Constructing Words with High Distinct Square Densities

F. Blanchet-Sadri S. Osborne
Department of Computer Science
University of North Carolina
P.O. Box 26170
Greensboro, North Carolina 27402-6170, USA
blanchet@uncg.edu shosborn@uncg.edu

Abstract

Fraenkel and Simpson showed that the number of distinct squares in a word of length n is bounded from above by $2 n$, since at most two distinct squares have their rightmost, or last, occurrence begin at each position. Improvements by Ilie to $2 n-\Theta(\log n)$ and by Deza et al. to $\lfloor 11 n / 6\rfloor$ rely on the study of combinatorics of FS-double-squares, when the maximum number of two last occurrences of squares begin. In this paper, we first study how to maximize runs of FS-double-squares in the prefix of a word. We show that for a given positive integer m, the minimum length of a word beginning with m FS-double-squares, whose lengths are equal, is $7 m+3$. We construct such a word and analyze its distinct-square-sequence as well as its distinct-square-density. We then generalize our construction. We also construct words with high distinct-square-densities that approach $5 / 6$.

1 Introduction

Computing repetitions in strings of letters from a finite alphabet is profoundly connected to numerous fields such as mathematics, computer science, and biology, where the data can be easily represented as words over some alphabet, and finds important practical uses in several research areas, notably in text compression, string searching and pattern matching [10, 15], cryptography, music, natural language processing [36], and computational biology [22,40]. Several pattern matching algorithms take advantage of the repetitions of the pattern to speed up the search of its occurrences in a text [13, 14] and algorithms for text compression are often based on the study of repetitions in strings [34]. We refer the reader to [11] for a survey on algorithms and combinatorics of repetitions in strings.

There is a vast literature dealing with squares, which are repetitions of the form $x x$. This is due to their fundamental importance in algorithms and combinatorics on words. Different notions and techniques such as primitively or non-primitively-rooted squares [16, 32], positions starting a square [25], frequencies of occurrences of squares [33,39], three-squares property [18, 31], overlapping squares [21], distinct squares [17, 19, 20, 26-28, 38], double squares [17], non-standard squares [29], etc., have been studied and extended to partial words [2-8, 24].

Various questions on squares have received a lot of attention. Among them is Fraenkel and Simpson's long-standing question "How many distinct squares are there in a word of length n ?", where each square is counted only once [19]. Fraenkel and Simpson [20] showed in 1998 that the maximum number of distinct squares in such a word is asymptotically bounded from below by $n-o(n)$, and bounded from above by $2 n$, since at each position of a word of length n at most two distinct squares have their rightmost, or last, occurrence begin. They conjectured that this maximum number is at most n. This work became the motivation for linear-time algorithms that find all repetitions in a string, encoded into maximal repetitions [1,9, 12, 23, 30, 37].

In 2005, Ilie [26] gave a simpler proof of the $2 n$ upper bound and he [27] improved it to $2 n-\Theta(\log n)$ in 2007. More recently, Deza et al. [17] improved the upper bound further to $\lfloor 11 n / 6\rfloor$. Both Ilie's and
E. Csuhaj-Varjú, P. Dömösi, Gy. Vaszil (Eds.): 15th International Conference on Automata and Formal Languages (AFL 2017)
EPTCS 252, 2017, pp. 71-85 doi 10.4204/EPTCS.252.10
(c) F. Blanchet-Sadri \& S. Osborne

This work is licensed under the Creative Commons Attribution License.

Deza et al.'s improvements rely on the study of the combinatorics of $F S$-double-square-positions, i.e., positions at which two last occurrences of squares begin, which is the maximum number of occurrences possible. Let s_{i} denote the number of distinct squares whose last occurrence in a word w of length n begins at position i, and let the distinct-square-sequence $s(w)$ be the word $s_{1} s_{2} \cdots s_{n}$. Then the result of Fraenkel and Simpson implies that $s_{i} \in\{0,1,2\}$. A position i with $s_{i}=2$ is an FS-double-square-position.

In this paper, we consider the problem of counting distinct squares in a word w of length n. In particular, we study consecutive 2 's in the sequence $s(w)$, called runs of 2 's. We also construct words that have a high distinct-square-density, that is, the ratio of the number of distinct squares to length is high.

The contents of our paper are as follows. In Section 2, we review some basic definitions and notations that we use throughout the paper. We also discuss some preliminary results on double-squares. In Section 3, we study runs of double-square-positions and we focus on maximizing runs of FS-doublesquares. We first recall two results of Ilie [27]; one gives a relation between the lengths of squares having their last occurrence at positions neighboring an FS-double-square-position and the other one considers the case when the lengths of squares in a run of 2's are equal. It follows from the latter that for a given m, the minimum length of a word beginning with m FS-double-squares, whose lengths are preserved, is $7 m+3$. We show its existence by constructing one, i.e., we construct a word w_{m} of length $7 m+3$ beginning with m FS-double-squares, whose lengths are preserved, and analyze the distinct-square-sequence $s\left(w_{m}\right)$ as well as the distinct-square-density of w_{m}. We then generalize our construction. In Section 4, we construct words in which the distinct-square-density approaches 5/6. These words do not have many FS-double-squares, and those they do have are not at the beginning. The majority of distinct squares in these words are the only distinct squares at a particular position. All our constructions in Sections 3 and 4 are such that each run of 2's in the corresponding distinct-square-sequence is followed by a run of at least twice as many 0's. We refer to such a run of 2's as selfish 2's. In Section 5, we discuss ways to break the selfish rule, e.g., omit or alter the last letter of the word w_{m}. Finally in Section 6, we conclude with some remarks and suggestions for future work.

2 Preliminaries

We refer the reader to the book [35] for some basic concepts in combinatorics on words. We also adopt some of the terminology of [17, 20, 27] on squares. For integers i, j such that $i \leq j$, the notation $[i . . j]$ denotes the discrete interval consisting of the integers $\{i, i+1, \ldots, j\}$.

Let A be an alphabet with size denoted by $|A|$; we assume throughout the paper that $|A| \geq 2$. A word w over A is a sequence $a_{1} \cdots a_{n}$, where a_{i} is the letter in A that occurs at position i of w; we also let $w[i]$ denote the letter at position i. The integer n is the length of w, denoted by $|w|$. The empty word, denoted by ε, is the word of length zero. It acts as the identity under the concatenation of words, so the set of all words over A, denoted by A^{*}, becomes a monoid.

If $w=x y$, then x is a prefix of w, denoted by $x \leq w$; when $x \neq w$, we say that x is a proper prefix of w, denoted by $x<w$. If $w=x y z$, then y is a factor of w and z is a suffix of w; here y is an interior factor of w if $x \neq \varepsilon$ and $z \neq \varepsilon$. For $1 \leq i \leq j \leq|w|$, the notation $w[i . . j]$ refers to the factor $w[i] w[i+1] \cdots w[j]$.

A word w is primitive if it cannot be written as a non-trivial power v^{e}, i.e., the concatenation of e copies of a word v where e is an integer greater than 1. It is well-known that this is equivalent to saying that w is not an interior factor of $w w$.

A square in a word consists of a factor of the form $x^{2}=x x$, where $x \neq \varepsilon$. A double-square is a pair (u, U) such that u^{2} and U^{2} are two squares that begin at the same position with $|u|<|U|$. An $F S$-double-
square is a double-square (u, U) positioned such that both u^{2} and U^{2} are last occurrences; the FS notation refers to work of Fraenkel and Simpson on double-squares. Note that all FS-double-squares (u, U) are such that $|u|<|U|<2|u|$. A double-square-position is a position at which a double-square begins, and likewise for FS-double-squares. The structure of an FS-double-square follows Lemma 2.1 since the third condition is always true, by definition.
Lemma 2.1. [17] Let (u, U) be a double-square such that $|u|<|U|<2|u|$. If one of the conditions 1 . u is primitive, 2. U is primitive, or $3 . u^{2}$ has no further occurrence in U^{2} is satisfied, then there is a unique primitive word v_{1}, a unique non-empty proper prefix v_{2} of v_{1}, and unique integers e_{1} and e_{2} satisfying $1 \leq e_{2} \leq e_{1}$ such that $u=v_{1}^{e_{1}} v_{2}$ and $U=v_{1}^{e_{1}} v_{2} v_{1}^{e_{2}}$. Moreover, U is primitive.

Note that by Lemma 2.1. U^{2} has the form $v_{1}^{e_{1}} v_{2} v_{1}^{e_{2}} v_{1}^{e_{1}} v_{2} v_{1}^{e_{2}}$. Any FS-double-square (u, U) such that $|u|<|U|<2|u|$ can therefore be fully defined by giving values to the terms v_{1}, v_{2}, e_{1}, and e_{2}. When defining a word in such a manner, we will list the terms in the order just given; e.g., $(b a, b, 2,1)=$ bababbabababba.

The converse of Lemma[2.1]is nearly true as well, as the next lemma shows.
Lemma 2.2. For any word w that can be written as $w=\left(v_{1}^{e_{1}} v_{2} v_{1}^{e_{2}}\right)^{2}$, where v_{1} is primitive, v_{2} is a proper non-empty prefix of v_{1}, and e_{1} and e_{2} are integers such that $1 \leq e_{2} \leq e_{1}$, the following hold: 1 . $U=v_{1}^{e_{1}} v_{2} v_{1}^{e_{2}}$ is primitive, $2 . u^{2}=\left(v_{1}^{e_{1}} v_{2}\right)^{2}$ occurs at position 1 of w and has no further occurrence in w, and 3. (u, U) is an $F S$-double-square such that $|u|<|U|<2|u|$.

Proof. Deza et al. [17, Lemma 6] prove that U must be primitive. Since v_{2} is a prefix of v_{1}, it is clear that $u^{2}=\left(v_{1}^{e_{1}} v_{2}\right)$ occurs at position 1 of w. If u^{2} occurs anywhere else in w, then v_{1} is a power of v_{2}, in which case v_{1} is not primitive, $v_{1}=v_{2}$, or v_{2} is the empty word, a contradiction. With $w=U^{2}$, and u^{2} occurring exactly once in w, at its first position, w meets the definition of an FS-double-square.

Referring to Lemma 2.2, note that u may or may not be primitive. An example of u being primitive is achieved by letting $v_{1}=a^{m-1} b a, v_{2}=a^{m-1} b$, and $e_{2}=e_{1}=1$, where m is an integer greater than or equal to 1 . An example of u not being primitive is shown by letting $v_{1}=a b a a a b a, v_{2}=a$, and $e_{2}=e_{1}=1$, giving the non-primitive word $u=a b a a a b a a$ and $w=a b a a a b a a a b a a a b a a b a a a b a a a b a a a b a$ has the distinct-square-sequence 200111011101111000011110001000.

If a word w has length n, we let $d(w)$ denote the distinct-square-density of w equal to $d(w)=s / n$, where s is the number of distinct squares in w. We also let $s(w)$ denote the sequence $s_{1} \cdots s_{n}$ such that each s_{i} is the number of distinct squares whose last occurrence in w begins at position i. As mentioned earlier, $s_{i} \in\{0,1,2\}$. If $s_{i}=2$, then i is an FS-double-square-position. In Figure 1, the sequence $s(w)=s_{1} \cdots s_{17}=22000011100110010$ is such that each s_{i} is the number of distinct squares whose last occurrence in the word w begins at position i (there are 10 distinct squares in that word of length 17). There are two FS-double-square-positions: position 1 with FS-double-square (abaab,abaababa) and position 2 with (baaba,baababaa). There are also six positions with one square whose last occurrence begins: position 7 with $(b a a)^{2}$, position 8 with $(a a b)^{2}$, position 9 with $(a b a)^{2}$, position 12 with $(a b)^{2}$, position 13 with $(b a)^{2}$, and position 16 with a^{2}, and all other positions are such that no last occurrence of a square begins.

3 Runs of double-square-positions

Ilie [27] gave the following relation between the lengths of squares having their last occurrence at positions neighboring an FS-double-square-position.

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$w[i]$	a	b	a	a	b	a	b	a	a	b	a	a	b	a	b	a	a
s_{i}	2	2	0	0	0	0	1	1	1	0	0	1	1	0	0	1	0

Figure 1: Word w of length 17 with distinct-square-sequence $s(w)=s_{1} \cdots s_{17}$, where s_{i} is the number of distinct squares whose last occurrence in w begins at position i. Up to a renaming of letters, this is the shortest word that begins with two consecutive double-square-positions.

Lemma 3.1 ([27]). If (u, U) is an FS-double-square beginning at position i and w^{2} is a square with last occurrence beginning at position $i+1$, then either $|w| \in\{|u|,|U|\}$ or $|w| \geq 2|u|$.

Ilie [27] also considered the case when the lengths of squares in a run of 2's are equal. His lemma was originally stated for $m \geq 2$, but it also holds for $m=1$.

Lemma 3.2 ([27]). Let $m \geq 1$ be such that i is an FS-double-square-position for all $i \in[1 . . m]$, and let $\left(u_{i}, U_{i}\right)$ be the FS-double-square at i. If $\left|u_{1}\right|=\cdots=\left|u_{m}\right|$ and $\left|U_{1}\right|=\cdots=\left|U_{m}\right|$, then for all $i \in[1$.. $m]$ the following hold:

1. $\left|U_{i}\right|+m \leq 2\left|u_{i}\right|$,
2. $\left|U_{i}\right| \geq\left|u_{i}\right|+m+1$,
3. $\left|U_{i}\right| \geq 3 m+2$ and $\left|u_{i}\right| \geq 2 m+1$.

From Lemma 3.2, it follows that for a given m, the minimum length of a word beginning with m FS-double-squares, whose lengths are preserved, is $7 m+3$. The existence of such a word can be easily verified by constructing one. Theorem 3.3 constructs a word w_{m} of length $7 m+3$ with a prefix of m FS-double-square-positions; the number m of initial FS-double-square-positions is maximum for a word of that length. We do not claim w_{m} has the largest possible number of distinct squares given its length (words with higher distinct-square-densities will be constructed in the next section).

Theorem 3.3. Let $m \geq 1$. Then there exists a word w_{m} of length $7 m+3$ such that i is an FS-double-square-position with double-square $\left(u_{i}, U_{i}\right)$ for all $i \in[1 . . m]$, where $\left|u_{1}\right|=\cdots=\left|u_{m}\right|=2 m+1$ and $\left|U_{1}\right|=\cdots=\left|U_{m}\right|=3 m+2$. This word is unique up to a renaming of letters, i.e.,

$$
w_{m}=\left(a^{m-1} b a a^{m-1} b a^{m-1} b a\right)^{2} a^{m-1}
$$

where a and b are distinct letters of the alphabet.
Proof. We construct such a word w_{m}. Note that w_{m} must contain at least two distinct letters, otherwise the squares would appear later. Let $u_{1}=a^{m-1} b a a^{m-1} b$ and $U_{1}=u_{1} a^{m-1} b a$, and let

$$
w_{m}=U_{1}^{2} a^{m-1}=\left(a^{m-1} b a a^{m-1} b a^{m-1} b a\right)^{2} a^{m-1}
$$

By [17, Definition 10], recall that a factor $u=x\left[i^{\prime} . . j^{\prime}\right]$ of a word x can be cyclically shifted right by 1 position if $x\left[i^{\prime}\right]=x\left[j^{\prime}+1\right]$. The factor u can be cyclically shifted right by k positions if u can be cyclically shifted right by 1 position and the factor $x\left[i^{\prime}+1 . . j^{\prime}+1\right]$ can be cyclically shifted right by $k-1$ positions. This similarly holds for left cyclic shifts. A trivial cyclic shift is a shift by 0 positions.

It is easy to see that the last and only occurrences of both u_{1}^{2} and U_{1}^{2} in w_{m} are at position 1 . Furthermore, both u_{1}^{2} and U_{1}^{2} can be cyclically shifted right $m-1$ times, such that $u_{i}=a^{m-i} b a a^{m-1} b a^{i-1}$ and
$U_{i}=a^{m-i} b a a^{m-1} b a^{m-1} b a^{i}$. With this shift, both u_{i}^{2} and U_{i}^{2} have last occurrences at position i of w_{m}, for all $i \in[1 . . m]$. Thus, w_{m} begins with m FS-double-square-positions.

We claim that w_{m} is unique up to a renaming of letters. Let $w=a_{1} \cdots a_{7 m+3}$ be a word that satisfies the requirements. We have $u_{1}=a_{1} \cdots a_{2 m+1}$ and $U_{1}=u_{1} a_{2 m+2} \cdots a_{3 m} a_{3 m+1} a_{3 m+2}=u_{1} a_{1} \cdots a_{m-1} a_{m} a_{m+1}$, and $w=U_{1}^{2} a_{6 m+5} \cdots a_{7 m+3}$.

For all $i \in[1 . . m]$, we have the square u_{i}^{2} of length $4 m+2$ and the square U_{i}^{2} of length $6 m+4$ both beginning at position i, so $a_{i} \cdots a_{i+2 m}=a_{i+2 m+1} \cdots a_{i+4 m+1}$ and $a_{i} \cdots a_{i+3 m+1}=a_{i+3 m+2} \cdots a_{i+6 m+3}$. This implies that for all such i, we have $a_{i}=a_{i+2 m+1}=a_{i+3 m+2}=a_{i+5 m+3}=a_{i+m+1}=a_{i+4 m+3}$.

We next show that the first $m-1$ positions of w each have the same letter, i.e., $a_{1}=\cdots=a_{m-1}$. To do this, we show that for all $i \in[2 . . m-1]$, we have $a_{i}=a_{i-1}$. So let $i \in[2 . . m-1]$. Recalling that $\left|u_{i}\right|=2 m+1$ and $\left|U_{i}\right|=3 m+2$, an FS-double-square (u_{i}, U_{i}) beginning at position i implies that $a_{i}=a_{i+2 m+1}$ and an FS-double-square $\left(u_{i+1}, U_{i+1}\right)$ at position $i+1$ implies that the following letters are equal:

$$
\begin{aligned}
a_{i}=a_{i+2 m+1}=w[(i+1)+2 m] & =w[((i+1)+2 m)+(2 m+1)] \\
& =w[(i+1)+4 m+1] \\
& =w[((i+1)+4 m+1)-(3 m+2)] \\
& =w[(i+1)+m-1] \\
& =w[((i+1)+m-1)+(2 m+1)] \\
& =w[(i+1)+3 m] \\
& =w[((i+1)+3 m)-(3 m+2)] \\
& =w[i-1]=a_{i-1} .
\end{aligned}
$$

It follows that all positions in w other than $m, 2 m+1,3 m+1,4 m+2,5 m+3$, and $6 m+3$ must have the same letter. It can be easily verified that the remaining six positions must all have the same letter, and that they may not have the same letter as position 1 . Our claim follows.

By Lemma[2.1] the first FS-double-square $\left(u_{1}, U_{1}\right)$ of w_{m} of Theorem 3.3] satisfies $u_{1}=a^{m-1} b a a^{m-1} b=$ $v_{1}^{e_{1}} v_{2}$ and $U_{1}=a^{m-1} b a a^{m-1} b a^{m-1} b a=v_{1}^{e_{1}} v_{2} v_{1}^{e_{2}}$, where $v_{1}=a^{m-1} b a, v_{2}=a^{m-1} b$, and $e_{1}=e_{2}=1$. As discussed in Section 2, we can write $w_{m}=\left(a^{m-1} b a, a^{m-1} b, 1,1\right) a^{m-1}$.

The word in Figure 1 is the $(m=2)$-case of Theorem 3.3 whose distinct-square-sequence can be generalized as follows.
Theorem 3.4. For w_{m} as in Theorem 3.3

$$
s\left(w_{m}\right)=2^{m} 0^{2 m} 1^{m+1} 001^{m} 0^{2\left\lfloor\frac{m+1}{2}\right\rfloor}(10)^{\left\lfloor\frac{m}{2}\right\rfloor} .
$$

Proof. As noticed earlier, w_{m} begins with m FS-double-square-positions, so $s\left(w_{m}\right)[1 . . m]=2^{m}$.
Let us look at the $a a^{m-1}$-suffix of w_{m}. We have one position where the last occurrence of the square $\left(a^{i}\right)^{2}$, where $1 \leq i \leq\left\lfloor\frac{m}{2}\right\rfloor$, begins, so the corresponding position in the suffix of $s\left(w_{m}\right)$ is a 1 . Each of the other $\left\lfloor\frac{m}{2}\right\rfloor$ positions in the $a a^{m-1}$-suffix of w_{m} corresponds to a 0 , yielding a suffix of $(10)^{\left\lfloor\frac{m}{2}\right\rfloor}$ for $s\left(w_{m}\right)$. Looking at the $a^{m-1} b a a^{m-1}$-suffix of w_{m}, the remaining positions must correspond to 0 since any square cannot contain only one b, and the other squares only contain a 's but appear later. So $s\left(w_{m}\right)[5 m+4 . .7 m+3]=0^{2\left\lfloor\frac{m+1}{2}\right\rfloor}(10)^{\left\lfloor\frac{m}{2}\right\rfloor}$.

Next, let us look at $w_{m}[4 m+4.7 m+3]=a^{m-1} b a^{m-1} b a a^{m-1}$. If a square contains only a 's, its last occurrence has already been discussed. Otherwise, it contains b 's. Each of the positions $4 m+4, \ldots, 5 m+$ 3 give the last occurrence of the square $\left(a^{m-1} b\right)^{2}$ or one of its rotations. So $s\left(w_{m}\right)[4 m+4 . .5 m+3]=1^{m}$. It is easy to see that $s\left(w_{m}\right)[4 m+2 . .4 m+3]=00$. Also, $s\left(w_{m}\right)[3 m+1 . .4 m+1]=1^{m+1}$ due to the last occurrence of the square $\left(b a a^{m-1}\right)^{2}$ and its rotations.

Finally, let us look at $w_{m}[m+1 . .7 m+3]$. Either the squares have two b 's or four b 's or they have only a 's. The case of four b 's is impossible and the case of only a 's have their last occurrence later. In the case of two b 's, the square $\left(a^{m-1} b\right)^{2}$ or its rotations at positions $m+2, \ldots, 2 m+1$ appear later. Similarly, the square $\left(a^{m-1} b a\right)^{2}$ and its rotations at positions $2 m+2, \ldots, 3 m$ appear later. It is easy to check that no square has its last occurrence beginning at position $m+1$. So $s\left(w_{m}\right)[m+1 . .3 m]=0^{2 m}$.

For w_{m} as in Theorem 3.3, $d\left(w_{m}\right)=\frac{4.5 m+1}{7 m+3}$ for even values of m and $d\left(w_{m}\right)=\frac{4.5 m+.5}{7 m+3}$ for odd values of m. In both cases, for large values of m the distinct-square-density of w_{m} is approximately .643.

From Theorem 3.3, it follows that the probability of a word of length $7 m+3$ beginning with a run of m FS-double-square-positions, where the lengths of the squares are preserved, is equal to $\frac{|A|^{2}-|A|}{|A|^{m+3}}$.

While we prove the converse of Lemma 3.2 in a specific case, the converse is not true in general. That is, in the proof of Theorem 3.3 we construct, for every $m \geq 1$, a word starting with m FS-doublesquares $\left(u_{i}, U_{i}\right)$, whose lengths are preserved, such that $1^{\prime} .\left|U_{i}\right|+m=2\left|u_{i}\right|, 2^{\prime} .\left|U_{i}\right|=\left|u_{i}\right|+m+1$, and $3^{\prime} .\left|U_{i}\right|=3 m+2$ and $\left|u_{i}\right|=2 m+1$, but the construction may be impossible if we replace the equalities $1^{\prime}-2^{\prime}-3^{\prime}$ with Lemma 3.2's inequalities $1-2-3$. For example, given $m=1,\left|u_{1}\right|=6$, and $\left|U_{1}\right|=8$, all three conditions of Lemma 3.2 are satisfied, but it is impossible to construct a word starting with one FS-double-square fulfilling those criteria. The same is true for $m=1,\left|u_{1}\right|=6$, and $\left|U_{1}\right|=9$ or $m=2$, $\left|u_{1}\right|=\left|u_{2}\right|=6$, and $\left|U_{1}\right|=\left|U_{2}\right|=9$. However, the following theorem holds.
Theorem 3.5. Let $m \geq 1$ and $\ell \geq m$. Then there exist at least $|A|(|A|-1)^{\ell-m+1}$ and fewer than $|A|^{\ell-m+2}$ words of length $6 \ell+m+3$ over an alphabet A, with $|A| \geq 2$, such that i is an $F S$-double-square-position with double-square $\left(u_{i}, U_{i}\right)$ for all $i \in[1 . . m]$, where $\left|u_{1}\right|=\cdots=\left|u_{m}\right|=2 \ell+1$ and $\left|U_{1}\right|=\cdots=\left|U_{m}\right|=$ $3 \ell+2$.

Proof. Such a word w can be constructed as follows, where $\ell^{\prime}=\ell-m+2$ and $\left\{\alpha_{2}, \ldots, \alpha_{\ell^{\prime}}\right\}$ denotes a set of $\ell^{\prime}-1$ letters distinct from $\alpha_{1}=a$. Set $w=a_{1} \cdots a_{6 \ell+m+3}$ where each a_{i} is a letter of the alphabet. Since $u_{1}^{2}=\left(a_{1} \cdots a_{2 \ell+1}\right)^{2}$ and $U_{1}^{2}=\left(a_{1} \cdots a_{3 \ell+2}\right)^{2}$ are squares starting at position 1, we deduce that for all $i \in[1 . . \ell+1]$, we have $a_{i}=a_{i+2 \ell+1}$ and for all $i \in[1 . . \ell]$, we have $a_{i}=a_{i+\ell+1}$. Since all the m first positions of w are FS-double-square-positions, we also have $a_{i}=a_{i+\ell}$ for all $i \in[1 . . m-1]$.

Thus for all $i \in[1 . . m-2], a_{i}=a_{i+\ell+1}=a_{i+1}$, so set $a_{1}=\cdots=a_{m-1}=a$. Also set $a_{m} \cdots a_{\ell}=$ $\alpha_{2} \cdots \alpha_{\ell^{\prime}}$. We obtain $w=U_{1}^{2} a^{m-1}$ where

$$
\begin{aligned}
u_{1} & =a^{m-1} \alpha_{2} \cdots \alpha_{\ell^{\prime}} a a^{m-1} \alpha_{2} \cdots \alpha_{\ell^{\prime}}, \\
U_{1} & =a^{m-1} \alpha_{2} \cdots \alpha_{\ell^{\prime}} \prime a^{m-1} \alpha_{2} \cdots \alpha_{\ell^{\prime}} a^{m-1} \alpha_{2} \cdots \alpha_{\ell^{\prime}}
\end{aligned} .
$$

As with Theorem 3.3, it is easy to see that the last and only occurrences of both u_{1}^{2} and U_{1}^{2} in w are at position 1 of w. Furthermore, both u_{1}^{2} and U_{1}^{2} can be cyclically shifted right $m-1$ times, such that

$$
\begin{aligned}
u_{i} & =a^{m-i} \alpha_{2} \cdots \alpha_{\ell^{\prime}} a a^{m-1} \alpha_{2} \cdots \alpha_{\ell^{\prime}} a^{i-1} \\
U_{i} & =a^{m-i} \alpha_{2} \cdots \alpha_{\ell^{\prime}} a a^{m-1} \alpha_{2} \cdots \alpha_{\ell^{\prime}} a^{m-1} \alpha_{2} \cdots \alpha_{\ell^{\prime}} a^{i} .
\end{aligned}
$$

With this shift, both u_{i}^{2} and U_{i}^{2} have last occurrences at position i of w, for all $i \in[1 . . m]$. Thus, w begins with m FS-double-square-positions.

The minimum number of possible words $|A|(|A|-1)^{\ell-m+1}$ is calculated by allowing α_{1} to be any letter of alphabet A and allowing each letter α_{i}, with $i \in[2 . . \ell-m+2]$ to be any letter of A distinct from α_{1}. The exclusive maximum number of words is calculated by allowing each letter α_{i} to be any letter of A including α_{1}.

Note that in the case of $\ell=m$, this word w is identical to w_{m} given in Theorem 3.3 Note also that the proof holds even if the letters $\alpha_{2}, \ldots, \alpha_{\ell^{\prime}}$ are not distinct. To see this, letting $\alpha_{2}, \ldots, \alpha_{\ell^{\prime}}$ be some letters distinct from $a=\alpha_{1}$, we have $w=U_{1}^{2} a^{m-1}$ where

$$
\begin{aligned}
& u_{1}=a^{m-1} b^{\ell-m+1} a a^{m-1} b^{\ell-m+1}, \\
& U_{1}=a^{m-1} b^{\ell-m+1} a a^{m-1} b^{\ell-m+1} a^{m-1} b^{\ell-m+1} a .
\end{aligned}
$$

The next theorem, which constructs FS-double-squares, extends Theorem 3.5.
Theorem 3.6. Let $m \geq 1, Z$ be a non-empty word such that $a^{m-1} Z a$ is primitive, $w=\left(v_{1}^{e_{1}} v_{2} v_{1}^{e_{2}}\right)^{2} a^{m-1}$ where $v_{1}=a^{m-1} Z a, v_{2}=a^{m-1} Z, e_{1}$ and e_{2} are integers such that $1 \leq e_{2} \leq e_{1}$. Then w begins with m FS-double-squares $\left(u_{i}, U_{i}\right), i \in[1 . . m]$, where

$$
u_{i}=\left(a^{m-i} Z a^{i}\right)^{e_{1}} a^{m-i} Z a^{i-1} \text { and } U_{i}=\left(a^{m-i} Z a^{i}\right)^{e_{1}} a^{m-i} Z a^{i-1}\left(a^{m-i} Z a^{i}\right)^{e_{2}} .
$$

Proof. Let $i \in[1 . . m]$. Set $v_{1, i}=a^{m-i} Z a^{i}$ and $v_{2, i}=a^{m-i} Z a^{i-1}$. Then $v_{1, i}$ is primitive being a cyclic shift of v_{1}, and $v_{2, i}$ is a proper non-empty prefix of $v_{1, i}$. By Lemma2.2 the word $\left(v_{1, i}^{e_{1}} v_{2, i} v_{1, i}^{e_{2}}\right)^{2}$, where e_{1} and e_{2} are integers such that $1 \leq e_{2} \leq e_{1}$, is an FS-double-square.

We claim that adding any number of a 's to the end of $\left(v_{1}^{e_{1}} v_{2} v_{1}^{e_{2}}\right)^{2}$ will not destroy the initial FS-double-square, since a Z would be required to create an additional $\left(v_{1}^{e_{1}} v_{2}\right)^{2}$ or $\left(v_{1}^{e_{1}} v_{2} v_{1}^{e_{2}}\right)^{2}$ to the right of the initial FS-double-square. It follows that w begins with an FS-double-square (u_{1}, U_{1}). Furthermore, both u_{1}^{2} and U_{1}^{2} can be cyclically shifted right m times, to create m double-squares $\left(u_{i}, U_{i}\right)$ such that $u_{i}=v_{1, i}^{e_{1}} v_{2, i}$ and $U_{i}=v_{1, i}^{e_{1}} v_{2, i} v_{1, i}^{e_{2}}$.

Thus, FS-double-squares are found at each of the first m positions of w.
In Theorem 3.6, note that in the case where Z begins with a, adding an additional a to the end of w will produce a word that begins with an additional FS-double-square.

Note that our constructions have focused on a run of 2's in the prefix in which the lengths of the double-squares remain the same. The following word

b	a	b	b	a	b	a	b	b	a	a	a	b	b	a	b	a	b	b	a
2	2	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	0	0	1
a	b	b	a	b	a	b	b	a	a	a	b	b	a	b	a	b	b	a	
0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	1	0	0	

has a distinct-square-sequence with two consecutive 2 's in the prefix that refer to double-squares of different lengths, (bab,babba) and (abbababbaa, abbababbaaabbababba).

4 Constructions with higher distinct-square-densities

For any pair of integers (i, j) with $i<j$, let $Y_{i, j}=X_{i} X_{i+1} \cdots X_{j-1} X_{j} a a^{j-1}$, where

$$
X_{k}=a^{k-1} b a a^{k-1} b a^{k-1} b a a^{k-1} b a a^{k-1} b a^{k-1} b
$$

for each $k \in[i . . j]$. We will show that the distinct-square-density of the word $Y_{i, j}$ approaches $5 / 6$ as j approaches infinity.
Lemma 4.1. Each factor X_{k} with $k<j$ has, in $Y_{i, j}$, the distinct-square-sequence $1^{2 k+1} 0^{k+1} 1^{k} 01^{2 k}$, giving $5 k+1$ distinct squares per X_{k}. No X_{k}, where $k<j$, has more distinct squares than those listed in Table \square

first in set	last in set	count	root of first in set	root length
1	$2 k+1$	$2 k+1$	$a^{k-1} b a a^{k-1} b a^{k-1} b a$	$3 k+2$
$2 k+2$	$3 k+2$	$k+1$	NONE	0
$3 k+3$	$4 k+1$	$k-1$	$a^{k-1} b a$	$k+1$
$4 k+2$	$4 k+2$	1	$b a a^{k-1} b a^{k-1}$	$2 k+1$
$4 k+3$	$4 k+3$	1	NONE	0
$4 k+4$	$5 k+3$	k	$a^{k-1} b$	k
$5 k+4$	$6 k+3$	k	$a^{k-1} b a^{k} b a a$	$2 k+3$

Table 1: Distinct squares of $Y_{i, j}$ that begin in the factor $X_{k}=a^{k-1} b a a^{k-1} b a^{k-1} b a a^{k-1} b a a^{k-1} b a^{k-1} b$, where $k=j-1$: each row lists a set of consecutive distinct squares of a given length, with the first square of the set beginning at the first position and the last beginning at the last position. "Count" gives the number of distinct squares in the set. When the root of the square is given as NONE, no distinct square exists at those positions. Here $s\left(Y_{i, j}\right)=s\left(\cdots X_{k} X_{j} a a^{j-1}\right)=\cdots 1^{2 k+1} 0^{k+1} 1^{k} 01^{2 k} s\left(X_{j} a a^{j-1}\right)$.

Proof. Consider first the case where $j=i+1$. In this case, $Y_{i, j}=X_{i} X_{i+1} a a^{i}$. Table \square lists the distinct squares of $Y_{i, j}$ that begin in X_{i}. The squares are listed as sets of consecutive distinct squares of the same length. For each set, only the first distinct square is listed; the remaining distinct squares are cyclic shifts of the first. Both the existence and distinctness of the listed squares may be easily verified. The sequence $1^{2 k+1} 0^{k+1} 1^{k} 01^{2 k}$ and the minimum total of $5 k+1$ in X_{i} both follow from Table 1 .

By Theorem 3.4, $s\left(X_{j} a a^{j-1}\right)=s\left(w_{j}\right)=2^{j} 0^{2 j} 1^{j+1} 001^{j} 0^{2\left\lfloor\frac{j+1}{2}\right\rfloor(10)^{\left\lfloor\frac{j}{2}\right\rfloor}}$.
Now consider the case where $Y_{i, j}$ contains more than two X_{k} factors. By definition, every X_{k} has the same structure, and for all $k<j$, every factor X_{k} is followed by $X_{k+1} a a^{k}$, by the definition of $Y_{i, j}$. Note that when $k+1<j$, the factor $a a^{k}$ is a prefix of X_{k+2}. Since every X_{k} has the same structure and is followed by $X_{k+1} a a^{k}$, the squares listed in Table 1 will exist in all X_{k} 's.

To see that the squares in each X_{k} are distinct regardless of how many X_{k} factors are in $Y_{i, j}$, observe that every distinct square in X_{k}, as listed in Table 1 includes at least one of the factors $b a^{k-1} b$ or $b a a^{k-1} b=b a^{k} b$.

Now consider $X_{k+2}=a^{k+1} b a a^{k+1} b a^{k+1} b a a^{k+1} b a a^{k+1} b a^{k+1} b$. Neither $b a^{k-1} b$ nor $b a^{k} b$ appears in X_{k+2}, nor will they appear in subsequent X 's. Thus the distinct squares of X_{k} listed in Table 1 remain distinct no matter how many additional X factors exist in $Y_{i, j}$. Table 1 already accounts for X_{k+1}.

Table 1 holds for $Y_{k, k+1}=X_{k} X_{k+1} a a^{k}$. It can be verified that no distinct squares of $X_{k} X_{k+1} a a^{k}$ that begin in X_{k} exist beyond those listed in Table [1] we want additional distinct squares in a $Y_{i, j}$ word, we must add an additional X_{k} factor (increase the value of j), giving us $Y_{i, j}=X_{k} X_{k+1} X_{k+2} a a^{k+1}$.

We are looking for additional distinct squares that begin in X_{k}. We know from the case $j=i+1$, shown in Table 1 that all distinct squares beginning in X_{k} and ending in X_{k}, X_{k+1}, or the prefix of length $k+1$ of $X_{k+2}, a a^{k}$, are accounted for. Therefore any additional distinct squares must end beyond the first $k+1$ positions of X_{k+2}. We consider two cases.

First, let us consider the case when additional distinct squares begin from positions 1 through $5 k+3$ of X_{k}. (Position $5 k+3$ of X_{k} is the second-to-last b in X_{k}.) We are looking for distinct squares that end beyond the first $k+1$ positions of X_{k+2}, i.e., distinct squares that extend beyond X_{k+1}. Since the length of X_{k+1} is greater than that of X_{k}, less than half of any such square will be in X_{k}. Therefore, all of the square that falls in X_{k} must be part of the root of the square. The root must therefore contain $b a^{k-1} b$, a sequence that is not found at any point beyond X_{k}. Therefore, no X_{k}, with $k<j$, may have distinct
squares in addition to those listed in Table 1 that begin at positions 1 through $5 k+3$ of X_{k}.
Next, let us consider the case when additional distinct squares begin from positions $5 k+4$ through $6 k+3$ of X_{k}. The positions indicated spell the last $a^{k-1} b$ factor of X_{k}. Each of the last k positions of X_{k} already begins one distinct square of length $4 k+6$. For each of these k positions, let u be the already-established distinct square beginning at that position, and let U be a theoretically longer square beginning at the same position. We do not need to address potentially shorter distinct squares, since their non-existence is easily verified. From Lemma 3.2 we have $|U|+m \leq 2|u|$, which gives $|U| \leq$ $8 k+12-m$. Recall that m gives the number of consecutive FS-double-squares of the lengths $|u|$ and $|U|$. The minimum value of m is therefore 1 , giving $|U| \leq 8 k+11$. It can be verified that none of the last k positions of X_{k} begin a square of length at most $2(8 k+11)$. Since no longer distinct squares may exist at those positions, no additional distinct squares exist.

Theorem 4.2. There exist words in which the distinct-square-density approaches $\frac{5}{6}$.
Proof. Such a word can be constructed as follows. As discussed in Lemma 4.1, let

$$
X_{k}=a^{k-1} b a a^{k-1} b a^{k-1} b a a^{k-1} b a a^{k-1} b a^{k-1} b
$$

of length $6 k+3$ and for $i<j$, let $Y_{i, j}=X_{i} X_{i+1} \cdots X_{j-1} X_{j} a a^{j-1}$. Essentially, $Y_{i, j}$ is the concatenation of $j-i+1$ words w_{m}, with increasing m values, in which the suffix and prefix of a 's are shared by adjacent pairs of words. Referring to Theorem 3.3, the factor $X_{j} a a^{j-1}$ of $Y_{i, j}$ is the word w_{j} of length $7 j+3$, thus the word $Y_{i, j}$ has length $7 j+3+\sum_{k=i}^{j-1}(6 k+3)=7 j+3+3 j^{2}-3 i^{2}$.

By Theorem 3.4, the factor $X_{j} a a^{j-1}$ has $4 j+\left\lfloor\frac{j}{2}\right\rfloor+1$ distinct squares. By Lemma 4.1 ,

$$
\begin{aligned}
& s\left(Y_{i, j}\right)=s\left(Y_{i, j}\right)[1 . .6 i+3] s\left(Y_{i, j}\right)[6 i+4 \ldots 12 i+12] \ldots \\
& s\left(Y_{i, j}\right)\left[3 j^{2}-3 i^{2}-6 j-2 . .3 j^{2}-3 i^{2}\right] s\left(X_{j} a a^{j-1}\right) \\
&=1^{2 i+1} 0^{i+1} 1^{i} 01^{2 i} 1^{2(i+1)+1} 0^{(i+1)+1} 1^{i+1} 01^{2(i+1)} \ldots \\
& 1^{2(j-1)+1} 0^{(j-1)+1} 1^{j-1} 01^{2(j-1)} s\left(w_{j}\right) \\
&=\prod_{k=i}^{j-1}\left(1^{2 k+1} 0^{k+1} 1^{k} 01^{2 k}\right) s\left(w_{j}\right) .
\end{aligned}
$$

The word $Y_{i, j}$ has a total of

$$
4 j+\left\lfloor\frac{j}{2}\right\rfloor+1+\sum_{k=i}^{j-1}(5 k+1)=4 j+\left\lfloor\frac{j}{2}\right\rfloor+1+\frac{1}{2}\left(5 j^{2}-3 j-5 i^{2}+3 i\right)
$$

distinct squares. It has thus distinct-square-density

$$
\frac{4 j+\left\lfloor\frac{j}{2}\right\rfloor+1+\frac{1}{2}\left(5 j^{2}-3 j-5 i^{2}+3 i\right)}{7 j+3+3 j^{2}-3 i^{2}}
$$

which, recalling that $j>i$, approaches $\frac{5}{6}$ as j approaches infinity.
Referring to Table 2, we include an example of an $Y_{i, j}$ word illustrating Theorem 4.2, where $i=5$ and $j=15$; there are 553 distinct squares, the length is 708 , the distinct-square-density is $\approx .781$:

$$
\begin{array}{cccccccccccccccccccccccccc}
a & a & a & a & b & a & a & a & a & a & b & a & a & a & a & b & a & a & a & a & a & b & a & a & a & a \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
& \\
a & b & a & a & a & a & b & a & a & a & a & a & b & a & a & a & a & a & a & b & a & a & a & a & a & b \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

i	j	distinct squares	length	distinct-square-density
1	2	16	26	.615
1	3	31	48	.646
2	4	46	67	.687
2	5	71	101	.703
5	15	553	708	.781
6	19	879	1111	.791
8	25	1490	1861	.801
11	36	3063	3780	.810
19	64	9559	11656	.820

Table 2: Densities of selected $Y_{i, j}$ words: note that both the i and j columns skip values. For each j value, the given i value gives the maximum distinct-square-density for that j.

```
llllllllllllllllllllllllllll
0
b
1
lllllllllllllllllllllllllllll
1
a
1
lllllllllllllllllllllllllllll
1
a
1
a
1
a
1
a
1
a
1
llllllllllllllllllllllllllll
1
```


Note that the above word does not have many FS-double-squares, and those it does have are not at the beginning. Words with distinct-square-density greater than .8 first occur when $j=25$ and are well
over 1,000 letters long.

5 Selfish 2's, or not

In all the words we have given thus far, each run of 2 's in the corresponding distinct-square-sequence is followed by a run of at least twice as many 0 's. We refer to a run of 2 's followed by at least twice as many 0 's as selfish 2 's.

However, not all runs of 2's are selfish. The most straightforward way to break the selfish rule is to omit or alter the last letter of the word w_{m}, so that the position that would be the last 2 is instead a 1. For example consider the word $w_{2}=a b a a b a b a a b a a b a b a a$, which has the distinct-square-sequence 22000011100110010 . The Selfish 2's rule appears to hold, but it can be broken simply by omitting the last letter, giving $a b a a b a b a a b a a b a b a$, which has the distinct-square-sequence 210000111011100 , or by changing the last letter of w_{2} to b, giving the distinct-square-sequence 21000011101011000 .

Similar results are seen with w_{3}. Omitting the last letter gives sequence 22100000011110011100010 and distinct-square-density $\frac{13}{23} \approx .565$, and altering the last letter gives the distinct-square-sequence 221000000111100011100100 and distinct-square-density $\frac{13}{24} \approx .542$.

For the above alterations to w_{2} and w_{3}, the Selfish 2's rule very nearly holds; we have replaced a 2 with a 1 , but the length of the first run of 0 's remains unchanged. Greater breaks from the Selfish 2's pattern can be obtained by increasing the values of e_{1}, e_{2}, or both, as in the following examples.

The distinct-square-sequence of $(a b a, a b, 2,1) a$ is 22011000100011100110010 , with distinct-squaredensity $\approx .565$; for $(a b a, a b, 3,1) a$, it is 22011011000011100011100110010 , with distinct-square-density $\approx .586$; for $(a b a, a b, 3,2) a$, it is 22011000000100011100001110111100010 , with distinct-square-density $=.514$; for ($a a b a, a a b, 2,1) a a$, it is 22201110000110000111100111000010 , with distinct-square-density $\approx .594$.

The distinct square-sequence of (aaba, aab, 2,2) is 21100010000001111000011120011110001000, with distinct-square-density $=.5$. Note that this word contains the word ($a b a, a, 1,1$), which does follow the Selfish 2's rule. The word ($a a b a, a a b, 2,2$) has an internal 2 which disappears when $a a$ is added, i.e., (aaba,aab, 2, 2) aa has distinct-square-sequence 2220000000000111100000111101111110000010 , with distinct-square-density .525 (the Selfish 2's rule applies here).

The distinct-square-sequence of (aaba, aab, 3,1) is 21101110111000100111100001111001101000, with distinct-square-density $\approx .579$. Adding one a to this word gives a distinct-square-sequence of 221011101110000001111000011110011100010 , with distinct-square-density $\approx .590$. Adding another a gives 2220111011100000011110000111100111000010 , with distinct-square-density $=.6$. Note that in this case, the Selfish 2's rule does not apply even when the sequence begins with multiple 2's.

The distinct-square-sequence of $(a a b a, a a b, 3,2)$ is 211011100010000110000111100001112001111 0001000 , with distinct-square-density $\approx .523$. Note that this word again contains the word ($a b a, a, 1,1$), which does follow the Selfish 2's rule. Adding another a to the end of the above word produces another leading 2, but causes the interior 2 to vanish, giving 221011100000000110000111100001111101111100 00010 with distinct-square-density $\approx .532$. The sequence can be extended to begin with three 2 's by adding yet another a giving 222011100000000110000111100000111101111110000010 , with distinct-square-density $\approx .542$.

Apart from (aaba, aab, 2, 2) aa, in the distinct-square-sequences of all the above examples, each run of 2 's is still followed by a larger run of 0 's; the difference is that the 0 's are not necessarily adjacent to the 2 's, and the leading 0 in the run of 0 's is not necessarily the first 0 to follow the 2 's.

6 Conclusion and future work

In this paper, we first studied how to maximize runs of FS-double-squares in the prefix. We showed that a result of Ilie [27], which considers the case when the lengths of squares in a run of 2's are preserved, implies that for a given positive integer m, the minimum length of a word beginning with m FS-doublesquares, whose lengths are preserved, is $7 m+3$. In Theorem 3.3, we constructed a word w_{m} of length $7 m+3$ that begins with m FS-double-squares, whose lengths are preserved, and analyzed in Theorem 3.4 the distinct-square-sequence as well as the distinct-square-density of w_{m}. We then generalized our construction in Theorems 3.5 and 3.6. In Theorem 4.2, we constructed for each pair of integers (i, j) with $i<j$, a word $Y_{i, j}$ in which the distinct-square-density approaches $5 / 6$ as j approaches infinity.

Deza et al. [17] gives $\left\lfloor\frac{5 n}{6}\right\rfloor$ as the maximum number of FS-double-squares in a word of length n, and we may wonder about a connection between that result and our Theorem4.2. Deza et al.'s result gives an upper bound on the number of FS-double-square positions in a word; we give a pattern for a word that will have close to $\left\lfloor\frac{5 n}{6}\right\rfloor$ total squares, counting both double and single-square-positions. In fact, of all the distinct squares in our word $Y_{i, j}$, only a trivial number are FS-double-squares. Deza et al.'s proof, on the other hand, is concerned entirely with FS-double-squares and says nothing about single distinct square occurrences. While there may be some underlying property that leads to the value $\frac{5}{6}$ occurring in both results, neither our proof nor Deza et al.'s incorporates part of the other.

We proved that the upper bound for the number of distinct squares in a word of length n is at least a value approaching $\left\lfloor\frac{5 n}{6}\right\rfloor$. We did so by finding a pattern for a word that when n is sufficiently large, will have a distinct-square-density approaching $\frac{5}{6}$. We suspect $\left\lfloor\frac{5 n}{6}\right\rfloor$ either is the upper bound or is very close to it. However, the pattern we found approaches the distinct-square-density $\frac{5}{6}$ only for words that are thousands of letters long or more; our intuition is that there exist shorter words which approach the $\frac{5}{6}$ bound, and that finding them could be a fruitful area for future research.

We also observed that many words have selfish 2 's, where a run of FS-double-square-positions is followed by a longer run of positions with no distinct squares. We disproved our first Selfish 2's hypothesisthat any run of 2's must be followed by a run of at least twice that many 0 's-but we suspect that a weaker version of our Selfish 2's hypothesis is true. Proving any Selfish 2's hypothesis would put a maximum on the upper bound of distinct-square-density. With these observations in mind, we propose a weaker version of the Selfish 2's rule: For every 2 in the distinct-square-sequence of a word, at least one 0 must exist to the right of that 2 . If this rule is true, then the upper limit on the number of distinct squares in a word of length n must be less than n or the distinct-square-density can never be more than 1 . We suspect this is true in part because our $Y_{i, j}$ words get the vast majority of their distinct square occurrences from single rather than double-squares. Stronger versions of the rule, that require more than one 0 to follow each 2 , would lead to correspondingly lower upper limits.

Referring to Table 2, we suggest the problem of finding and proving the i value that gives the maximum distinct-square-density for any given j.

The distinct-square-sequences were calculated using a program that we wrote in Java to support this paper that, given a word, outputs the associated distinct-square-sequence, the total number of distinct squares in the word, the length of the word, and the distinct-square-density of the word. In addition to accepting typed words as input, the program also creates $Y_{i, j}$ words given i and j values, or creates words of the form $\left(v_{1}^{e_{1}} v_{2} v_{2}^{e_{2}}\right)^{2}$ when given values for v_{1}, v_{2}, e_{1}, and e_{2}. The words created according to those criteria then have distinct-square-sequences calculated in an identical manner to typed-in words. Distinct-square-density was calculated in Java as a 64 -bit signed floating point value (Java's double type). Densities were rounded to three decimal places for convenience. Distinct-square-density values
in Table 2] were calculated in Microsoft Excel using the formulas given in Theorem4.2,

References

[1] A. Apostolico \& F. P. Preparata (1983): Optimal off-line detection of repetitions in a string. Theoretical Computer Science, 22(3), pp. 297-315, doi 10.1016/0304-3975(83)90109-3.
[2] F. Blanchet-Sadri, M. Bodnar, J. Nikkel, J. D. Quigley \& X. Zhang (2015): Squares and primitivity in partial words. Discrete Applied Mathematics, 185, pp. 26-37, doi 10.1016/j.dam.2014.12.003.
[3] F. Blanchet-Sadri, Y. Jiao, J. Machacek, J. D. Quigley \& X. Zhang (2014): Squares in partial words. Theoretical Computer Science, 530, pp. 42-57, doi 10.1016/j.tcs.2014.02.023
[4] F. Blanchet-Sadri, J. Lazarow, J. Nikkel, J. D. Quigley \& X. Zhang (to appear): Computing primitively-rooted squares and runs in partial words. European Journal of Combinatorics.
[5] F. Blanchet-Sadri \& R. Mercaş (2009): A note on the number of squares in a partial word with one hole. RAIRO-Theoretical Informatics and Applications, 43, pp. 767-774, doi 10.1051/ita/2009019.
[6] F. Blanchet-Sadri \& R. Mercaş (2012): The three-squares lemma for partial words with one hole. Theoretical Computer Science, 428, pp. 1-9, doi:10.1016/j.tcs.2012.01.012.
[7] F. Blanchet-Sadri, R. Mercaş \& G. Scott (2009): Counting distinct squares in partial words. Acta Cybernetica, 19, pp. 465-477.
[8] F. Blanchet-Sadri, J. Nikkel, J. D. Quigley \& X. Zhang (2015): Computing primitively-rooted squares and runs in partial words. In J. Kratochvíl, M. Miller \& D. Froncek, editors: IWOCA 2014, 25th International Workshop on Combinatorial Algorithms, Lecture Notes in Computer Science 8986, Springer International Publishing Switzerland, pp. 86-97, doi:10.1007/978-3-319-19315-1_8.
[9] M. Crochemore (1981): An optimal algorithm for computing the repetitions in a string. Information Processing Letters, 12(5), pp. 244-250.
[10] M. Crochemore, C. Hancart \& T. Lecroq (2007): Algorithms on Strings. Cambridge University Press, doi $10.1017 / \mathrm{CBO} 9780511546853$
[11] M. Crochemore, L. Ilie \& W. Rytter (2009): Repetitions in strings: Algorithms and combinatorics. Theoretical Computer Science, 410, pp. 5227-5235, doi 10.1016/j.tcs.2009.08.024
[12] M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter \& T. Waleń (2014): Extracting powers and periods in a word from its run structure. Theoretical Computer Science, 521, pp. 29-41, doi:10.1016/j.tcs.2013.11.018
[13] M. Crochemore \& D. Perrin (1991): Two-way string matching. Journal of the Association for Computing Machinery, 38(3), pp. 651-675, doi $10.1145 / 116825.116845$
[14] M. Crochemore \& W. Rytter (1995): Squares, cubes and time-space efficient string searching. Algorithmica, 13, pp. 405-425, doi 10.1007/BF01190846
[15] M. Crochemore \& W. Rytter (2003): Jewels of Stringology. World Scientific, Singapore, doi 10.1142/4838,
[16] A. Deza \& F. Franek (2014): A d-step approach to the maximum number of distinct squares and runs in strings. Discrete Applied Mathematics, 163, pp. 268-274, doi 10.1016/j.dam.2013.10.021.
[17] A. Deza, F. Franek \& A. Thierry (2015): How many double squares can a string contain? Discrete Applied Mathematics, 180, pp. 52-69, doi 10.1016/j.dam.2014.08.016
[18] K. Fan, S. J. Puglisi, W. F. Smyth \& A. Turpin (2006): A new periodicity lemma. SIAM Journal on Discrete Mathematics, 20, pp. 656-668, doi $10.1137 / 050630180$.
[19] A. S. Fraenkel \& R. J. Simpson (1995): How many squares must a binary sequence contain? Electronic Journal of Combinatorics, 2, pp. R2.
[20] A. S. Fraenkel \& R. J. Simpson (1998): How many squares can a string contain? Journal of Combinatorial Theory, Series A, 82(1), pp. 112-120, doi 10.1006/jcta.1997.2843.
[21] F. Franek, R. C. G. Fuller, J. Simpson \& W. F. Smyth (2012): More results on overlapping squares. Journal of Discrete Algorithms, 17, pp. 2-8, doi 10.1016/j.jda.2012.03.003
[22] D. Gusfield (1997): Algorithms on Strings, Trees and Sequences. Cambridge University Press, Cambridge, doi $10.1017 / \mathrm{CBO} 9780511574931$
[23] D. Gusfield \& J. Stoye (2004): Linear time algorithms for finding and representing all the tandem repeats in a string. Journal of Computer and System Sciences, 69(4), pp. 525-546, doi:10.1016/j.jcss.2004.03.004.
[24] V. Halava, T. Harju \& T. Kärki (2010): On the number of squares in partial words. RAIRO-Theoretical Informatics and Applications, 44(1), pp. 125-138, doi 10.1051/ita/2010008.
[25] T. Harju, T. Kärki \& D. Nowotka (2011): The number of positions starting a square in binary words. Electronic Journal of Combinatorics, 18:P6.
[26] L. Ilie (2005): A simple proof that a word of length n has at most $2 n$ distinct squares. Journal of Combinatorial Theory, Series A, 112(1), pp. 163-164, doi $10.1016 / \mathrm{j} . j \mathrm{cta} 2005.01 .006$
[27] L. Ilie (2007): A note on the number of squares in a word. Theoretical Computer Science, 380(3), pp. 373-376, doi 10.1016/j.tcs.2007.03.025.
[28] N. Jonoska, F. Manea \& S. Seki (2014): A stronger square conjecture on binary words. In V. Geffert, B. Preneel, B. Rovan, J. Stuller \& A Min Tjoa, editors: SOFSEM 2014, 40th International Conference on Current Trends in Theory and Practice of Computer Science, Lecture Notes in Computer Science 8327, Springer, pp. 339-350, doi 10.1007/978-3-319-04298-5_30
[29] T. Kociumaka, J. Radoszewski, W. Rytter \& T. Waleń (2014): Maximum number of distinct and nonequivalent nonstandard squares in a word. In A. M. Shur and M. V. Volkov, editors: DLT 2014, 18th International Conference on Developments in Language Theory, Lecture Notes in Computer Science 8633, Springer International Publishing Switzerland, pp. 215-226, doi 10.1007/978-3-319-09698-8_19.
[30] R. Kolpakov \& G. Kucherov (2000): On maximal repetitions in words. Journal on Discrete Algorithms, 1, pp. 159-186.
[31] E. Kopylova \& W. F. Smyth (2012): The three squares lemma revisited. Journal of Discrete Algorithms, 11, pp. 3-14, doi 10.1016/j.jda.2011.03.009
[32] M. Kubica, J. Radoszewski, W. Rytter \& T. Waleń (2013): On the maximum number of cubic subwords in a word. European Journal of Combinatorics, 34, pp. 27-37, doi 10.1016/j.ejc.2012.07.012
[33] G. Kucherov, P. Ochem \& M. Rao (2003): How many square occurrences must a binary sequence contain? Electronic Journal of Combinatorics, 10:R12.
[34] A. Lempel \& J. Ziv (1978): Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory, 24, pp. 530-536, doi 10.1109/TIT.1978.1055934
[35] M. Lothaire (1997): Combinatorics on Words. Cambridge University Press, Cambridge, doi:10.1017/CBO9780511566097
[36] M. Lothaire (2005): Applied Combinatorics on Words. Cambridge University Press, Cambridge, doi $10.1017 / \mathrm{CBO} 9781107341005$
[37] M. G. Main \& R. J. Lorentz (1984): An O(nlog n) algorithm for finding all repetitions in a string. Journal of Algorithms, 5(3), pp. 422-432, doi 10.1016/0196-6774(84)90021-X
[38] F. Manea \& S. Seki (2015): Square-density increasing mappings. In F. Manea and D. Nowotka, editors: WORDS 2015, 10th International Conference on Combinatorics on Words, Lecture Notes in Computer Science 9304, Springer, pp. 160-169, doi 10.1007/978-3-319-23660-5_14.
[39] P. Ochem \& M. Rao (2008): Minimum frequencies of occurrences of squares and letters in infinite words. In JM 2008, 12ièmes Journées Montoises d'Informatique Théorique, Mons, Belgium.
[40] P. A. Pevzner (2000): Computational Molecular Biology An Algorithmic Approach. The MIT Press, Cambridge, MA.

