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Several algorithms for similarity search employ seedicftéques to quickly discard very dissimilar
regions. In this paper, we study theoretical propertiessdless seeds, i.e., spaced seeds having full
sensitivity. We prove that lossless seeds coincide witlguages of certain sofic subshifts, hence
they can be recognized by finite automata. Moreover, we shatithese subshifts are fully given by
the number of allowed erroksand the seed margih We also show that for a fixdd optimal seeds

. . k
must asymptotically satisf§y € ©(mk+1).

1 Introduction

The annual volume of data produced by the Next-Generatigue&®ing technologies has been rapidly
increasing; even faster than growth of disk storage capaciThus, new efficient algorithms and data-
structures for processing, compressing and storing thetse are needed.

Similarity search represents the most frequent operatidmoinformatics. In huge DNA databases,
a two-phase scheme is the most widely used approach to fimtalirrences of a given string up to
some Hamming or Levenshtein distance. First of all, mostiggichilar regions are discarded in a fast
filtration phase Then, in averification phasgonly “hot candidates” on similarity are processed by
classical time-consuming algorithms like Smith-Waterrf28] or Needleman-Wunsch [117].

Algorithms for the filtration phase are often based on stedaleed filtersvhich make use of the
fact that two strings of the same lengthbeing in Hamming distanck must necessarily share some
exact patterns. These patterns are represented as swerghe alphabef#,-} calledseedswhere the
“matching” symbol# corresponds to a matching position and the “joker” symbti a matching or a
mismatching position.

For instance, for two strings of length 15, matching withivoterrors, shared patterns are, e.g.,
##-#-—##-# or #####. For illustration, if we consider that two strings match=asX=====X=====
(where the symbols andX represent respectively matching and mismatching positjiaghen the corre-
sponding seed positions can be following:

As the second seed is the longest possible contiguous s#ed aase, we observe the main advantage of
spaced seeds in comparison to contiguous seeds: for thetasknéhere exist spaced seeds with higher
number of#’s (so-calledweighy.

Two basic characteristics of every seed setectivityand sensitivity Selectivity measures restric-
tivity of a filter created from the seed. In general, higheigheimplies better selectivity of the filter.
Lossless seedwe those seeds having full sensitivity. They are easieatalle mathematically on one
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hand, but attain lower weight on the other hahdssy seedare employed for practical purposes more

since a small decrease in sensitivity can be compensatednsyderable improvement of selectivity.
Nevertheless, only lossless seeds are considered in hés. pgor a given lengtim of strings to be

compared and a given number of allowed mismatd¢héssich setting is calle@m, k)-problen), the aim

is to design fully sensitive seeds with highest possibleghtei

1.1 Literature

The idea of lossless seeds was originally introduced by Bandk and Karkkaineri [3/4]. Let us remark
that lossy spaced seed were used in the same time in therPhttger program [16]. Generalization of
lossless seeds was studied by Kucherov et al. [11]. givashamerequired (the pattern is shared at more
positions). The authors also proved that, for a fixed nurklmrmismatchespptimal seedgi.e., seeds
with the highest possible weight among all seeds solvingyiben problem) must asymptotically satisfy
m—w(m) € e(mﬁl), wherew(m) denotes the maximal possible weight of a seed solving(ithé&)-
problem. They also started a systematic study of seededrbgtrepeating of short patterns. Afterwards,
the results on asymptotic properties of optimal seeds weremglized by Farach-Colton et &l. [10].
Computational complexity of optimal seed construction wksved by Nicolas and Rivals [18,119].

Further, the theory on lossless seed was significantly dpeel by Egidi and Manzini. First, they
studied seeds designed from mathematical objects calléecpeulers [6[ 9]. The idea of utilization of
some type of “rulers” was later independently extended by[R|Rcyclic rulers) and, again, Edigi and
Manzini [8] (difference sets). In_[8], these ideas were et also to seed families. Cyclic rulers and
difference sets mathematically correspond to each otheigi End Manzini [7] also showed possible
usage of number-theoretical results on quadratic resiftueseed design.

In practice, seeds often find their use in short-read mappgrkementing hash tables (for more
details on read mapping, see, elg.][12, 22]). ZOOM [13] aarH5] are examples of mappers utilizing
lossless seeds.

A list of papers on spaced seed is regularly maintained by [R0].

1.2 Our object of study

One of the most important theoretical aspects of losslesdssare their structural properties. Whereas
good lossy seeds usually show irregularity, it was obsetivatigood lossless seeds are often repetitions
of short patterns [([11,15, 2] 8]). The question whether ogliseeds can be constructed in all cases
by repeating patterns, which would be short with respeceta dength, remains open (séé [2, Conjec-
ture 1]). Its answering would have practical impacts in dtgw@ent of bioinformatical software tools
since the search space of programs for lossless seeds desigrbe significantly cut and also indexes
in programs using lossless seeds for approximate stringhimat could be more memory efficient (like

(5.

1.3 Paper organization and results

In this paper, we follow and further develop ideas fram [2}e ¥éncentrate on a parametaralled seed
margin, which is the difference between the sizef compared strings and the length of a seed.

In Sectior 2 we recall the notation used in combinatorics ord#& and symbolic dynamics. In Sec-
tion[3 we formally define seeds arfoh, k)-problems. Then we transform the problem of seed detection
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into another criterion (Theorel 1) and also show asymptotperties of for optimal seeds (Proposi-
tion[T). In Section ¥ we prove that sets of seeds, obtainedingfthe parametersand?, coincide with
languages of some sofic subshifts. Therefore, those seeedfsre recognized by finite automata. In
Sectiorl 5 we show applications of obtained results for sesdyd. These results provide a new view on
lossless seeds and explain their periodic properties.

2 Preliminaries

Throughout the paper, we use a standard notation of conaoicsibn words and symbolic dynamics.

2.1 Combinatorics on words

An alphabetA = {ay,...,am-1} is a finite set of symbols callelétters In this paper, we will work
exclusively with the alphabdi#,-} A finite sequence of letters from is called &finite word (over A).
The setA* of all finite words (including the empty worg) provided with the operation of concatenation
is a free monoid. The concatenation is denoted multipliesti If w = wows ---wp_1 is a finite word
over A, we denote its length biyv| = n. We deal also with bi-infinite sequences of letters frdnealled
bi-infinite wordsw = - --w_w_1|wowyw> - - - over.A. The sets of all bi-infinite words ovet is denoted
by AZ.

A finite word w is called afactor of a wordu (u being finite or bi-infinite) if there exist wordp
ands (finite or one-side infinite) such that= pws For given indexesand j, the symbolli, j] denotes
the factorujui1---u; if i < j, oreif i > j. A concatenation ok wordsw is denoted byX. The set of
all factors of a wordu (u being finite or bi-infinite) is called the languagewéand denoted by (u). Its
subsetC(u) N.A" containing all factors ofi of lengthn is denoted byCy(u).

Let us remark that this notation will be used extensivelyhia whole text. For instanos[2,5]-*
denotes the word created by concatenation of the fagtarsw,ws of a bi-infinite wordw and the word
----. Similarly, for a finite wordv of lengthn, by ----- |V=="-- we denote the bi-infinite word such
that for alli € {0,...,n—1}(u; =w;) and for alli € Z\ {0,...,n— 1}(u; = -). For more information
about combinatorics on words, we can refer to Lothaire I.[15]

2.2 Symbolic dynamics

Consider an alphabet. On the setd? of bi-infinite words ovet4, we define a so-called Cantor mettic

as
d(u,v) — 0 .|fu:V, o
275 if u#£v, wheres:=min{Ji| | ui #vi }.

We define ahift operationo as[o(u)]; = uj 1 for all i € Z. The mapo is invertible, and the powes® is
defined by composition for akl € Z. The mapo is continuous omZ, therefore (A%, o) is a dynamical
system, which is called fall shift.

A bi-infinite word u € A% avoidsa set of finite wordX if £(u)NX = 0. By Sx we denote the set of
all bi-infinite words that avoidX and we call it asubshift If X is a regular languagéy is calledsofic
subshift if X is finite, S¢ is called asubshift of finite typeThelanguageL(S) of a subshiftSis the union
of languages of all bi-infinite words frof8 By £,(S) we denote the sef(S)N.A". It holds that a set
SC A” is a subshift if and only if it is invariant under the shift map(that meanss(S) = S) and it is
closed with respect to the Cantor metric. A general theogubkhifts is well summarized in[14].



142 Languages of lossless seeds

3 Lossless seeds

In this section, we introduce basic definition formalizingdless seeds. Then we introduce a parandeter
called seed margin and show its asymptotic properties fiimapseeds. Let us recall thatdenotes the
length of strings to be compared akdenotes the number of allowed mismatches.

Definition 1. The binary alphabetd = {#, -} is calledseed alphabe€&very finite word over this alpha-
bet is aseed Theweightof a seed Q is the number of occurrences of the letiarQ.

Definition 2. Let m and k be positive integers. Every $at...,ix} C {0,...,m— 1} is called error
combinationof k errors.

Consider a seed Q such th@| < m and denote := m— |Q|, which is the so-calledeed margin
Then Qdetectsan error combination{is,...,ix} C {0,...,m— 1} at position te {0,...,¢} if for all
j€{0,...,|Q—1}itholds(Q; = # = j+t & {i1,...,ik}).

The seed Q is said &plvethe (m,k)-problem if every error combinatiofis, ..., ik} € {0,...,m—1}
of k errors is detected by Q at some positian {0, ...,¢}.

Many combinatorial properties of seeds can be studied floemperspective of bi-infinite words.
First, we need a seed analogy of the logical functi@napplied on bi-infinite words and producing,
again, a bi-infinite word.

Definition 3. Consider k bi-infinite words¥ ..., u®¥ over A. We define a k-nary operatiah as

viez: (au®,. . u®))= {# f (uW); =# for some je {1,....K}
- otherwise
The following theorem will be crucial for seed analysis ig tlest of the text. It is mainly a translation
of basic definitions to the formalism of shifts and logicakagtions, but it enables us to easily observe
on which parameters (and how) the structure of losslessseatly depends.

Theorem 1. Let m and k be positive integers and Q be a seed such@yat m. Denote/ := m— |Q| and
W :=---——|-‘Q-----. Then Q detects an error combinatidiy,...,ix} C {0,...,m— 1} at a position
t € {0,...,¢} if and only if

(a(a"w),...o%w)) =~ (1)

—t

Proof. Qdetects{iy,...,ix} at positiont if Vj € {0,...,|Q|— 1}(Qj =# — j+te& {il,...,ik}). This
is equivalent to7p € {i1,. .., ik} (Wp_t+¢ = -), which is equivalent td {1). O

Corollary 1. Q does not detect a combinatidi, ...,ix} at any position te {0,...,¢} if and only if
(B(0(W),..., 0% (w))[0,0] = #+1,

Let us mention that in the case of two errors, Corolldry 1esponds to the Laser methad [2, Sec-
tion 4.1] (a JavaScript implementation is available_at fd)we illustrate in the following example.

Example 1. Consider a seed @ ##-#-----#-## of length14 and the(19,2)-problem. In Figurd L
we show a corresponding schematic table. Demote- --- --|-°Q-----. The wordsd(gj(w), gj(w))
occur diagonally. It is easily seen from Corolldry 1 that Qedanot detect the error combinatid®, 13}
sincel = 5and (&(0°(w),o3(w)))[0,5] = # L.
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01 2 3 45 6 7 8 9 1011121314 1516 17|18
## - # - - - - - - # - # #

0 B- - - -|## - # - - - - - - # - # #/ - - - - -
1 - - - - - - - - - # - % # - - - - -
2 - - - -## - # - - - - - - # - # # - - - - -
3 - - - Bl % - # - - - - - - # - # # - - - - -
4 - - - - # # - # - - - - - - # - # #|- - - - -
5#####?_ﬂ##################
6 #||# # # # #|# [H# # # # # # # # # # # #|# # # # #
7 -|-----l#+H®&# - -----#-# #/- - - - -
8 #||# # # # #|# # # [P # # # # # # # # # #|# # # # #
9 -|- - ---|1## -+ H”R- - - - -# - # #/- - - - -
10-f|- - - - -|# # - # - @- - - - # - # #|/- - - - -
11-|- - - - -|# # - # - - @- - - # - # #/- - - - -
122-|- - - - -|# # - # - - -H- - # - # #/- - - - -
13-|-----## - # - - - - @-# - # #/ - - - - -
M4------|# #-#-----HB# - # #--- - -
15# || # # # # #|# # ## # # # # # # [P# # #|# # # # #
16-|- - - - -|# # - #- - - - - -+ HH# #/- - - - -
17#||# # # # #|# # # # ## # # # # # # [P#|# # # # #
18###################Ei####

- - - - -l # - #------#-++HH- - - -

- - - - —|l# 4 - # - -----# - #-HR- - -

- - - - —|l## - # - -----#-##--H -

- - - - —|l## - # - - - - - - -# #---H-

- - - - -|l## - #------#%-#4#----HB

Figure 1: The Laser method for tli&9, 2)-problem and the sed@ = ##-#----——#-## in Example_1.

Even though the basic parameters in the concegthok)-problems arem andk; as follows from
Theorenti 1L, the parameters determining structure of seedsaadk. Therefore, in the next section, we
will fix them and study seed3 solving (|Q| + ¢, k)-problems. Hence, when increasingthe seed must
be extended in order to keégonstant.

To complete this section, we show the asymptotic relatiomof, andk for optimal seeds. Let us
fix the parametek. Letw(m) denote the maximal weight of a seed solving thek)-problem. It was

proved in[11, Lemma 4] thah—w(m) e(m%)_ We show that has the same asymptotic behavior.
Proposition 1. Letk be a fixed positive integer andw) denote the maximal weight of a seed solving the

(m,k)-problem. Let Hm) be the set of all seeds with weightm) solving the(m, k)-problem. For every
positive m, sef(m) := m— |Q|, where Q is an arbitrary seed from(h). Then/(m) € ©(m—w(m)).

Proof. Sincem > ¢(m) +w(m), we get trivially the upper bound a&&m) € O(m—w(m)). Now let
us prove the lower bound. Ld¢ be fixed. Sincem—w(m) e O(mﬁkl) for optimal seeds, it also
holds that(m — w(m))¥** ¢ O(mK). From combinatorial considerations on seed detection, &te g
(M) < (™M) (¢ 4 1). By combining the last two formulas, we obtaitm) € Q(m— w(m)), which
concludes the proof. O
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4 Seed subshifts

In this section, we show the relation between lossless sewtisubshifts. First, we denote sets of seeds
obtained by fixing the parametefaandk. Afterwards, we prove that they coincide with languages of
certain sofic subshifts. After defining functions checkihg triterion given by Corollarly]1 globally on
bi-infinite words, we show that the subshift are exactly thts ©f bi-infinite words, for which these
functions have the upper bouiid

Definition 4. Let ¢ and k be positive integers. The set of all seeds such that sseth Q solves the
(|Q| + ¢,k)-problem is denoted bgeed.

Example 2. See@ = {&, #, -, #-, ~#, ——, #-—, ~#—, ——#, ———, #=—# #——— —#-— ——#- ——# ——— .}

4.1 Functionssh, and (¢,k)-valid bi-infinite words

Definition 5. Consider a positive integer k. We define a funcgbp: (AZ)X — NoU {+} as:

shqu®, ... .u®)y = sup sup{p | v[0,p—1] = #°, wherev = & (ail(u(l)),...,aik(u(k))>}. 2)

i1,...,ikEZ peNp
We extend the range of the functisix(-,...,-) to (A*)X. Finite words w are transformed into bi-
infinite wordsv asv := -+ ——|w-----.
Informally said,sh(u,...,u¥)is equal to

e afinitese Ny if after arbitrary “aligning” of the words followed by thedical OR operation (in the
Laser method the diagonal bi-infinite words), each ru#'sthas length at mostand the values
is attained for some “alignment”;

e -+ ifthere exists an “alignment” with run of infinitely mams (e.g., sh(---vWvv--- | ---wwjww: - -)
with v = ##- andw = #--).

Every functionsh, is symmetric and shift invariant with respect to all vareghl The following
observations show how to estimate their values for gk/bninfinite words.

Observation 1(Lower estimate) Letu®, ..., u be bi-infinite words. If5(c' (u),..., o (u®)) has
a factor #° for some 1, ..., ix; thensh(u®, ... ,u®) > p.

Observation 2 (Upper estimate) Let u®,...,u® v . . v(K be bi-infinite words such thai) <
v . u® < v where< is a relation defined as
u=<v = (ui=# = v;=#) holds forall ic Z. (3)

Thensh(u®,...,u®) < sh(v®, ... v),

Bi-infinite words for which thesh, function is bounded by som& will be the “bricks” of our sub-
shifts. Their factor®) are exactly those seeds solvifi@®| + ¢, k)-problems.
Definition 6. A bi-infinite wordu satisfyingsh(u,...,u) < ¢ is called an(¢;k)-valid bi-infinite word
For fixed positive integeréand k, we denote the set of it k)-valid words bW’k.

Lemma 1. A seed Q solves tHéQ| + ¢, k)-problem if and only if it is a factor of af¢, k)-valid bi-infinite
word.

Proof. = : The wordw :=----- |-‘Q----- must be(¢, k)-valid since otherwis€ would not solve the
(|Q| + ¢,k)-problem by Corollary11.
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< For a contradiction assume that there exists a fa@taf a bi-infinite wordu, which does not
solve the(|Q| + ¢,k)-problem. Let the non-detected error combination{bg...,ix}. Denote
W=-...—- |—€Q—— e,

We use shift invariance of gtand Observatiohl2 to get
she(w,...,w) <sh(u,...,u) < /. (4)
SinceQ does not detect the error combinatifi, ..., ik}, it follows from Corollary[1 that
(B(a"(w),...,a"(w))[0,/] = #F1.

Nevertheless, this gives us a lower estimate quivgh..,w), which is contradicting((4). O

4.2 Subshifts of(¢,k)-valid words

The property of(¢,k)-validity is preserved under the shift operation. Moreptke sets \ﬁ of (¢,k)-
valid words are subshifts. To prove it, we need to find a ddtefor verifying (¢,k)-validity based on
comparing finite factors of a given bi-infinite word.

Lemma 2. Let u be a bi-infinite word over the seed alphabét Then the following statements are
equivalent:

1. uis (¢4;k)-valid;

2. W, v € Lo (u) (shav,... vK) < 0);

3. vw, o wk e Lo (u) (@wb,... wil) £ #+1),
Proof. We prove three implications.

1= 2: Consider any such factov&",... vi¥. Find their positionss, ... ,ix in u. It holds that
.. .—_|V(l)__. = O'il(U), ey ..__|V(k)__. = O'ik(U),
where= is the relation defined by{3). By combining the assumptidift svariance of sf,
and Observationl 2, we obtainghV), ... v9) < sh(u,...,u) < /.
2= 3: Itis an easy consequence of the definition of thefghction.
3= 1: For a contradiction assume thais not (¢, k)-valid. Then there exist integers ..., ik such that
®(o'(u),...,0(u))[0,£] = #+L, O

The main consequence of Lemfa 2 is the fact that every seecbmgsnstructed from reciprocally
compatible tiles of lengtlf + 1. To describe this property, we define a relation of compiyiton the
setAL,

Definition 7. For given positive integeréand k, we define the k-nappmpatibility relation Cﬁ on A1
as
clv, ... v¥) = sh(v@,. VM) <e.

Corollary 2. Letu be a bi-infinite word over the seed alphabét The wordu is (¢,k)-valid if and only
if Wb, v e Lo (u) (CRVY, .. v)).

Now let us prove that/, k)-valid words really form subshifts. We only need to show tffak)-valid
words are exactly those words, which can be created from atiohg “tiles”.
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Lemma 3. Let/ and k be positive integers. The seﬁ of all (¢,k)-valid words is a subshift.

Proof. We prove the lemma by construction of a Xetf forbidden words (as they are introduced in 2.2).
Take
X:={xe A" | WY . v e L) (-CrvY,... v}

The setX contains all possible finite words having some factors, Whie “incompatible” with respect
to the giver? andk. Hence, the subshifix contains exactly all bi-infinite wordssatisfyingvva, ..., w €
Lo41(u)(Cg(va,...,V)) and we obtairSx = V| by Corollary2. 0

Example 3. Even though both of the seed§'Q= ##-#-- and Q% = --#-##solve theg(11,2)-problem,
the seed @= QY --Q(? does not solve th¢l9, 2)-problem as we have seen in Exanigle 1. Sin¢éq
Q@ = #5, any seed) of the formQ = QY -PQ(@ cannot solve th¢|Q| + 5, 2)-problem.

It follows from the last example that the subshifﬁ‘aﬁf all (5,2)-valid words is not of finite type.
Nevertheless, every subshiftﬁ\must be a union of subshifts of finite type, which can be coocstd
from so-called ¢, k)-generating sets.

Definition 8. For given positive integeréand k, a subset G ofl‘! is called (£, k)-generating s the
following conditions are satisfied:

1. forall v ... vi¥ € G, it holdsC (VY ... ,vkK);
2. itis maximal possible (i.e., it cannot contain any otheradvrom 4‘+1).

Observation 3. Let us take a word from af¥,k)-generating set G. If we remove the last or the first
letter and concatenate the letterto the beginning or to the end of the word, we obtain again adwor
from G. Therefore, every, k)-generating set G must contain, e.g., the wefd’.

Every generating seb fully determines a subshift of finite type, we will denote it §(G). This
subshift contains all bi-infinite words such thatC,,1(u) C G.

Definition 9. Consider a seed Q and g, k)-generating set G. By(&), we denote the subshifi ®f
finite type given by % A+1\G. We say that a seed Qgeneratedy G if Qc L(S(G)).

In other words, a see@ satisfying|Q| > ¢+ 1 is generated b if £,,1(Q) C G. A seedQ such that
|Q| < £+ 1is generated b if Iwe G(Q € L(w)). We can also observe that everyk)-valid word is
generated by somg, k)-generating set.

Observation 4. For every(¢,k)-valid bi-infinite wordu, there exists aif/,k)-generating set G such that
ue SG).

Example 4. Continue with the setting from Example 2. Consider the onby(8, 2)-generating set G-
{#——# #-—— -#-— —-#- ———# --—-}. Since §G) is of finite type, it follows from theory of symbolic
dynamics that there exists a strongly connected labelegrgrhsuch that §5) coincide with labels of all
bi-infinite paths in H (for details, seé [14]). This graph aldetermines a finite automaton recognizing
the set’(S(G)), i.e., the set of labels of finite paths in H. Such automaterbeecreated from a de-Bruijn
graph. However, it would not be minimal as it is shown in Figfdr

Theorem 2. Let k and/ be positive integers. The sféiaecf; is a regular language.

Proof. There can be only finite number ¢f k)-generating sets; denote th&y, ..., Ggy. It follows from
Observatiofi ¥ tha®(G1) U...US(Gq) = V| and, from Lemma&l1, we know that(V ;) = Seed.

For everyi € {1,...,d}, the setS(G;) is a subshift of finite type, so every sé&{S(G;)) is a regular
language. Since the set Séésla union of finitely many regular languages, it is a regudaguage. [
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A

(a) A graph created as a de-Bruijn graph from
the set of vertice&. (b) The previous graph after minimization.

Figure 2: Labeled graphd for the subshiftS(G) in ExampleL4.

5 Application for seed design

In this section, we describe how to design seeds with knaydeaf an(¢,k)-generating set. Then we
show how to searcl¥, 1) and(¢,2)-generating sets.

5.1 Seed design using generating sets

Let us have arf/, k)-generating se® and let us consider a task of designing a s@aif lengths, which
would solve the? + s k)-problem. Ifs< ¢+ 1, we can take an arbitrary factor of lengtlof any word
from G.

If s> ¢+ 1, we need to construct the seedsin ¢ steps by extending letter by letter. In the first
step, we take an arbitrary womd< G and seQ := w. In every other step, we take any wokdrom G
such that the last letters ofQ are equal td first letters ofw and concatenate the last lettervoto Q.
Existence of such words is guaranteed since we can use at least the lefteevery step.

5.2 Generating sets fok = 1

As a simple consequence of Corolldry 1, we get a full charaetiion of all seeds solvingm,1)-
problems ([2, Theorem 5]).

Proposition 2. Seed = {Q € .A* | #*1is not a factor of Q

Proof. Denotev = -+ -~ \—”Q——_. - and/ = m—|Q|. Then from Corollary 1l follows thatQ solves the
(m,1)-problem <= Vi € Z ((0'(v))[0,£] # #"*1) <= Qdoes not contaim'**. O

Thus, for every positivé, the only(¢,1)-generating set ist‘*1\ {#/*1}, i.e., the set of all words of
length/ + 1 except#/+1.
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7] j@ [P

&
] L

Figure 3: The simplified graph of sets of equivalent seed$3d)-generating sets search in Exanigle 6.

5.3 Generating sets fok = 2

Letk = 2 and/ be an arbitrary fixed positive integer. We can derivd &I2)-generating sets using graph
theoretical methods by transformation to independentsestech. LeV = {w), ... w(@} denote the
set of all seeds of length+ 1 solving the(2/+ 1,2)-problem. Consider a graghgiven by the adjacency
0 if CHwd wi)),
1 otherwise
Then the generating sets are “maximal” independent setsifmahwith respect to inclusion) in the
graphR. We require maximality here since it is already requiredh®ygecond property in Definitién 8.
We can partially simplify the grapR. We say that two verticesandw in this graph are equivalent if
vxeV (Cf((x, V) <= C{(x, w)). Then we can put all equivalent vertices into one vertex,éxery vertex
will contain a set of words instead of only one word. The stéih \wearching “maximal” independent
sets stays unchanged.

matrix (MR)i j =

Example 5. Let k= 2. For every/ € {1,...,4}, all seeds solving thé + 1, 2)-problem are mutually
compatible, which means that there exists a unigu2)-generating set. We list them out in the following
table.

{1 G

1 {--}

2 {#--7 —#-, —#, --_}

3 {#——#, #——— —H—— ——H#-, ———#, ———}

4 {##--—, —H#—— ——HH - HE B W HH - HH A H A,
B W —H e H }

Example 6. Let k=2 and/ = 5. We find the graph R by the procedure above. After its singiidia,
we obtain the graph in Figuiiel 3, where

————BH, ———#H—, ——HH—— BB B
———H-#, ——#-#—, —H—H—— HH-—;
——H——#, ~H—H—, B—H—— —H——#, #——#~
H-——##; #H-——H#, #-———H#},
Pr = {#--#-#}, Py = {——##t-#, ~##-#-, ##-#--1},
Py = {-##—#, ##——#-}, Pr = {-#-—-##, #——##-},
Ps = {——#-##, —#-##-, #-##--1}, Ps = {#-#-—#}.
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By finding “maximal” independent sets in the graph in Figlier get all(5,2)-generating sets:

G1:POUP1UP3UP5, G2:POUP1UP3UP5,
Gz =R UP,UP,UPs, Ga=PyUPLUP;UP:.

To conclude the section, let us remark that a similar déamatan be done using hypergraphs also
fork > 2.

6 Conclusion

In this paper, we have studied lossless seeds from the ptivepef symbolic dynamics. We have
concentrated on the seed mardidefined as a difference of the lengthof compared strings and the
length of a seed. We have derived asymptotic behavidtfof optimal seeds (Propositidd 1), which

must satisfyl e O(mﬁl) = O(m—w(m)). We have shown another criterion for errors detection bgsee
(Theorenill). From this criterion we have proved that losseds coincide with languages of certain
sofic subshifts, therefore, they are recognized by finiteraata (Theorerh]l2). We have presented that
these subshifts are fully given by the number of allowedrek@nd the seed margihand that they can
be further decomposed into subshifts of finite type.

These facts explain why periodically repeated patterrencdppear in lossless seeds. This is caused
by the fact that these patterns correspond to cycles in neziog automata (which correspond to seeds
for cyclic (m,k)-problems in[[11]). Nevertheless, it remains unclear wkahe upper bound on the
length of cycles to obtain at least some optimal seeds. lcdke cas& = 2, it was conjectured in_[2,
Conjecture 1] that it is sufficient to consider patterns hgvength at most+ 1 to obtain some of optimal
seeds.

Acknowledgements. The author is supported by the ABSANGS grant of the Frenclergovent
(programinvestissement d’Avenir He is grateful to Gregory Kucherov and Karel Klouda fortel
ideas. He also thanks three anonymous referees for valoalriments.

References

[1] Karel Bfinda (2013)1iaser method on-lineAvailable athttp://brinda.cz/laser-method/.

[2] Karel Bfinda (2013): Lossless seeds for approximate string matching Master's the-
sis, FNSPE Czech Technical University in Prague, Czech Bepu Available at
http://brinda.cz/publications/diplomka.pdf.

[3] Stefan Burkhardt & Juha Karkkainen (200Better Filtering with Gapped g-Gramsin: Proceedings of
the 12th Symposium on Combinatorial Pattern Matching (CRMgture Notes in Computer Scienz@89,
Springer, pp. 73-85, d0i:10.1007/3-540-48194:X

[4] Stefan Burkhardt & Juha Karkkainen (200Better filtering with gapped q-gramBundamenta Informaticae
56(1-2), pp. 51-70.

[5] Yangho Chen, Tate Souaiaia & Ting Chen (2002¢rM: efficient mapping of short sequencing reads with pe-
riodic full sensitive spaced seed&oinformatics25(19), pp. 2514-2521, doi:10.1093/bioinformatics/B64

[6] Lavinia Egidi & Giovanni Manzini (2011):Spaced Seeds Design Using Perfect Ruldrs Proceedings
of the 18th International Symposium on String Processird)laformation Retrieval (SPIRE), Pisa (Italy)
Lecture Notes in Computer Scient@24, Springer, pp. 32—43, d0i:10.1007/978-3-642-24583-


http://brinda.cz/laser-method/
http://brinda.cz/publications/diplomka.pdf
http://dx.doi.org/10.1007/3-540-48194-X_6
http://dx.doi.org/10.1093/bioinformatics/btp486
http://dx.doi.org/10.1007/978-3-642-24583-1_5

150 Languages of lossless seeds

[7] Lavinia Egidi & Giovanni Manzini (2013)Better spaced seeds using quadratic residugsurnal of Com-
puter and System Sciencé3(7), pp. 1144-1155, dpi:10.1016/}.jcss.2013.03.002.

[8] Lavinia Egidi & Giovanni Manzini (2014):Design and analysis of periodic multiple seedfheoretical
Computer Scienc®22, pp. 62—76, doi:10.1016/j.tcs.2013.12,007.

[9] Lavinia Egidi & Giovanni Manzini (2014)Spaced Seeds Design Using Perfect Rul&wndamenta Infor-
maticael31(2), pp. 187-203, d0i:10.3233/FI-2014-1009.

[10] Martin Farach-Colton, Gad M. Landau, Suleyman Cenkisalp & Dekel Tsur (2007):Optimal spaced
seeds for faster approximate string matchintpurnal of Computer and System Scien¢8§7), pp. 1035—
1044, doj:10.1016/}.jcss.2007.03.007.

[11] Gregory Kucherov, Laurent Noé & Mikhail A. Roytberg Q@5): Multiseed lossless filtration
IEEE/ACM Transactions on Computational Biology and Bioimhatics (TCBB) 2(1), pp. 51-61,
doi{10.1109/tcbb.2005.12.

[12] Heng Li & Nils Homer (2010):A survey of sequence alignment algorithms for next-germgraequencing.
Briefings in bioinformatic41(5), pp. 473-83, d0i:10.1093/bib/bbg015.

[13] Hao Lin, Zefeng Zhang, Michael Q. Zhang, Bin Ma & Ming 1A@08):ZO0M! Zillions Of Oligos Mapped
Bioinformatics24(21), pp. 2431-2437, doi:10.1093/bicinformatics/ih4

[14] Douglas Lind & Brian Marcus (1995)An Introduction to Symbolic Dynamics and Codin@ambridge
University Press, d0i:10.1017/CB0O9780511626302.

[15] M. Lothaire (1983): Combinatorics on Words Encyclopedia of Mathematics and its Applicatiohs,
Addison-Wesley Publishing Co., Reading, Mass., doi:10710BO9780511566097. Reprinted in the Cam-
bridge University Press, Cambridge, UK, 1997.

[16] Bin Ma, John Tromp & Ming Li (2002)PatternHunter: Faster and more sensitive homology seaBibin-
formatics18(3), pp. 440-445, doi:10.1093/bioinformatics/18.8.44

[17] Saul B Needleman & Christian D Wunsch (197®:general method applicable to the search for simi-
larities in the amino acid sequence of two proteingournal of Molecular Biology8(3), pp. 443-453,
doi{10.1016/0022-2836(70)9005[7-4.

[18] Francois Nicolas &Eric Rivals (2005): Hardness of Optimal Spaced Seed Desigim A. Apostolico,
M. Crochemore & K. Park, editorsProceedings of the 16th Annual Symposium on Combinatoaal P
tern Matching (CPM), Jeju Island (Kored)ecture Notes in Computer Scier8e37, Springer, pp. 144-155,
doii10.1007/b137128.

[19] Francois Nicolas &ric Rivals (2008)Hardness of Optimal Spaced Seed Desidpurnal of Computer and
System ScienceB(5), pp. 831-849, d0i:10.1016/j.jcss.2007.10.001.

[20] Laurent Noé (2014): Spaced seeds bibliography Available at
http://www.1lifl.fr/~noe/spaced_seeds.htmll

[21] Laurent Noé & Gregory Kucherov (2005YASS: enhancing the sensitivity of DNA similarity seafdticleic
Acids ResearcB3(suppl. 2), pp. W540-W543, doi:10.1093/nar/gki478.

[22] Paolo Ribeca (20128hort-Read Mappingln Naiara Rodriguez-Ezpeleta, Michael Hackenberg & Ana M
Aransay, editors: Bioinformatics for High Throughput Sequencingpringer New York, pp. 107-125,
doii10.1007/978-1-4614-0782R

[23] Temple F. Smith & Michael S. Waterman (1981dentification of common molecular subsequendesirnal
of molecular biologyd47(1), pp. 195—7, d0i:10.1016/0022-2836(81)90087-5.


http://dx.doi.org/10.1016/j.jcss.2013.03.002
http://dx.doi.org/10.1016/j.tcs.2013.12.007
http://dx.doi.org/10.3233/FI-2014-1009
http://dx.doi.org/10.1016/j.jcss.2007.03.007
http://dx.doi.org/10.1109/tcbb.2005.12
http://dx.doi.org/10.1093/bib/bbq015
http://dx.doi.org/10.1093/bioinformatics/btn416
http://dx.doi.org/10.1017/CBO9780511626302
http://dx.doi.org/10.1017/CBO9780511566097
http://dx.doi.org/10.1093/bioinformatics/18.3.440
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1007/b137128
http://dx.doi.org/10.1016/j.jcss.2007.10.001
http://www.lifl.fr/~noe/spaced_seeds.html
http://dx.doi.org/10.1093/nar/gki478
http://dx.doi.org/10.1007/978-1-4614-0782-9_7
http://dx.doi.org/10.1016/0022-2836(81)90087-5

	1 Introduction
	1.1 Literature
	1.2 Our object of study
	1.3 Paper organization and results

	2 Preliminaries
	2.1 Combinatorics on words
	2.2 Symbolic dynamics

	3 Lossless seeds
	4 Seed subshifts
	4.1 Functions shk and (l,k)-valid bi-infinite words
	4.2 subshifts of (l,k)-valid words

	5 Application for seed design
	5.1 Seed design using generating sets
	5.2 Generating sets for k=1
	5.3 Generating sets for k=2

	6 Conclusion

