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Fraenkel and Simpson showed that the number of distinct squares in a word of length n is bounded

from above by 2n, since at most two distinct squares have their rightmost, or last, occurrence begin

at each position. Improvements by Ilie to 2n−Θ(logn) and by Deza et al. to ⌊11n/6⌋ rely on the

study of combinatorics of FS-double-squares, when the maximum number of two last occurrences of

squares begin. In this paper, we first study how to maximize runs of FS-double-squares in the prefix

of a word. We show that for a given positive integer m, the minimum length of a word beginning with

m FS-double-squares, whose lengths are equal, is 7m+ 3. We construct such a word and analyze its

distinct-square-sequence as well as its distinct-square-density. We then generalize our construction.

We also construct words with high distinct-square-densities that approach 5/6.

1 Introduction

Computing repetitions in strings of letters from a finite alphabet is profoundly connected to numerous

fields such as mathematics, computer science, and biology, where the data can be easily represented

as words over some alphabet, and finds important practical uses in several research areas, notably in

text compression, string searching and pattern matching [10, 15], cryptography, music, natural language

processing [36], and computational biology [22,40]. Several pattern matching algorithms take advantage

of the repetitions of the pattern to speed up the search of its occurrences in a text [13,14] and algorithms

for text compression are often based on the study of repetitions in strings [34]. We refer the reader to [11]

for a survey on algorithms and combinatorics of repetitions in strings.

There is a vast literature dealing with squares, which are repetitions of the form xx. This is due to

their fundamental importance in algorithms and combinatorics on words. Different notions and tech-

niques such as primitively or non-primitively-rooted squares [16, 32], positions starting a square [25],

frequencies of occurrences of squares [33,39], three-squares property [18,31], overlapping squares [21],

distinct squares [17, 19, 20, 26–28, 38], double squares [17], non-standard squares [29], etc., have been

studied and extended to partial words [2–8, 24].

Various questions on squares have received a lot of attention. Among them is Fraenkel and Simp-

son’s long-standing question “How many distinct squares are there in a word of length n?”, where each

square is counted only once [19]. Fraenkel and Simpson [20] showed in 1998 that the maximum num-

ber of distinct squares in such a word is asymptotically bounded from below by n− o(n), and bounded

from above by 2n, since at each position of a word of length n at most two distinct squares have their

rightmost, or last, occurrence begin. They conjectured that this maximum number is at most n. This

work became the motivation for linear-time algorithms that find all repetitions in a string, encoded into

maximal repetitions [1, 9, 12, 23, 30, 37].

In 2005, Ilie [26] gave a simpler proof of the 2n upper bound and he [27] improved it to 2n−Θ(log n)
in 2007. More recently, Deza et al. [17] improved the upper bound further to ⌊11n/6⌋. Both Ilie’s and
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Deza et al.’s improvements rely on the study of the combinatorics of FS-double-square-positions, i.e.,

positions at which two last occurrences of squares begin, which is the maximum number of occurrences

possible. Let si denote the number of distinct squares whose last occurrence in a word w of length n

begins at position i, and let the distinct-square-sequence s(w) be the word s1s2 · · · sn. Then the result of

Fraenkel and Simpson implies that si ∈{0,1,2}. A position i with si = 2 is an FS-double-square-position.

In this paper, we consider the problem of counting distinct squares in a word w of length n. In

particular, we study consecutive 2’s in the sequence s(w), called runs of 2’s. We also construct words

that have a high distinct-square-density, that is, the ratio of the number of distinct squares to length is

high.

The contents of our paper are as follows. In Section 2, we review some basic definitions and notations

that we use throughout the paper. We also discuss some preliminary results on double-squares. In

Section 3, we study runs of double-square-positions and we focus on maximizing runs of FS-double-

squares. We first recall two results of Ilie [27]; one gives a relation between the lengths of squares

having their last occurrence at positions neighboring an FS-double-square-position and the other one

considers the case when the lengths of squares in a run of 2’s are equal. It follows from the latter that

for a given m, the minimum length of a word beginning with m FS-double-squares, whose lengths are

preserved, is 7m+3. We show its existence by constructing one, i.e., we construct a word wm of length

7m + 3 beginning with m FS-double-squares, whose lengths are preserved, and analyze the distinct-

square-sequence s(wm) as well as the distinct-square-density of wm. We then generalize our construction.

In Section 4, we construct words in which the distinct-square-density approaches 5/6. These words do

not have many FS-double-squares, and those they do have are not at the beginning. The majority of

distinct squares in these words are the only distinct squares at a particular position. All our constructions

in Sections 3 and 4 are such that each run of 2’s in the corresponding distinct-square-sequence is followed

by a run of at least twice as many 0’s. We refer to such a run of 2’s as selfish 2’s. In Section 5, we discuss

ways to break the selfish rule, e.g., omit or alter the last letter of the word wm. Finally in Section 6, we

conclude with some remarks and suggestions for future work.

2 Preliminaries

We refer the reader to the book [35] for some basic concepts in combinatorics on words. We also adopt

some of the terminology of [17, 20, 27] on squares. For integers i, j such that i ≤ j, the notation [i.. j]
denotes the discrete interval consisting of the integers {i, i+1, . . . , j}.

Let A be an alphabet with size denoted by |A|; we assume throughout the paper that |A| ≥ 2. A word

w over A is a sequence a1 · · ·an, where ai is the letter in A that occurs at position i of w; we also let w[i]
denote the letter at position i. The integer n is the length of w, denoted by |w|. The empty word, denoted

by ε , is the word of length zero. It acts as the identity under the concatenation of words, so the set of all

words over A, denoted by A∗, becomes a monoid.

If w = xy, then x is a prefix of w, denoted by x ≤ w; when x 6= w, we say that x is a proper prefix of

w, denoted by x < w. If w = xyz, then y is a factor of w and z is a suffix of w; here y is an interior factor

of w if x 6= ε and z 6= ε . For 1 ≤ i ≤ j ≤ |w|, the notation w[i.. j] refers to the factor w[i]w[i+1] · · ·w[ j].

A word w is primitive if it cannot be written as a non-trivial power ve, i.e., the concatenation of e

copies of a word v where e is an integer greater than 1. It is well-known that this is equivalent to saying

that w is not an interior factor of ww.

A square in a word consists of a factor of the form x2 = xx, where x 6= ε . A double-square is a pair

(u,U) such that u2 and U2 are two squares that begin at the same position with |u|< |U |. An FS-double-



F. Blanchet-Sadri & S. Osborne 73

square is a double-square (u,U) positioned such that both u2 and U2 are last occurrences; the FS notation

refers to work of Fraenkel and Simpson on double-squares. Note that all FS-double-squares (u,U) are

such that |u| < |U |< 2|u|. A double-square-position is a position at which a double-square begins, and

likewise for FS-double-squares. The structure of an FS-double-square follows Lemma 2.1 since the third

condition is always true, by definition.

Lemma 2.1. [17] Let (u,U) be a double-square such that |u|< |U |< 2|u|. If one of the conditions 1. u

is primitive, 2.U is primitive, or 3. u2 has no further occurrence in U2 is satisfied, then there is a unique

primitive word v1, a unique non-empty proper prefix v2 of v1, and unique integers e1 and e2 satisfying

1 ≤ e2 ≤ e1 such that u = v
e1

1 v2 and U = v
e1

1 v2v
e2

1 . Moreover, U is primitive.

Note that by Lemma 2.1, U2 has the form v
e1

1 v2v
e2

1 v
e1

1 v2v
e2

1 . Any FS-double-square (u,U) such that

|u| < |U | < 2|u| can therefore be fully defined by giving values to the terms v1,v2,e1, and e2. When

defining a word in such a manner, we will list the terms in the order just given; e.g., (ba,b,2,1) =
bababbabababba.

The converse of Lemma 2.1 is nearly true as well, as the next lemma shows.

Lemma 2.2. For any word w that can be written as w = (ve1

1 v2v
e2

1 )2, where v1 is primitive, v2 is a

proper non-empty prefix of v1, and e1 and e2 are integers such that 1 ≤ e2 ≤ e1, the following hold: 1.
U = v

e1

1 v2v
e2

1 is primitive, 2. u2 = (ve1

1 v2)
2 occurs at position 1 of w and has no further occurrence in w,

and 3. (u,U) is an FS-double-square such that |u|< |U |< 2|u|.

Proof. Deza et al. [17, Lemma 6] prove that U must be primitive. Since v2 is a prefix of v1, it is clear

that u2 = (ve1

1 v2) occurs at position 1 of w. If u2 occurs anywhere else in w, then v1 is a power of v2, in

which case v1 is not primitive, v1 = v2, or v2 is the empty word, a contradiction. With w = U2, and u2

occurring exactly once in w, at its first position, w meets the definition of an FS-double-square.

Referring to Lemma 2.2, note that u may or may not be primitive. An example of u being primitive

is achieved by letting v1 = am−1ba, v2 = am−1b, and e2 = e1 = 1, where m is an integer greater than

or equal to 1. An example of u not being primitive is shown by letting v1 = abaaaba, v2 = a, and

e2 = e1 = 1, giving the non-primitive word u = abaaabaa and w = abaaabaaabaaabaabaaabaaabaaaba

has the distinct-square-sequence 200111011101111000011110001000.

If a word w has length n, we let d(w) denote the distinct-square-density of w equal to d(w) = s/n,

where s is the number of distinct squares in w. We also let s(w) denote the sequence s1 · · · sn such

that each si is the number of distinct squares whose last occurrence in w begins at position i. As men-

tioned earlier, si ∈ {0,1,2}. If si = 2, then i is an FS-double-square-position. In Figure 1, the sequence

s(w) = s1 · · · s17 = 22000011100110010 is such that each si is the number of distinct squares whose last

occurrence in the word w begins at position i (there are 10 distinct squares in that word of length 17).

There are two FS-double-square-positions: position 1 with FS-double-square (abaab,abaababa) and

position 2 with (baaba,baababaa). There are also six positions with one square whose last occurrence

begins: position 7 with (baa)2, position 8 with (aab)2, position 9 with (aba)2, position 12 with (ab)2,

position 13 with (ba)2, and position 16 with a2, and all other positions are such that no last occurrence

of a square begins.

3 Runs of double-square-positions

Ilie [27] gave the following relation between the lengths of squares having their last occurrence at posi-

tions neighboring an FS-double-square-position.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

w[i] a b a a b a b a a b a a b a b a a

si 2 2 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0

Figure 1: Word w of length 17 with distinct-square-sequence s(w) = s1 · · · s17, where si is the number of

distinct squares whose last occurrence in w begins at position i. Up to a renaming of letters, this is the

shortest word that begins with two consecutive double-square-positions.

Lemma 3.1 ( [27]). If (u,U) is an FS-double-square beginning at position i and w2 is a square with last

occurrence beginning at position i+1, then either |w| ∈ {|u|, |U |} or |w| ≥ 2|u|.

Ilie [27] also considered the case when the lengths of squares in a run of 2’s are equal. His lemma

was originally stated for m ≥ 2, but it also holds for m = 1.

Lemma 3.2 ( [27]). Let m ≥ 1 be such that i is an FS-double-square-position for all i ∈ [1..m], and let

(ui,Ui) be the FS-double-square at i. If |u1|= · · ·= |um| and |U1|= · · ·= |Um|, then for all i ∈ [1..m] the

following hold:

1. |Ui|+m ≤ 2|ui|,

2. |Ui| ≥ |ui|+m+1,

3. |Ui| ≥ 3m+2 and |ui| ≥ 2m+1.

From Lemma 3.2, it follows that for a given m, the minimum length of a word beginning with m

FS-double-squares, whose lengths are preserved, is 7m+3. The existence of such a word can be easily

verified by constructing one. Theorem 3.3 constructs a word wm of length 7m+ 3 with a prefix of m

FS-double-square-positions; the number m of initial FS-double-square-positions is maximum for a word

of that length. We do not claim wm has the largest possible number of distinct squares given its length

(words with higher distinct-square-densities will be constructed in the next section).

Theorem 3.3. Let m ≥ 1. Then there exists a word wm of length 7m+ 3 such that i is an FS-double-

square-position with double-square (ui,Ui) for all i ∈ [1..m], where |u1| = · · · = |um| = 2m + 1 and

|U1|= · · ·= |Um|= 3m+2. This word is unique up to a renaming of letters, i.e.,

wm = (am−1baam−1bam−1ba)2am−1

where a and b are distinct letters of the alphabet.

Proof. We construct such a word wm. Note that wm must contain at least two distinct letters, otherwise

the squares would appear later. Let u1 = am−1baam−1b and U1 = u1am−1ba, and let

wm =U2
1 am−1 = (am−1baam−1bam−1ba)2am−1.

By [17, Definition 10], recall that a factor u = x[i′.. j′] of a word x can be cyclically shifted right by 1

position if x[i′] = x[ j′+1]. The factor u can be cyclically shifted right by k positions if u can be cyclically

shifted right by 1 position and the factor x[i′+1.. j′+1] can be cyclically shifted right by k−1 positions.

This similarly holds for left cyclic shifts. A trivial cyclic shift is a shift by 0 positions.

It is easy to see that the last and only occurrences of both u2
1 and U2

1 in wm are at position 1. Further-

more, both u2
1 and U2

1 can be cyclically shifted right m− 1 times, such that ui = am−ibaam−1bai−1 and
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Ui = am−ibaam−1bam−1bai. With this shift, both u2
i and U2

i have last occurrences at position i of wm, for

all i ∈ [1..m]. Thus, wm begins with m FS-double-square-positions.

We claim that wm is unique up to a renaming of letters. Let w = a1 · · ·a7m+3 be a word that satisfies

the requirements. We have u1 = a1 · · ·a2m+1 and U1 = u1a2m+2 · · ·a3ma3m+1a3m+2 = u1a1 · · ·am−1amam+1,

and w =U2
1 a6m+5 · · ·a7m+3.

For all i ∈ [1..m], we have the square u2
i of length 4m+ 2 and the square U2

i of length 6m+ 4 both

beginning at position i, so ai · · ·ai+2m = ai+2m+1 · · ·ai+4m+1 and ai · · ·ai+3m+1 = ai+3m+2 · · ·ai+6m+3. This

implies that for all such i, we have ai = ai+2m+1 = ai+3m+2 = ai+5m+3 = ai+m+1 = ai+4m+3.

We next show that the first m− 1 positions of w each have the same letter, i.e., a1 = · · · = am−1.

To do this, we show that for all i ∈ [2..m − 1], we have ai = ai−1. So let i ∈ [2..m − 1]. Recalling

that |ui| = 2m+ 1 and |Ui| = 3m+ 2, an FS-double-square (ui,Ui) beginning at position i implies that

ai = ai+2m+1 and an FS-double-square (ui+1,Ui+1) at position i+1 implies that the following letters are

equal:

ai = ai+2m+1 = w[(i+1)+2m] = w[((i+1)+2m)+ (2m+1)]
= w[(i+1)+4m+1]
= w[((i+1)+4m+1)− (3m+2)]
= w[(i+1)+m−1]
= w[((i+1)+m−1)+ (2m+1)]
= w[(i+1)+3m]
= w[((i+1)+3m)− (3m+2)]
= w[i−1] = ai−1.

It follows that all positions in w other than m,2m+1,3m+1,4m+2,5m+3, and 6m+3 must have

the same letter. It can be easily verified that the remaining six positions must all have the same letter, and

that they may not have the same letter as position 1. Our claim follows.

By Lemma 2.1, the first FS-double-square (u1,U1) of wm of Theorem 3.3 satisfies u1 = am−1baam−1b=
v

e1

1 v2 and U1 = am−1baam−1bam−1ba = v
e1

1 v2v
e2

1 , where v1 = am−1ba, v2 = am−1b, and e1 = e2 = 1. As

discussed in Section 2, we can write wm = (am−1ba,am−1b,1,1)am−1.

The word in Figure 1 is the (m = 2)-case of Theorem 3.3 whose distinct-square-sequence can be

generalized as follows.

Theorem 3.4. For wm as in Theorem 3.3,

s(wm) = 2m02m1m+1001m02⌊m+1
2

⌋(10)⌊
m
2
⌋.

Proof. As noticed earlier, wm begins with m FS-double-square-positions, so s(wm)[1..m] = 2m.

Let us look at the aam−1-suffix of wm. We have one position where the last occurrence of the square

(ai)2, where 1 ≤ i ≤ ⌊m
2
⌋, begins, so the corresponding position in the suffix of s(wm) is a 1. Each

of the other ⌊m
2
⌋ positions in the aam−1-suffix of wm corresponds to a 0, yielding a suffix of (10)⌊

m
2
⌋

for s(wm). Looking at the am−1baam−1-suffix of wm, the remaining positions must correspond to 0

since any square cannot contain only one b, and the other squares only contain a’s but appear later. So

s(wm)[5m+4..7m+3] = 02⌊m+1
2

⌋(10)⌊
m
2
⌋.

Next, let us look at wm[4m+ 4..7m+ 3] = am−1bam−1baam−1. If a square contains only a’s, its last

occurrence has already been discussed. Otherwise, it contains b’s. Each of the positions 4m+4, . . . ,5m+
3 give the last occurrence of the square (am−1b)2 or one of its rotations. So s(wm)[4m+4..5m+3] = 1m.

It is easy to see that s(wm)[4m+ 2..4m+ 3] = 00. Also, s(wm)[3m+ 1..4m+ 1] = 1m+1 due to the last

occurrence of the square (baam−1)2 and its rotations.
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Finally, let us look at wm[m+1..7m+3]. Either the squares have two b’s or four b’s or they have only

a’s. The case of four b’s is impossible and the case of only a’s have their last occurrence later. In the

case of two b’s, the square (am−1b)2 or its rotations at positions m+2, . . . ,2m+1 appear later. Similarly,

the square (am−1ba)2 and its rotations at positions 2m+2, . . . ,3m appear later. It is easy to check that no

square has its last occurrence beginning at position m+1. So s(wm)[m+1..3m] = 02m.

For wm as in Theorem 3.3, d(wm) =
4.5m+1
7m+3

for even values of m and d(wm) =
4.5m+.5

7m+3
for odd values

of m. In both cases, for large values of m the distinct-square-density of wm is approximately .643.

From Theorem 3.3, it follows that the probability of a word of length 7m+3 beginning with a run of

m FS-double-square-positions, where the lengths of the squares are preserved, is equal to
|A|2−|A|
|A|7m+3 .

While we prove the converse of Lemma 3.2 in a specific case, the converse is not true in general.

That is, in the proof of Theorem 3.3 we construct, for every m ≥ 1, a word starting with m FS-double-

squares (ui,Ui), whose lengths are preserved, such that 1′. |Ui|+m = 2|ui|, 2′. |Ui| = |ui|+m+ 1, and

3′. |Ui| = 3m+2 and |ui|= 2m+1, but the construction may be impossible if we replace the equalities

1′− 2′− 3′ with Lemma 3.2’s inequalities 1− 2− 3. For example, given m = 1, |u1| = 6, and |U1| = 8,

all three conditions of Lemma 3.2 are satisfied, but it is impossible to construct a word starting with one

FS-double-square fulfilling those criteria. The same is true for m = 1, |u1| = 6, and |U1| = 9 or m = 2,

|u1|= |u2|= 6, and |U1|= |U2|= 9. However, the following theorem holds.

Theorem 3.5. Let m ≥ 1 and ℓ≥ m. Then there exist at least |A|(|A|−1)ℓ−m+1 and fewer than |A|ℓ−m+2

words of length 6ℓ+m+3 over an alphabet A, with |A| ≥ 2, such that i is an FS-double-square-position

with double-square (ui,Ui) for all i ∈ [1..m], where |u1| = · · · = |um| = 2ℓ+ 1 and |U1| = · · · = |Um| =
3ℓ+2.

Proof. Such a word w can be constructed as follows, where ℓ′ = ℓ−m+ 2 and {α2, . . . ,αℓ′} denotes a

set of ℓ′−1 letters distinct from α1 = a. Set w = a1 · · ·a6ℓ+m+3 where each ai is a letter of the alphabet.

Since u2
1 = (a1 · · ·a2ℓ+1)

2 and U2
1 = (a1 · · ·a3ℓ+2)

2 are squares starting at position 1, we deduce that for

all i ∈ [1..ℓ+ 1], we have ai = ai+2ℓ+1 and for all i ∈ [1..ℓ], we have ai = ai+ℓ+1. Since all the m first

positions of w are FS-double-square-positions, we also have ai = ai+ℓ for all i ∈ [1..m−1].

Thus for all i ∈ [1..m − 2], ai = ai+ℓ+1 = ai+1, so set a1 = · · · = am−1 = a. Also set am · · ·aℓ =
α2 · · ·αℓ′ . We obtain w =U2

1 am−1 where

u1 = am−1α2 · · ·αℓ′aam−1α2 · · ·αℓ′ ,
U1 = am−1α2 · · ·αℓ′aam−1α2 · · ·αℓ′a

m−1α2 · · ·αℓ′a.

As with Theorem 3.3, it is easy to see that the last and only occurrences of both u2
1 and U2

1 in w are

at position 1 of w. Furthermore, both u2
1 and U2

1 can be cyclically shifted right m−1 times, such that

ui = am−iα2 · · ·αℓ′aam−1α2 · · ·αℓ′a
i−1,

Ui = am−iα2 · · ·αℓ′aam−1α2 · · ·αℓ′a
m−1α2 · · ·αℓ′a

i.

With this shift, both u2
i and U2

i have last occurrences at position i of w, for all i ∈ [1..m]. Thus, w begins

with m FS-double-square-positions.

The minimum number of possible words |A|(|A|− 1)ℓ−m+1 is calculated by allowing α1 to be any

letter of alphabet A and allowing each letter αi, with i ∈ [2..ℓ−m+2] to be any letter of A distinct from

α1. The exclusive maximum number of words is calculated by allowing each letter αi to be any letter of

A including α1.
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Note that in the case of ℓ= m, this word w is identical to wm given in Theorem 3.3. Note also that the

proof holds even if the letters α2, . . . ,αℓ′ are not distinct. To see this, letting α2, . . . ,αℓ′ be some letters

distinct from a = α1, we have w =U2
1 am−1 where

u1 = am−1bℓ−m+1aam−1bℓ−m+1,
U1 = am−1bℓ−m+1aam−1bℓ−m+1am−1bℓ−m+1a.

The next theorem, which constructs FS-double-squares, extends Theorem 3.5.

Theorem 3.6. Let m ≥ 1, Z be a non-empty word such that am−1Za is primitive, w = (ve1

1 v2v
e2

1 )2am−1

where v1 = am−1Za, v2 = am−1Z, e1 and e2 are integers such that 1 ≤ e2 ≤ e1. Then w begins with m

FS-double-squares (ui,Ui), i ∈ [1..m], where

ui = (am−iZai)e1 am−iZai−1 and Ui = (am−iZai)e1 am−iZai−1(am−iZai)e2 .

Proof. Let i ∈ [1..m]. Set v1,i = am−iZai and v2,i = am−iZai−1. Then v1,i is primitive being a cyclic shift

of v1, and v2,i is a proper non-empty prefix of v1,i. By Lemma 2.2, the word (ve1

1,iv2,iv
e2

1,i)
2, where e1 and

e2 are integers such that 1 ≤ e2 ≤ e1, is an FS-double-square.

We claim that adding any number of a’s to the end of (ve1

1 v2v
e2

1 )2 will not destroy the initial FS-

double-square, since a Z would be required to create an additional (ve1

1 v2)
2 or (ve1

1 v2v
e2

1 )2 to the right of

the initial FS-double-square. It follows that w begins with an FS-double-square (u1,U1). Furthermore,

both u2
1 and U2

1 can be cyclically shifted right m times, to create m double-squares (ui,Ui) such that

ui = v
e1

1,iv2,i and Ui = v
e1

1,iv2,iv
e2

1,i.

Thus, FS-double-squares are found at each of the first m positions of w.

In Theorem 3.6, note that in the case where Z begins with a, adding an additional a to the end of w

will produce a word that begins with an additional FS-double-square.

Note that our constructions have focused on a run of 2’s in the prefix in which the lengths of the

double-squares remain the same. The following word

b a b b a b a b b a a a b b a b a b b a

2 2 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1

a b b a b a b b a a a b b a b a b b a

0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0

has a distinct-square-sequence with two consecutive 2’s in the prefix that refer to double-squares of

different lengths, (bab,babba) and (abbababbaa,abbababbaaabbababba).

4 Constructions with higher distinct-square-densities

For any pair of integers (i, j) with i < j, let Yi, j = XiXi+1 · · ·X j−1X jaa j−1, where

Xk = ak−1baak−1bak−1baak−1baak−1bak−1b

for each k ∈ [i.. j]. We will show that the distinct-square-density of the word Yi, j approaches 5/6 as j

approaches infinity.

Lemma 4.1. Each factor Xk with k < j has, in Yi, j , the distinct-square-sequence 12k+10k+11k012k, giving

5k+1 distinct squares per Xk. No Xk, where k < j, has more distinct squares than those listed in Table 1.
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first in set last in set count root of first in set root length

1 2k+1 2k+1 ak−1baak−1bak−1ba 3k+2

2k+2 3k+2 k+1 NONE 0

3k+3 4k+1 k−1 ak−1ba k+1

4k+2 4k+2 1 baak−1bak−1 2k+1

4k+3 4k+3 1 NONE 0

4k+4 5k+3 k ak−1b k

5k+4 6k+3 k ak−1bakbaa 2k+3

Table 1: Distinct squares of Yi, j that begin in the factor Xk = ak−1baak−1bak−1baak−1baak−1bak−1b,

where k = j − 1: each row lists a set of consecutive distinct squares of a given length, with the first

square of the set beginning at the first position and the last beginning at the last position. “Count” gives

the number of distinct squares in the set. When the root of the square is given as NONE, no distinct

square exists at those positions. Here s(Yi, j) = s(· · ·XkX jaa j−1) = · · ·12k+10k+11k012ks(X jaa j−1).

Proof. Consider first the case where j = i+ 1. In this case, Yi, j = XiXi+1aai. Table 1 lists the distinct

squares of Yi, j that begin in Xi. The squares are listed as sets of consecutive distinct squares of the same

length. For each set, only the first distinct square is listed; the remaining distinct squares are cyclic shifts

of the first. Both the existence and distinctness of the listed squares may be easily verified. The sequence

12k+10k+11k012k and the minimum total of 5k+1 in Xi both follow from Table 1.

By Theorem 3.4, s(X jaa j−1) = s(w j) = 2 j02 j1 j+1001 j02⌊ j+1
2
⌋(10)⌊

j
2
⌋

.

Now consider the case where Yi, j contains more than two Xk factors. By definition, every Xk has the

same structure, and for all k < j, every factor Xk is followed by Xk+1aak, by the definition of Yi, j. Note

that when k + 1 < j, the factor aak is a prefix of Xk+2. Since every Xk has the same structure and is

followed by Xk+1aak, the squares listed in Table 1 will exist in all Xk’s.

To see that the squares in each Xk are distinct regardless of how many Xk factors are in Yi, j , ob-

serve that every distinct square in Xk, as listed in Table 1, includes at least one of the factors bak−1b or

baak−1b = bakb.

Now consider Xk+2 = ak+1baak+1bak+1baak+1baak+1bak+1b. Neither bak−1b nor bakb appears in

Xk+2, nor will they appear in subsequent X ’s. Thus the distinct squares of Xk listed in Table 1 remain

distinct no matter how many additional X factors exist in Yi, j. Table 1 already accounts for Xk+1.

Table 1 holds for Yk,k+1 = XkXk+1aak. It can be verified that no distinct squares of XkXk+1aak that

begin in Xk exist beyond those listed in Table 1. If we want additional distinct squares in a Yi, j word, we

must add an additional Xk factor (increase the value of j), giving us Yi, j = XkXk+1Xk+2aak+1.

We are looking for additional distinct squares that begin in Xk. We know from the case j = i+ 1,

shown in Table 1, that all distinct squares beginning in Xk and ending in Xk,Xk+1, or the prefix of length

k+1 of Xk+2, aak, are accounted for. Therefore any additional distinct squares must end beyond the first

k+1 positions of Xk+2. We consider two cases.

First, let us consider the case when additional distinct squares begin from positions 1 through 5k+3

of Xk. (Position 5k+ 3 of Xk is the second-to-last b in Xk.) We are looking for distinct squares that end

beyond the first k+ 1 positions of Xk+2, i.e., distinct squares that extend beyond Xk+1. Since the length

of Xk+1 is greater than that of Xk, less than half of any such square will be in Xk. Therefore, all of the

square that falls in Xk must be part of the root of the square. The root must therefore contain bak−1b,

a sequence that is not found at any point beyond Xk. Therefore, no Xk, with k < j, may have distinct
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squares in addition to those listed in Table 1 that begin at positions 1 through 5k+3 of Xk.

Next, let us consider the case when additional distinct squares begin from positions 5k+ 4 through

6k + 3 of Xk. The positions indicated spell the last ak−1b factor of Xk. Each of the last k positions

of Xk already begins one distinct square of length 4k + 6. For each of these k positions, let u be the

already-established distinct square beginning at that position, and let U be a theoretically longer square

beginning at the same position. We do not need to address potentially shorter distinct squares, since

their non-existence is easily verified. From Lemma 3.2, we have |U |+m ≤ 2|u|, which gives |U | ≤
8k+12−m. Recall that m gives the number of consecutive FS-double-squares of the lengths |u| and |U |.
The minimum value of m is therefore 1, giving |U | ≤ 8k+ 11. It can be verified that none of the last k

positions of Xk begin a square of length at most 2(8k+11). Since no longer distinct squares may exist at

those positions, no additional distinct squares exist.

Theorem 4.2. There exist words in which the distinct-square-density approaches 5
6
.

Proof. Such a word can be constructed as follows. As discussed in Lemma 4.1, let

Xk = ak−1baak−1bak−1baak−1baak−1bak−1b

of length 6k+ 3 and for i < j, let Yi, j = XiXi+1 · · ·X j−1X jaa j−1. Essentially, Yi, j is the concatenation of

j− i+1 words wm, with increasing m values, in which the suffix and prefix of a’s are shared by adjacent

pairs of words. Referring to Theorem 3.3, the factor X jaa j−1 of Yi, j is the word w j of length 7 j+3, thus

the word Yi, j has length 7 j+3+∑
j−1
k=i (6k+3) = 7 j+3+3 j2 −3i2.

By Theorem 3.4, the factor X jaa j−1 has 4 j+ ⌊ j
2
⌋+1 distinct squares. By Lemma 4.1,

s(Yi, j) = s(Yi, j)[1..6i+3]s(Yi, j)[6i+4..12i+12] · · ·
s(Yi, j)[3 j2 −3i2 −6 j−2..3 j2 −3i2]s(X jaa j−1)

= 12i+10i+11i012i12(i+1)+10(i+1)+11i+1012(i+1) · · ·

12( j−1)+10( j−1)+11 j−1012( j−1)s(w j)

= ∏
j−1
k=i (1

2k+10k+11k012k)s(w j).

The word Yi, j has a total of

4 j+ ⌊ j
2
⌋+1+∑

j−1
k=i (5k+1) = 4 j+ ⌊ j

2
⌋+1+ 1

2
(5 j2 −3 j−5i2 +3i)

distinct squares. It has thus distinct-square-density

4 j+ ⌊ j
2
⌋+1+ 1

2
(5 j2 −3 j−5i2 +3i)

7 j+3+3 j2 −3i2
,

which, recalling that j > i, approaches 5
6

as j approaches infinity.

Referring to Table 2, we include an example of an Yi, j word illustrating Theorem 4.2, where i = 5

and j = 15; there are 553 distinct squares, the length is 708, the distinct-square-density is ≈ .781:

a a a a b a a a a a b a a a a b a a a a a b a a a a

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1

a b a a a a b a a a a a b a a a a a a b a a a a a b

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
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i j distinct squares length distinct-square-density

1 2 16 26 .615

1 3 31 48 .646

2 4 46 67 .687

2 5 71 101 .703

5 15 553 708 .781

6 19 879 1111 .791

8 25 1490 1861 .801

11 36 3063 3780 .810

19 64 9559 11656 .820

Table 2: Densities of selected Yi, j words: note that both the i and j columns skip values. For each j value,

the given i value gives the maximum distinct-square-density for that j.

a a a a a a b a a a a a a b a a a a a b a a a a a a

0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

b a a a a a a a b a a a a a a b a a a a a a a b a a

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1

a a a a a b a a a a a a b a a a a a a a b a a a a a

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

a a a b a a a a a a a b a a a a a a a a b a a a a a

1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1

a a a b a a a a a a a b a a a a a a a a b a a a a a

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

a a a a b a a a a a a a a b a a a a a a a a a b a a

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1

a a a a a a a b a a a a a a a a b a a a a a a a a

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

a b a a a a a a a a a a b a a a a a a a a a b a a

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

a a a a a a a a b a a a a a a a a a a b a a a a a

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

a a a a b a a a a a a a a a a b a a a a a a a a a

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

a a b a a a a a a a a a a b a a a a a a a a a a a

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
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b a a a a a a a a a a a b a a a a a a a a a a b a

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

a a a a a a a a a a b a a a a a a a a a a a a b a

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

a a a a a a a a a a b a a a a a a a a a a a a b a

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0

a a a a a a a a a a a b a a a a a a a a a a a b a

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

a a a a a a a a a a a b a a a a a a a a a a a a a

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

b a a a a a a a a a a a a b a a a a a a a a a a a

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

a a b a a a a a a a a a a a a a b a a a a a a a a

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

a a a a b a a a a a a a a a a a a a b a a a a a a

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

a a a a a a a a b a a a a a a a a a a a a a b a a

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

a a a a a a a a a a a a b a a a a a a a a a a a a

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

a a b a a a a a a a a a a a a a b a a a a a a a a

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

a a a a a a b a a a a a a a a a a a a a a a b a a

2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a a a a a a a a a a a a b a a a a a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

a a a b a a a a a a a a a a a a a a a b a a a a a

1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

a a a a a a a a a b a a a a a a a a a a a a a a a

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Note that the above word does not have many FS-double-squares, and those it does have are not at

the beginning. Words with distinct-square-density greater than .8 first occur when j = 25 and are well
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over 1,000 letters long.

5 Selfish 2’s, or not

In all the words we have given thus far, each run of 2’s in the corresponding distinct-square-sequence is

followed by a run of at least twice as many 0’s. We refer to a run of 2’s followed by at least twice as

many 0’s as selfish 2’s.

However, not all runs of 2’s are selfish. The most straightforward way to break the selfish rule is

to omit or alter the last letter of the word wm, so that the position that would be the last 2 is instead a

1. For example consider the word w2 = abaababaabaababaa, which has the distinct-square-sequence

22000011100110010. The Selfish 2’s rule appears to hold, but it can be broken simply by omitting the

last letter, giving abaababaabaababa, which has the distinct-square-sequence 210000111011100, or by

changing the last letter of w2 to b, giving the distinct-square-sequence 21000011101011000.

Similar results are seen with w3. Omitting the last letter gives sequence 22100000011110011100010

and distinct-square-density 13
23

≈ .565, and altering the last letter gives the distinct-square-sequence

221000000111100011100100 and distinct-square-density 13
24

≈ .542.

For the above alterations to w2 and w3, the Selfish 2’s rule very nearly holds; we have replaced a 2

with a 1, but the length of the first run of 0’s remains unchanged. Greater breaks from the Selfish 2’s

pattern can be obtained by increasing the values of e1,e2, or both, as in the following examples.

The distinct-square-sequence of (aba,ab,2,1)a is 22011000100011100110010, with distinct-square-

density ≈ .565; for (aba,ab,3,1)a, it is 22011011000011100011100110010, with distinct-square-density

≈ .586; for (aba,ab,3,2)a, it is 22011000000100011100001110111100010, with distinct-square-density

= .514; for (aaba,aab,2,1)aa, it is 22201110000110000111100111000010, with distinct-square-density

≈ .594.

The distinct square-sequence of (aaba,aab,2,2) is 21100010000001111000011120011110001000,

with distinct-square-density = .5. Note that this word contains the word (aba,a,1,1), which does follow

the Selfish 2’s rule. The word (aaba,aab,2,2) has an internal 2 which disappears when aa is added, i.e.,

(aaba,aab,2,2)aa has distinct-square-sequence 2220000000000111100000111101111110000010, with

distinct-square-density .525 (the Selfish 2’s rule applies here).

The distinct-square-sequence of (aaba,aab,3,1) is 21101110111000100111100001111001101000,

with distinct-square-density ≈ .579. Adding one a to this word gives a distinct-square-sequence of

221011101110000001111000011110011100010, with distinct-square-density ≈ .590. Adding another a

gives 2220111011100000011110000111100111000010, with distinct-square-density = .6. Note that in

this case, the Selfish 2’s rule does not apply even when the sequence begins with multiple 2’s.

The distinct-square-sequence of (aaba,aab,3,2) is 211011100010000110000111100001112001111

0001000, with distinct-square-density ≈ .523. Note that this word again contains the word (aba,a,1,1),
which does follow the Selfish 2’s rule. Adding another a to the end of the above word produces another

leading 2, but causes the interior 2 to vanish, giving 221011100000000110000111100001111101111100

00010 with distinct-square-density ≈ .532. The sequence can be extended to begin with three 2’s by

adding yet another a giving 222011100000000110000111100000111101111110000010, with distinct-

square-density ≈ .542.

Apart from (aaba,aab,2,2)aa, in the distinct-square-sequences of all the above examples, each run

of 2’s is still followed by a larger run of 0’s; the difference is that the 0’s are not necessarily adjacent to

the 2’s, and the leading 0 in the run of 0’s is not necessarily the first 0 to follow the 2’s.
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6 Conclusion and future work

In this paper, we first studied how to maximize runs of FS-double-squares in the prefix. We showed that

a result of Ilie [27], which considers the case when the lengths of squares in a run of 2’s are preserved,

implies that for a given positive integer m, the minimum length of a word beginning with m FS-double-

squares, whose lengths are preserved, is 7m+ 3. In Theorem 3.3, we constructed a word wm of length

7m+3 that begins with m FS-double-squares, whose lengths are preserved, and analyzed in Theorem 3.4

the distinct-square-sequence as well as the distinct-square-density of wm. We then generalized our con-

struction in Theorems 3.5 and 3.6. In Theorem 4.2, we constructed for each pair of integers (i, j) with

i < j, a word Yi, j in which the distinct-square-density approaches 5/6 as j approaches infinity.

Deza et al. [17] gives ⌊5n
6
⌋ as the maximum number of FS-double-squares in a word of length n, and

we may wonder about a connection between that result and our Theorem 4.2. Deza et al.’s result gives an

upper bound on the number of FS-double-square positions in a word; we give a pattern for a word that

will have close to ⌊5n
6
⌋ total squares, counting both double and single-square-positions. In fact, of all the

distinct squares in our word Yi, j , only a trivial number are FS-double-squares. Deza et al.’s proof, on the

other hand, is concerned entirely with FS-double-squares and says nothing about single distinct square

occurrences. While there may be some underlying property that leads to the value 5
6

occurring in both

results, neither our proof nor Deza et al.’s incorporates part of the other.

We proved that the upper bound for the number of distinct squares in a word of length n is at least

a value approaching ⌊5n
6
⌋. We did so by finding a pattern for a word that when n is sufficiently large,

will have a distinct-square-density approaching 5
6
. We suspect ⌊5n

6
⌋ either is the upper bound or is very

close to it. However, the pattern we found approaches the distinct-square-density 5
6

only for words that

are thousands of letters long or more; our intuition is that there exist shorter words which approach the 5
6

bound, and that finding them could be a fruitful area for future research.

We also observed that many words have selfish 2’s, where a run of FS-double-square-positions is fol-

lowed by a longer run of positions with no distinct squares. We disproved our first Selfish 2’s hypothesis–

that any run of 2’s must be followed by a run of at least twice that many 0’s–but we suspect that a weaker

version of our Selfish 2’s hypothesis is true. Proving any Selfish 2’s hypothesis would put a maximum

on the upper bound of distinct-square-density. With these observations in mind, we propose a weaker

version of the Selfish 2’s rule: For every 2 in the distinct-square-sequence of a word, at least one 0 must

exist to the right of that 2. If this rule is true, then the upper limit on the number of distinct squares in a

word of length n must be less than n or the distinct-square-density can never be more than 1. We suspect

this is true in part because our Yi, j words get the vast majority of their distinct square occurrences from

single rather than double-squares. Stronger versions of the rule, that require more than one 0 to follow

each 2, would lead to correspondingly lower upper limits.

Referring to Table 2, we suggest the problem of finding and proving the i value that gives the maxi-

mum distinct-square-density for any given j.

The distinct-square-sequences were calculated using a program that we wrote in Java to support this

paper that, given a word, outputs the associated distinct-square-sequence, the total number of distinct

squares in the word, the length of the word, and the distinct-square-density of the word. In addition

to accepting typed words as input, the program also creates Yi, j words given i and j values, or creates

words of the form (ve1

1 v2v
e2

2 )2 when given values for v1,v2,e1, and e2. The words created according to

those criteria then have distinct-square-sequences calculated in an identical manner to typed-in words.

Distinct-square-density was calculated in Java as a 64-bit signed floating point value (Java’s double

type). Densities were rounded to three decimal places for convenience. Distinct-square-density values
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in Table 2 were calculated in Microsoft Excel using the formulas given in Theorem 4.2.
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