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Several algorithms for similarity search employ seeding techniques to quickly discard very dissimilar
regions. In this paper, we study theoretical properties of lossless seeds, i.e., spaced seeds having full
sensitivity. We prove that lossless seeds coincide with languages of certain sofic subshifts, hence
they can be recognized by finite automata. Moreover, we show that these subshifts are fully given by
the number of allowed errorsk and the seed marginℓ. We also show that for a fixedk, optimal seeds

must asymptotically satisfyℓ ∈ Θ(m
k

k+1 ).

1 Introduction

The annual volume of data produced by the Next-Generation Sequencing technologies has been rapidly
increasing; even faster than growth of disk storage capacities. Thus, new efficient algorithms and data-
structures for processing, compressing and storing these data, are needed.

Similarity search represents the most frequent operation in bioinformatics. In huge DNA databases,
a two-phase scheme is the most widely used approach to find alloccurrences of a given string up to
some Hamming or Levenshtein distance. First of all, most of dissimilar regions are discarded in a fast
filtration phase. Then, in averification phase, only “hot candidates” on similarity are processed by
classical time-consuming algorithms like Smith-Waterman[23] or Needleman-Wunsch [17].

Algorithms for the filtration phase are often based on so-called seed filterswhich make use of the
fact that two strings of the same lengthm being in Hamming distancek must necessarily share some
exact patterns. These patterns are represented as strings over the alphabet{#,-} calledseeds, where the
“matching” symbol# corresponds to a matching position and the “joker” symbol- to a matching or a
mismatching position.

For instance, for two strings of length 15, matching within two errors, shared patterns are, e.g.,
##-#--##-# or #####. For illustration, if we consider that two strings match as===X=====X=====

(where the symbols= andX represent respectively matching and mismatching positions), then the corre-
sponding seed positions can be following:

===X=====X=====

.##-#--##-#....

....#####......

As the second seed is the longest possible contiguous seed inthis case, we observe the main advantage of
spaced seeds in comparison to contiguous seeds: for the sametask, there exist spaced seeds with higher
number of#’s (so-calledweight).

Two basic characteristics of every seed areselectivityandsensitivity. Selectivity measures restric-
tivity of a filter created from the seed. In general, higher weight implies better selectivity of the filter.
Lossless seedsare those seeds having full sensitivity. They are easier to handle mathematically on one
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hand, but attain lower weight on the other hand.Lossy seedsare employed for practical purposes more
since a small decrease in sensitivity can be compensated by considerable improvement of selectivity.

Nevertheless, only lossless seeds are considered in this paper. For a given lengthm of strings to be
compared and a given number of allowed mismatchesk (such setting is called(m,k)-problem), the aim
is to design fully sensitive seeds with highest possible weight.

1.1 Literature

The idea of lossless seeds was originally introduced by Burkhardt and Karkkäinen [3, 4]. Let us remark
that lossy spaced seed were used in the same time in the PatternHunter program [16]. Generalization of
lossless seeds was studied by Kucherov et al. [11]. given seed are required (the pattern is shared at more
positions). The authors also proved that, for a fixed numberk of mismatches,optimal seeds(i.e., seeds
with the highest possible weight among all seeds solving thegiven problem) must asymptotically satisfy
m−w(m) ∈ Θ(m

k
k+1 ), wherew(m) denotes the maximal possible weight of a seed solving the(m,k)-

problem. They also started a systematic study of seeds created by repeating of short patterns. Afterwards,
the results on asymptotic properties of optimal seeds were generalized by Farach-Colton et al. [10].
Computational complexity of optimal seed construction wasderived by Nicolas and Rivals [18, 19].

Further, the theory on lossless seed was significantly developed by Egidi and Manzini. First, they
studied seeds designed from mathematical objects called perfect rulers [6, 9]. The idea of utilization of
some type of “rulers” was later independently extended by KB[2] (cyclic rulers) and, again, Edigi and
Manzini [8] (difference sets). In [8], these ideas were extended also to seed families. Cyclic rulers and
difference sets mathematically correspond to each other. Edigi and Manzini [7] also showed possible
usage of number-theoretical results on quadratic residuesfor seed design.

In practice, seeds often find their use in short-read mappersimplementing hash tables (for more
details on read mapping, see, e.g., [12, 22]). ZOOM [13] and PerM [5] are examples of mappers utilizing
lossless seeds.

A list of papers on spaced seed is regularly maintained by No´e [20].

1.2 Our object of study

One of the most important theoretical aspects of lossless seeds are their structural properties. Whereas
good lossy seeds usually show irregularity, it was observedthat good lossless seeds are often repetitions
of short patterns ([11, 5, 2, 8]). The question whether optimal seeds can be constructed in all cases
by repeating patterns, which would be short with respect to seed length, remains open (see [2, Conjec-
ture 1]). Its answering would have practical impacts in development of bioinformatical software tools
since the search space of programs for lossless seeds designcould be significantly cut and also indexes
in programs using lossless seeds for approximate string matching could be more memory efficient (like
[5]).

1.3 Paper organization and results

In this paper, we follow and further develop ideas from [2]. We concentrate on a parameterℓ called seed
margin, which is the difference between the sizemof compared strings and the length of a seed.

In Section 2 we recall the notation used in combinatorics on words and symbolic dynamics. In Sec-
tion 3 we formally define seeds and(m,k)-problems. Then we transform the problem of seed detection
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into another criterion (Theorem 1) and also show asymptoticproperties ofℓ for optimal seeds (Proposi-
tion 1). In Section 4 we prove that sets of seeds, obtained by fixing the parametersk andℓ, coincide with
languages of some sofic subshifts. Therefore, those sets of seeds are recognized by finite automata. In
Section 5 we show applications of obtained results for seed design. These results provide a new view on
lossless seeds and explain their periodic properties.

2 Preliminaries

Throughout the paper, we use a standard notation of combinatorics on words and symbolic dynamics.

2.1 Combinatorics on words

An alphabetA = {a0, . . . ,am−1} is a finite set of symbols calledletters. In this paper, we will work
exclusively with the alphabet{#,-} A finite sequence of letters fromA is called afinite word(overA).
The setA∗ of all finite words (including the empty wordε) provided with the operation of concatenation
is a free monoid. The concatenation is denoted multiplicatively. If w = w0w1 · · ·wn−1 is a finite word
overA, we denote its length by|w|= n. We deal also with bi-infinite sequences of letters fromA called
bi-infinite wordsw = · · ·w−2w−1|w0w1w2 · · · overA. The sets of all bi-infinite words overA is denoted
by AZ.

A finite word w is called afactor of a wordu (u being finite or bi-infinite) if there exist wordsp
ands (finite or one-side infinite) such thatu = pws. For given indexesi and j, the symbolu[i, j] denotes
the factoruiui+1 · · ·u j if i ≤ j, or ε if i > j. A concatenation ofk wordsw is denoted bywk. The set of
all factors of a wordu (u being finite or bi-infinite) is called the language ofu and denoted byL(u). Its
subsetL(u)∩An containing all factors ofu of lengthn is denoted byLn(u).

Let us remark that this notation will be used extensively in the whole text. For instancew[2,5]-4

denotes the word created by concatenation of the factorw2w3w4w5 of a bi-infinite wordw and the word
----. Similarly, for a finite wordv of lengthn, by · · ·--|v-- · · · we denote the bi-infinite wordu such
that for all i ∈ {0, . . . ,n− 1}(ui = wi) and for all i ∈ Z \ {0, . . . ,n− 1}(ui = -). For more information
about combinatorics on words, we can refer to Lothaire I [15].

2.2 Symbolic dynamics

Consider an alphabetA. On the setAZ of bi-infinite words overA, we define a so-called Cantor metricd
as

d(u,v) =

{

0 if u = v,

2−s if u 6= v, wheres := min
{

|i|
∣

∣ ui 6= vi
}

.

We define ashift operationσ as[σ(u)]i = ui+1 for all i ∈ Z. The mapσ is invertible, and the powerσ k is
defined by composition for allk∈ Z. The mapσ is continuous onAZ, therefore,(AZ,σ) is a dynamical
system, which is called afull shift.

A bi-infinite wordu ∈AZ avoidsa set of finite wordsX if L(u)∩X = /0. By SX we denote the set of
all bi-infinite words that avoidX and we call it asubshift. If X is a regular language,SX is calledsofic
subshift; if X is finite,SX is called asubshift of finite type. ThelanguageL(S) of a subshiftS is the union
of languages of all bi-infinite words fromS. By Ln(S) we denote the setL(S)∩An. It holds that a set
S⊆ AZ is a subshift if and only if it is invariant under the shift mapσ (that meansσ(S) = S) and it is
closed with respect to the Cantor metric. A general theory ofsubshifts is well summarized in [14].
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3 Lossless seeds

In this section, we introduce basic definition formalizing lossless seeds. Then we introduce a parameterℓ

called seed margin and show its asymptotic properties for optimal seeds. Let us recall thatmdenotes the
length of strings to be compared andk denotes the number of allowed mismatches.

Definition 1. The binary alphabetA= {#,-} is calledseed alphabet. Every finite word over this alpha-
bet is aseed. Theweightof a seed Q is the number of occurrences of the letter# in Q.

Definition 2. Let m and k be positive integers. Every set{i1, . . . , ik} ⊆ {0, . . . ,m− 1} is called error
combinationof k errors.

Consider a seed Q such that|Q| < m and denoteℓ := m−|Q|, which is the so-calledseed margin.
Then Qdetectsan error combination{i1, . . . , ik} ⊆ {0, . . . ,m− 1} at position t∈ {0, . . . , ℓ} if for all
j ∈ {0, . . . , |Q|−1} it holds(Q j = # =⇒ j + t 6∈ {i1, . . . , ik}) .

The seed Q is said tosolvethe(m,k)-problem if every error combination{i1, . . . , ik} ⊆ {0, . . . ,m−1}
of k errors is detected by Q at some position t∈ {0, . . . , ℓ}.

Many combinatorial properties of seeds can be studied from the perspective of bi-infinite words.
First, we need a seed analogy of the logical functionOR applied on bi-infinite words and producing,
again, a bi-infinite word.

Definition 3. Consider k bi-infinite wordsu(1), . . . ,u(k) overA. We define a k-nary operation⊕ as

∀i ∈ Z : (⊕(u(1), . . . ,u(k)))i =

{

# if (u( j))i = # for some j∈ {1, . . . ,k}

- otherwise

The following theorem will be crucial for seed analysis in the rest of the text. It is mainly a translation
of basic definitions to the formalism of shifts and logical operations, but it enables us to easily observe
on which parameters (and how) the structure of lossless seeds really depends.

Theorem 1. Let m and k be positive integers and Q be a seed such that|Q|<m. Denoteℓ := m−|Q| and
w := · · ·--|-ℓQ-- · · · . Then Q detects an error combination{i1, . . . , ik} ⊆ {0, . . . ,m− 1} at a position
t ∈ {0, . . . , ℓ} if and only if

(

⊕(σ i1(w), . . . ,σ ik(w)
)

ℓ−t
= -. (1)

Proof. Qdetects{i1, . . . , ik} at positiont if ∀ j ∈ {0, . . . , |Q|−1}
(

Q j = # =⇒ j + t 6∈ {i1, . . . , ik}
)

. This
is equivalent to∀p∈ {i1, . . . , ik}(wp−t+ℓ = -), which is equivalent to (1).

Corollary 1. Q does not detect a combination{i1, . . . , ik} at any position t∈ {0, . . . , ℓ} if and only if
(⊕(σ i1(w), . . . ,σ ik(w))[0, ℓ] = #

ℓ+1.

Let us mention that in the case of two errors, Corollary 1 corresponds to the Laser method [2, Sec-
tion 4.1] (a JavaScript implementation is available at [1])as we illustrate in the following example.

Example 1. Consider a seed Q= ##-#-----#-## of length14 and the(19,2)-problem. In Figure 1
we show a corresponding schematic table. Denotew := · · ·--|-5Q-- · · · . The words⊕(σi(w),σ j(w))
occur diagonally. It is easily seen from Corollary 1 that Q does not detect the error combination{5,13}
sinceℓ= 5 and

(

⊕(σ5(w),σ13(w))
)

[0,5] = #
ℓ+1.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# # - # - - - - - - # - # #

0 - - - - - # # - # - - - - - - # - # # - - - - -

1 - - - - - # # - # - - - - - - # - # # - - - - -

2 - - - - - # # - # - - - - - - # - # # - - - - -

3 - - - - - # # - # - - - - - - # - # # - - - - -

4 - - - - - # # - # - - - - - - # - # # - - - - -

5 # # # # # # # # # # # # # # # # # # # # # # # # #

6 # # # # # # # # # # # # # # # # # # # # # # # # #

7 - - - - - - # # - # - - - - - - # - # # - - - - -

8 # # # # # # # # # # # # # # # # # # # # # # # # #

9 - - - - - - # # - # - - - - - - # - # # - - - - -

10 - - - - - - # # - # - - - - - - # - # # - - - - -

11 - - - - - - # # - # - - - - - - # - # # - - - - -

12 - - - - - - # # - # - - - - - - # - # # - - - - -

13 - - - - - - # # - # - - - - - - # - # # - - - - -

14 - - - - - - # # - # - - - - - - # - # # - - - - -

15 # # # # # # # # # # # # # # # # # # # # # # # # #

16 - - - - - - # # - # - - - - - - # - # # - - - - -

17 # # # # # # # # # # # # # # # # # # # # # # # # #

18 # # # # # # # # # # # # # # # # # # # # # # # # #

- - - - - # # - # - - - - - - # - # # - - - - -

- - - - - # # - # - - - - - - # - # # - - - - -

- - - - - # # - # - - - - - - # - # # - - - - -

- - - - - # # - # - - - - - - # - # # - - - - -

- - - - - # # - # - - - - - - # - # # - - - - -

Figure 1: The Laser method for the(19,2)-problem and the seedQ= ##-#------#-## in Example 1.

Even though the basic parameters in the concept of(m,k)-problems arem andk; as follows from
Theorem 1, the parameters determining structure of seeds are ℓ andk. Therefore, in the next section, we
will fix them and study seedsQ solving(|Q|+ ℓ,k)-problems. Hence, when increasingm, the seed must
be extended in order to keepℓ constant.

To complete this section, we show the asymptotic relation ofm, ℓ, andk for optimal seeds. Let us
fix the parameterk. Let w(m) denote the maximal weight of a seed solving the(m,k)-problem. It was

proved in [11, Lemma 4] thatm−w(m)∈ Θ(m
k

k+1 ). We show thatℓ has the same asymptotic behavior.

Proposition 1. Let k be a fixed positive integer and w(m) denote the maximal weight of a seed solving the
(m,k)-problem. Let H(m) be the set of all seeds with weight w(m) solving the(m,k)-problem. For every
positive m, setℓ(m) := m−|Q|, where Q is an arbitrary seed from H(m). Thenℓ(m) ∈ Θ(m−w(m)).

Proof. Sincem≥ ℓ(m) +w(m), we get trivially the upper bound asℓ(m) ∈ O(m−w(m)). Now let

us prove the lower bound. Letk be fixed. Sincem− w(m) ∈ Θ(m
k

k+1 ) for optimal seeds, it also
holds that(m− w(m))k+1 ∈ O(mk). From combinatorial considerations on seed detection, we get
(m

k

)

≤
(m−w(m)

k

)

(ℓ+ 1). By combining the last two formulas, we obtainℓ(m) ∈ Ω(m−w(m)), which
concludes the proof.
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4 Seed subshifts

In this section, we show the relation between lossless seedsand subshifts. First, we denote sets of seeds
obtained by fixing the parametersℓ andk. Afterwards, we prove that they coincide with languages of
certain sofic subshifts. After defining functions checking the criterion given by Corollary 1 globally on
bi-infinite words, we show that the subshift are exactly the sets of bi-infinite words, for which these
functions have the upper boundℓ.

Definition 4. Let ℓ and k be positive integers. The set of all seeds such that eachseed Q solves the
(|Q|+ ℓ,k)-problem is denoted bySeedℓk.

Example 2. Seed32 = {ε ,#,-,#-,-#,--,#--,-#-,--#,---,#--#,#---,-#--,--#-,---#,----, . . .}.

4.1 Functionsshk and (ℓ,k)-valid bi-infinite words

Definition 5. Consider a positive integer k. We define a functionshk : (AZ)k → N0∪{+∞} as:

shk(u(1), . . . ,u(k)) = sup
i1,...,ik∈Z

sup
p∈N0

{

p | v[0, p−1] = #
p, wherev =⊕

(

σ i1(u(1)), . . . ,σ ik(u(k))
)}

. (2)

We extend the range of the functionshk(·, . . . , ·) to (A∗)k. Finite words w are transformed into bi-
infinite wordsv asv := · · ·--|w-- · · · .

Informally said,shk(u(1), . . . ,u(k)) is equal to

• a finites∈N0 if after arbitrary “aligning” of the words followed by the logicalOR operation (in the
Laser method the diagonal bi-infinite words), each run of#’s has length at mosts and the values
is attained for some “alignment”;

• +∞ if there exists an “alignment” with run of infinitely many#’s (e.g., sh2(· · ·vv|vv· · · , · · ·ww|ww· · ·)
with v= ##- andw= #--).

Every functionshk is symmetric and shift invariant with respect to all variables. The following
observations show how to estimate their values for givenk bi-infinite words.

Observation 1(Lower estimate). Letu(1), . . . ,u(k) be bi-infinite words. If⊕(σ i1(u(1)), . . . ,σ ik(u(k))) has
a factor#p for some i1, . . . , ik; thenshk(u(1), . . . ,u(k))≥ p.

Observation 2 (Upper estimate). Let u(1), . . . ,u(k),v(1), . . . ,v(k) be bi-infinite words such thatu(1) �
v(1), . . . ,u(k) � v(k), where� is a relation defined as

u � v ⇐⇒ (ui = # =⇒ vi = #) holds for all i∈ Z. (3)

Thenshk(u(1), . . . ,u(k))≤ shk(v(1), . . . ,v(k)).

Bi-infinite words for which theshk function is bounded by someℓ, will be the “bricks” of our sub-
shifts. Their factorsQ are exactly those seeds solving(|Q|+ ℓ,k)-problems.

Definition 6. A bi-infinite wordu satisfyingshk(u, . . . ,u) ≤ ℓ is called an(ℓ;k)-valid bi-infinite word.
For fixed positive integersℓ and k, we denote the set of all(ℓ;k)-valid words byV ℓ

k.

Lemma 1. A seed Q solves the(|Q|+ℓ,k)-problem if and only if it is a factor of an(ℓ,k)-valid bi-infinite
word.

Proof. =⇒ : The wordw := · · ·--|-ℓQ-- · · · must be(ℓ,k)-valid since otherwiseQ would not solve the
(|Q|+ ℓ,k)-problem by Corollary 1.
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⇐= : For a contradiction assume that there exists a factorQ of a bi-infinite wordu, which does not
solve the(|Q|+ ℓ,k)-problem. Let the non-detected error combination be{i1, . . . , ik}. Denote
w = · · ·--|-ℓQ-- · · · .

We use shift invariance of shk and Observation 2 to get

shk(w, . . . ,w)≤ shk(u, . . . ,u)≤ ℓ. (4)

SinceQ does not detect the error combination{i1, . . . , ik}, it follows from Corollary 1 that

(⊕(σ i1(w), . . . ,σ ik(w))[0, ℓ] = #ℓ+1.

Nevertheless, this gives us a lower estimate on shk(w, . . . ,w), which is contradicting (4).

4.2 Subshifts of(ℓ,k)-valid words

The property of(ℓ,k)-validity is preserved under the shift operation. Moreover, the sets Vℓk of (ℓ,k)-
valid words are subshifts. To prove it, we need to find a criterion for verifying (ℓ,k)-validity based on
comparing finite factors of a given bi-infinite word.

Lemma 2. Let u be a bi-infinite word over the seed alphabetA. Then the following statements are
equivalent:

1. u is (ℓ;k)-valid;

2. ∀v(1), . . . ,v(k) ∈ Lℓ+1(u)
(

shk(v(1), . . . ,v(k))≤ ℓ
)

;

3. ∀w(1), . . . ,w(k) ∈ Lℓ+1(u)
(

⊕(w(1), . . . ,w(k)) 6= #
ℓ+1

)

.

Proof. We prove three implications.

1=⇒ 2: Consider any such factorsv(1), . . . ,v(k). Find their positionsi1, . . . , ik in u. It holds that

· · ·--|v(1)-- · · · � σ i1(u), . . . , · · ·--|v(k)-- · · · � σ ik(u),

where� is the relation defined by (3). By combining the assumption, shift invariance of shk,
and Observation 2, we obtain shk(v(1), . . . ,v(k))≤ shk(u, . . . ,u)≤ ℓ.

2=⇒ 3: It is an easy consequence of the definition of the shk function.

3=⇒ 1: For a contradiction assume thatu is not(ℓ,k)-valid. Then there exist integersi1, . . . , ik such that
⊕(σ i1(u), . . . ,σ i1(u))[0, ℓ] = #ℓ+1.

The main consequence of Lemma 2 is the fact that every seed must be constructed from reciprocally
compatible tiles of lengthℓ+1. To describe this property, we define a relation of compatibility on the
setAℓ+1.

Definition 7. For given positive integersℓ and k, we define the k-narycompatibility relation Cℓk onAℓ+1

as
Cℓ

k(v
(1), . . . ,v(k)) ⇐⇒ shk(v

(1), . . . ,v(k))≤ ℓ.

Corollary 2. Letu be a bi-infinite word over the seed alphabetA. The wordu is (ℓ,k)-valid if and only
if ∀v(1), . . . ,v(k) ∈ Lℓ+1(u)

(

Cℓ
k(v

(1), . . . ,v(k))
)

.

Now let us prove that(ℓ,k)-valid words really form subshifts. We only need to show that(ℓ,k)-valid
words are exactly those words, which can be created from compatible “tiles”.
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Lemma 3. Let ℓ and k be positive integers. The setV ℓ
k of all (ℓ,k)-valid words is a subshift.

Proof. We prove the lemma by construction of a setX of forbidden words (as they are introduced in 2.2).
Take

X :=
{

x∈ A∗ | ∃v(1), . . . ,v(k) ∈ Lℓ+1(x)
(

¬Cℓ
k(v

(1), . . . ,v(k))
)}

.

The setX contains all possible finite words having some factors, which are “incompatible” with respect
to the givenℓ andk. Hence, the subshiftSX contains exactly all bi-infinite wordsu satisfying∀v1, . . . ,vk ∈
Lℓ+1(u)

(

Cℓ
k(v1, . . . ,vk)

)

and we obtainSX = V ℓ
k by Corollary 2.

Example 3. Even though both of the seeds Q(1) = ##-#-- and Q(2) = --#-## solve the(11,2)-problem,
the seed Q= Q(1)

--Q(2) does not solve the(19,2)-problem as we have seen in Example 1. Since Q(1)⊕
Q(2) = #

6, any seedQ̃ of the formQ̃= Q(1)
-

pQ(2) cannot solve the(|Q̃|+5,2)-problem.

It follows from the last example that the subshift V5
2 of all (5,2)-valid words is not of finite type.

Nevertheless, every subshift Vℓk must be a union of subshifts of finite type, which can be constructed
from so-called(ℓ,k)-generating sets.

Definition 8. For given positive integersℓ and k, a subset G ofAℓ+1 is called(ℓ,k)-generating setif the
following conditions are satisfied:

1. for all v(1), . . . ,v(k) ∈ G, it holdsCℓ
k(v

(1), . . . ,v(k));

2. it is maximal possible (i.e., it cannot contain any other word fromAℓ+1).

Observation 3. Let us take a word from an(ℓ,k)-generating set G. If we remove the last or the first
letter and concatenate the letter- to the beginning or to the end of the word, we obtain again a word
from G. Therefore, every(ℓ,k)-generating set G must contain, e.g., the word-

ℓ+1.

Every generating setG fully determines a subshift of finite type, we will denote it by S(G). This
subshift contains all bi-infinite wordsu such thatLℓ+1(u)⊆ G.

Definition 9. Consider a seed Q and an(ℓ,k)-generating set G. By S(G), we denote the subshift SX of
finite type given by X=Aℓ+1\G. We say that a seed Q isgeneratedby G if Q∈ L(S(G)).

In other words, a seedQ satisfying|Q| ≥ ℓ+1 is generated byG if Lℓ+1(Q)⊆G. A seedQ such that
|Q|< ℓ+1 is generated byG if ∃w∈ G

(

Q∈ L(w)
)

. We can also observe that every(ℓ,k)-valid word is
generated by some(ℓ,k)-generating set.

Observation 4. For every(ℓ,k)-valid bi-infinite wordu, there exists an(ℓ,k)-generating set G such that
u ∈ S(G).

Example 4. Continue with the setting from Example 2. Consider the only one(3,2)-generating set G=
{#--#,#---,-#--,--#-,---#,----}. Since S(G) is of finite type, it follows from theory of symbolic
dynamics that there exists a strongly connected labeled graph H such that S(G) coincide with labels of all
bi-infinite paths in H (for details, see [14]). This graph also determines a finite automaton recognizing
the setL(S(G)), i.e., the set of labels of finite paths in H. Such automaton can be created from a de-Bruijn
graph. However, it would not be minimal as it is shown in Figure 2.

Theorem 2. Let k andℓ be positive integers. The setSeedℓk is a regular language.

Proof. There can be only finite number of(ℓ,k)-generating sets; denote themG1, . . . ,Gd. It follows from
Observation 4 thatS(G1)∪ . . .∪S(Gd) = V ℓ

k and, from Lemma 1, we know thatL(V ℓ
k) = Seedℓk.

For everyi ∈ {1, . . . ,d}, the setS(Gi) is a subshift of finite type, so every setL(S(Gi)) is a regular
language. Since the set Seedℓ

k is a union of finitely many regular languages, it is a regular language.
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(a) A graph created as a de-Bruijn graph from
the set of verticesG.

1

23

#

-

-

-

(b) The previous graph after minimization.

Figure 2: Labeled graphsH for the subshiftS(G) in Example 4.

5 Application for seed design

In this section, we describe how to design seeds with knowledge of an(ℓ,k)-generating set. Then we
show how to search(ℓ,1) and(ℓ,2)-generating sets.

5.1 Seed design using generating sets

Let us have an(ℓ,k)-generating setG and let us consider a task of designing a seedQ of lengths, which
would solve the(ℓ+ s,k)-problem. Ifs≤ ℓ+1, we can take an arbitrary factor of lengths of any word
from G.

If s> ℓ+ 1, we need to construct the seed ins− ℓ steps by extending letter by letter. In the first
step, we take an arbitrary wordw∈ G and setQ := w. In every other step, we take any wordw from G
such that the lastℓ letters ofQ are equal toℓ first letters ofw and concatenate the last letter ofw to Q.
Existence of such wordw is guaranteed since we can use at least the letter- in every step.

5.2 Generating sets fork= 1

As a simple consequence of Corollary 1, we get a full characterization of all seeds solving(m,1)-
problems ([2, Theorem 5]).

Proposition 2. Seedℓ1 = {Q∈ A∗ | #ℓ+1 is not a factor of Q}

Proof. Denotev = · · ·--|-ℓQ-- · · · andℓ = m−|Q|. Then from Corollary 1 follows that:Q solves the
(m,1)-problem ⇐⇒ ∀i ∈ Z

(

(σ i(v))[0, ℓ] 6= #ℓ+1
)

⇐⇒ Q does not contain#ℓ+1.

Thus, for every positiveℓ, the only(ℓ,1)-generating set isAℓ+1\{#ℓ+1}, i.e., the set of all words of
lengthℓ+1 except#ℓ+1.
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P1 P2

P3

P5

P4

P6

P0

Figure 3: The simplified graph of sets of equivalent seeds for(5,2)-generating sets search in Example 6.

5.3 Generating sets fork= 2

Let k= 2 andℓ be an arbitrary fixed positive integer. We can derive all(ℓ,2)-generating sets using graph
theoretical methods by transformation to independent setssearch. LetV := {w(1), . . . ,w(q)} denote the
set of all seeds of lengthℓ+1 solving the(2ℓ+1,2)-problem. Consider a graphRgiven by the adjacency

matrix (MR)i, j =

{

0 if C ℓ
2(w

(i),w( j)),

1 otherwise.
Then the generating sets are “maximal” independent sets (maximal with respect to inclusion) in the

graphR. We require maximality here since it is already required by the second property in Definition 8.

We can partially simplify the graphR. We say that two verticesv andw in this graph are equivalent if
∀x∈V

(

Cℓ
k(x,v) ⇐⇒ Cℓ

k(x,w)
)

. Then we can put all equivalent vertices into one vertex, i.e., every vertex
will contain a set of words instead of only one word. The step with searching “maximal” independent
sets stays unchanged.

Example 5. Let k= 2. For everyℓ ∈ {1, . . . ,4}, all seeds solving the(ℓ+ 1,2)-problem are mutually
compatible, which means that there exists a unique(ℓ,2)-generating set. We list them out in the following
table.

ℓ G
1 {--}
2 {#--,-#-,--#,---}
3 {#--#,#---,-#--,--#-,---#,---}
4 {##---,-##--,--##-,---##,#-#--,-#-#-,--#-#,#--#-,-#--#,#---#,

#----,-#---,--#--,---#-,----#,-----}

Example 6. Let k= 2 andℓ = 5. We find the graph R by the procedure above. After its simplification,
we obtain the graph in Figure 3, where

P0 = {------ ; -----# , ----#- , ---#-- , --#--- , -#---- , #----- ;

----## , ---##- , --##-- , -##--- , ##---- ;

---#-# , --#-#- , -#-#-- , #-#--- ;

--#--# , -#--#- , #--#-- ; -#---# , #---#- ;

#---## ; ##---# ; #----#},

P1 = {#--#-#}, P2 = {--##-# , -##-#- , ##-#--},

P3 = {-##--# , ##--#-}, P4 = {-#--## , #--##-},

P5 = {--#-## , -#-##- , #-##--}, P6 = {#-#--#}.
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By finding “maximal” independent sets in the graph in Figure 3, we get all(5,2)-generating sets:

G1 = P0∪P1∪P3∪P5, G2 = P0∪P1∪P3∪P6,

G3 = P0∪P2∪P4∪P6, G4 = P0∪P1∪P4∪P6.

To conclude the section, let us remark that a similar derivation can be done using hypergraphs also
for k> 2.

6 Conclusion

In this paper, we have studied lossless seeds from the perspective of symbolic dynamics. We have
concentrated on the seed marginℓ defined as a difference of the lengthm of compared strings and the
length of a seed. We have derived asymptotic behavior ofℓ for optimal seeds (Proposition 1), which
must satisfyℓ ∈ Θ(m

k
k+1 ) = Θ(m−w(m)). We have shown another criterion for errors detection by seeds

(Theorem 1). From this criterion we have proved that lossless seeds coincide with languages of certain
sofic subshifts, therefore, they are recognized by finite automata (Theorem 2). We have presented that
these subshifts are fully given by the number of allowed errors k and the seed marginℓ and that they can
be further decomposed into subshifts of finite type.

These facts explain why periodically repeated patterns often appear in lossless seeds. This is caused
by the fact that these patterns correspond to cycles in recognizing automata (which correspond to seeds
for cyclic (m,k)-problems in [11]). Nevertheless, it remains unclear what is the upper bound on the
length of cycles to obtain at least some optimal seeds. In thecase casek = 2, it was conjectured in [2,
Conjecture 1] that it is sufficient to consider patterns having length at mostℓ+1 to obtain some of optimal
seeds.
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