (1959), 137–167,
DOI: 10.1016/S0019-9958(59)90362-6.

[7] W. F. Dowling, J. H. Gallier, “Linear-time algorithms for testing the satisfiability of propositional Horn
formulae”,Journal of Logic Programming, 1:3 (1984), 267–284, DOI:10.1016/0743-1066(84)90014-1.

[8] Z. Ésik, W. Kuich, “Boolean fuzzy sets”,International Journal of Foundations of Computer Science, 18:6
(2007), 1197–1207, DOI:10.1142/S0129054107005248.

[9] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal of the ACM, 9 (1962),
350–371, DOI:10.1145/321127.321132.

[10] A. Jeż, “Conjunctive grammars can generate non-regular unary languages”,International Journal of Foun-
dations of Computer Science, 19:3 (2008), 597–615, DOI:10.1142/S012905410800584X.

[11] R. Kowalski,Logic for Problem Solving, North-Holland, Amsterdam, 1979.

[12] V. Kountouriotis, Ch. Nomikos, P. Rondogiannis, “Well-founded semantics for Boolean grammars”,Infor-
mation and Computation, 207:9 (2009), 945–967, DOI:10.1016/j.ic.2009.05.002.

[13] A. Okhotin, “Conjunctive grammars”,Journal of Automata, Languages and Combinatorics, 6:4 (2001), 519–
535.

[14] A. Okhotin, “Conjunctive grammars and systems of language equations”,Programming and Computer Soft-
ware, 28:5 (2002), 243–249, DOI:10.1023/A:1020213411126.

[15] A. Okhotin, “Boolean grammars”,Information and Computation, 194:1 (2004), 19–48, DOI:10.1016/j.
ic.2004.03.006.

[16] A. Okhotin, “Conjunctive and Boolean grammars: the true general case of the context-free grammars”,Com-
puter Science Review, 9 (2013), 27–59, DOI:10.1016/j.cosrev.2013.06.001.

[17] A. Okhotin, “Improved normal form for grammars with one-sided contexts”,Descriptional Complexity of
Formal Systems(DCFS 2013, London, Ontario, Canada, 22-25 July 2013), LNCS8031, 205–216, DOI:10.
1007/978-3-642-39310-5_20.

[18] A. Okhotin, “Parsing by matrix multiplication generalized to Boolean grammars”,Theoretical Computer
Science, 516 (2014), 101–120, DOI:10.1016/j.tcs.2013.09.011.

[19] F. C. N. Pereira, D. H. D. Warren, “Parsing as deduction”, 21st Annual Meeting of the Association for Com-
putational Linguistics(ACL 1983, Cambridge, Massachusetts, USA, 15–17 June 1983), 137–144.

[20] M. Rabkin, “Recognizing two-sided contexts in cubic time”, Computer Science—Theory and Applications
(CSR 2014, Moscow, Russia, 6–12 June 2014), LNCS 8476, to appear.

[21] W. C. Rounds, “LFP: A logic for linguistic descriptionsand an analysis of its complexity”,Computational
Linguistics, 14:4 (1988), 1–9.

[22] I. H. Sudborough, “A note on tape-bounded complexity classes and linear context-free languages”,Journal
of the ACM, 22:4 (1975), 499–500, DOI:10.1145/321906.321913.

[23] L. G. Valiant, “General context-free recognition in less than cubic time”,Journal of Computer and System
Sciences, 10:2 (1975), 308–314, DOI:10.1016/S0022-0000(75)80046-8.

[24] R. Zier-Vogel, M. Domaratzki, “RNA pseudoknot prediction through stochastic conjunctive grammars”,
Computability in Europe 2013. Informal Proceedings, 80–89.

http://dx.doi.org/10.1007/978-3-642-54423-1_17
http://dx.doi.org/10.1016/S0019-9958(59)90362-6
http://dx.doi.org/10.1016/0743-1066(84)90014-1
http://dx.doi.org/10.1142/S0129054107005248
http://dx.doi.org/10.1145/321127.321132
http://dx.doi.org/10.1142/S012905410800584X
http://dx.doi.org/10.1016/j.ic.2009.05.002
http://dx.doi.org/10.1023/A:1020213411126
http://dx.doi.org/10.1016/j.ic.2004.03.006
http://dx.doi.org/10.1016/j.ic.2004.03.006
http://dx.doi.org/10.1016/j.cosrev.2013.06.001
http://dx.doi.org/10.1007/978-3-642-39310-5_20
http://dx.doi.org/10.1007/978-3-642-39310-5_20
http://dx.doi.org/10.1016/j.tcs.2013.09.011
http://dx.doi.org/10.1145/321906.321913
http://dx.doi.org/10.1016/S0022-0000(75)80046-8

	1 Introduction
	2 Definition
	3 Examples
	4 Normal form
	5 Parsing algorithm
	6 Conclusion

