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Let S be a complete star-omega semiring and Σ be an alphabet. For a weighted ω-pushdown au-

tomaton P with stateset {1, . . . ,n}, n ≥ 1, we show that there exists a mixed algebraic system over

a complete semiring-semimodule pair ((S ≪ Σ∗ ≫)n×n
,(S ≪ Σω ≫)n) such that the behavior ‖P‖

of P is a component of a solution of this system. In case the basic semiring is B or N∞ we show

that there exists a mixed context-free grammar that generates ‖P‖. The construction of the mixed

context-free grammar from P is a generalization of the well known triple construction and is called

now triple-pair construction for ω-pushdown automata.

1 Introduction and preliminaries

Weighted pushdown automata were introduced by Kuich, Salomaa [14]. Many results on classical push-

down automata and context-free grammars can be generalized to weighted pushdown automata and al-

gebraic systems. Classic pushdown automata can also be used to accept infinite words (see Cohen, Gold

[3]) and it is this aspect we generalize in our paper. We consider weighted ω-pushdown automata and

their relation to algebraic systems over a complete semiring-semimodule pair (Sn×n
,V n). It turns out that

the well known triple construction for pushdown automata can be generalized to a triple-pair construction

for weighted ω-pushdown automata. Our paper generalizes results of Droste, Kuich [5].

The paper consists of this and three more sections. In Section 2, pushdown transition matrices are

introduced and their properties are studied. The main result of this section is that, for such a matrix M, the

p-blocks, p a pushdown symbol, of the infinite column vector Mω ,l satisfy a special equality. In Section

3, weighted ω-pushdown automata are introduced. We show that for a weighted ω-pushdown automaton

P there exists a mixed algebraic system such that the behavior ‖P‖ of P is a component of a solution

of this system. In Section 4 we consider the case that the complete star-omega semiring S is equal to B or

N
∞. Then for a given weighted ω-pushdown automaton P a mixed context-free grammar is constructed

that generates ‖P‖. The construction is a generalization of the well known triple construction and is

called triple-pair construction for ω-pushdown automata.

For the convenience of the reader, we quote definitions and results of Ésik, Kuich [8, 9, 10, 11] from

Ésik, Kuich [7]. The reader should be familiar with Sections 5.1-5.6 of Ésik, Kuich [7].
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A semiring S is called complete starsemiring if sums for all families (si | i ∈ I) of elements of S are

defined, where I is an arbitrary index set, and if S is equipped with an additional unary star operation
∗ : S → S defined by s∗ = ∑ j≥0 s j for all s ∈ S. Moreover, certain conditions have to be satisfied making

sure that computations with “infinite” sums can be performed analogous to those with finite sums.

A pair (S,V ), where S is a complete starsemiring and V is a complete S-semimodule is called a

complete semiring-semimodule pair if products for all sequences (si | i ∈N) of elements of S are defined

and if S and V are equipped with an omega operation ω : S → V defined by sω = ∏ j≥1 s for all s ∈ S.

Moreover, certain conditions (e.g. “infinite” distributive laws) have to be satisfied making sure that

computations with “infinite” sums and “infinite” products can be performed analogous to those with

finite sums and finite products. (For details see Conway [4], Eilenberg [6], Bloom, Ésik [1], Ésik, Kuich

[7], pages 30 and 105-107.)

A semiring S is called complete star-omega semiring if (S,S) is a complete semiring-semimodule

pair.

For the theory of infinite words and finite automata accepting infinite words by the Büchi condition

consult Perrin, Pin [15].

2 Pushdown transition matrices

In this section we introduce pushdown transition matrices and study their properties. Our first theorem

generalizes Theorem 10.5 of Kuich, Salomaa [14]. Then we show in Theorems 3 and 6 that, for a

pushdown transition matrix M, (Mω)p and (Mω ,l)p, 0 ≤ l ≤ n, p ∈ Γ, introduced below satisfy the same

specific equality. In Theorem 1, S denotes a complete starsemiring; afterwards in this section, (S,V )
denotes a complete semiring-semimodule pair.

Following Kuich, Salomaa [14] and Kuich [13], we introduce pushdown transitions matrices. Let Γ

be an alphabet, called pushdown alphabet and let n ≥ 1. A matrix M ∈ (Sn×n)Γ∗×Γ∗
is termed a pushdown

transition matrix (with pushdown alphabet Γ and stateset {1, . . . ,n}) if

(i) for each p ∈ Γ there exist only finitely many blocks Mp,π , π ∈ Γ∗, that are unequal to 0;

(ii) for all π1,π2 ∈ Γ∗,

Mπ1,π2
=

{

Mp,π if there exist p ∈ Γ,π,π ′ ∈ Γ∗ with π1 = pπ ′ and π2 = ππ ′
,

0 otherwise.

For the remaining of this paper, M ∈ (Sn×n)Γ∗×Γ∗
will denote a pushdown transition matrix with

pushdown alphabet Γ and stateset {1, . . . ,n}.

Our first theorem generalizes Theorem 10.5 of Kuich, Salomaa [14] and Theorem 6.2 of Kuich [13]

to complete starsemirings. First observe that for all ρ1 ∈ Γ+, ρ2,π ∈ Γ∗, we have Mρ1π,ρ2π = Mρ1,ρ2
.

Intuitively, our next theorem states that, emptying the pushdown tape with contents pπ by finite

computations has the same effect (i.e., (M∗)pπ,ε ) as emptying first the pushdown tape with contents p

(i.e., (M∗)p,ε ) by finite computations and afterwards (i.e., multiplying) emptying the pushdown tape with

contents π (i.e., (M∗)π,ε ) by finite computations.

Theorem 1. Let S be a complete starsemiring and M ∈ (Sn×n)Γ∗×Γ∗
be a pushdown transition matrix.

Then, for all p ∈ Γ and π ∈ Γ∗,

(M∗)pπ,ε = (M∗)p,ε(M
∗)π,ε .
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Proof. Since the case π = ε is trivial, we assume π ∈ Γ+. We obtain

(M∗)pπ,ε = ∑
m≥0

(Mm+1)pπ,ε

= ∑
m≥0

∑
π1,...,πm∈Γ+

Mpπ,π1
Mπ1,π2

. . .Mπm−1,πm
Mπm,ε

=
(

∑
m1≥0

∑
ρ1,...,ρm1

∈Γ+

Mpπ,ρ1π . . .Mρm1
π,π

)

·
(

∑
m2≥0

∑
π1,...,πm2

∈Γ+

Mπ,π1
. . .Mπm2

,ε

)

=
(

∑
m1≥0

∑
ρ1,...,ρm1

∈Γ+

Mp,ρ1
. . .Mρm1

,ε

)

(M∗)π,ε = (M∗)p,ε (M
∗)π,ε .

The summand for m = 0 is Mpπ,ε ; the summand for m1 = 0 is Mpπ,π or Mp,ε ; the summand for m2 = 0

is Mπ,ε . In the third line in the first factor the pushdown contents are always of the form ρπ, ρ ∈ Γ+,

except for the last move. Hence, in the second factor the first move has to start with pushdown contents

π and it is the first time that the leftmost symbol of π is read.

Intuitively, the next lemma states that the infinite computations starting with p1 . . . pk on the push-

down tape yield the same matrix (Mω)p1...pk
as summing up, for all 1≤ j ≤ k the product of (M∗)p1...p j−1,ε

(i.e., emptying the pushdown tape with contents p1 . . . p j−1 by finite computations) with the matrix

(Mω)p j
(i.e., the infinite computations starting with p j on the pushdown tape).

This means that in p1 . . . pk the pushdown symbols p1, . . . , p j−1 are emptied by finite computations

and p j is chosen for starting the infinite computations. Clearly, p j+1, . . . , pk are not read.

Lemma 2. Let (S,V ) be a complete semiring-semimodule pair and let M ∈ (Sn×n)Γ∗×Γ∗
be a pushdown

transition matrix. Then for all p1, . . . , pk ∈ Γ,

(Mω)p1...pk
= ∑

1≤ j≤k

(M∗)p1,...,p j−1,ε(M
ω)p j

.

Proof.

(Mω)p1,...,pk
= ∑

ρ1,ρ2,...∈Γ+

Mp1...pk,ρ1
Mρ1,ρ2

Mρ2,ρ3
. . . .

We partition the “runs” (p1 . . . pk,ρ1,ρ2,ρ3, . . . ) into classes:

• class (1): there exist ρ ′
i ∈ Γ+, i ≥ 1, such that ρi = ρ ′

i p2 . . . pk.

• class (j).(t), k ≥ 3, 2 ≤ j ≤ k−1, t ≥ 1: ρt = p j . . . pk and there exist ρ ′
i ∈ Γ+, for 1 ≤ i ≤ t −1 and

i ≥ t +1, such that ρi = ρ ′
i p j . . . pk for 1 ≤ i ≤ t −1, and ρi = ρ ′

i p j+1 . . . pk for i ≥ t +1.

• class (k).(t), k ≥ 2, t ≥ 1: ρt = pk and there exist ρ ′
i ∈ Γ+ for 1 ≤ i ≤ t −1, such that ρi = ρ ′

i pk.

Clearly, class (1) and class (j).(t), 2 ≤ j ≤ k, t ≥ 1 are pairwise disjoint.

Intuitively, in the runs of

class (1): p2 is never read;

class (j).(t), 2 ≤ j ≤ k−1, t ≥ 1: p j+1 is never read and p j is read in the t-th step;

class (k).(t), t ≥ 1: pk is read in the t-th step.

We now compute for each class the value of

S(1) = ∑
(1)

Mp1...pk,ρ1
Mρ1,ρ2

Mρ2,ρ3
. . . .
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and

S( j).(t) = ∑
( j).(t)

Mp1...pk,ρ1
Mρ1ρ2

Mρ2,ρ3
. . . ,2 ≤ j ≤ k, t ≥ 1,

where ∑(1) and ∑( j).(t) means summation over all runs in the classes (1) and (j).(t), respectively. We

obtain

S(1) = ∑
ρ ′

1,ρ
′
2,···∈Γ+

Mp1,ρ
′
1
Mρ ′

1,ρ
′
2
Mρ ′

2,ρ
′
3
· · ·= (Mω)p1

.

For 2 ≤ j ≤ k−1, t ≥ 1, we obtain

S( j).(t) =
(

∑
ρ ′

1,ρ
′
2,...,ρ

′
t−1∈Γ+

Mp1...p j−1,ρ
′
1
. . .Mρ ′

t−2,ρ
′
t−1

Mρ ′
t−1,ε

)

·
(

∑
ρ ′

t+1,ρ
′
t+2,...∈Γ+

Mp j,ρ
′
t+1

Mρ ′
t+1,ρ

′
t+2

. . .

)

= (Mt)p1...p j−1,ε(M
ω)p j

.

For t ≥ 1,

S(k).(t) =
(

∑
ρ ′

1,ρ
′
2,...,ρ

′
t−1∈Γ+

Mp1...pk−1,ρ
′
1
. . .Mρ ′

t−2,ρ
′
t−1

Mρ ′
t−1,ε

)

·
(

∑
ρt+1,ρt+2,...∈Γ+

Mpk,ρt+1
Mρt+1,ρt+2

. . .

)

= (Mt)p1...pk−1,ε (M
ω)pk

.

Hence, we obtain

(Mω)p1...pk
= S(1)+ ∑

2≤ j≤k

∑
t≥1

S( j).(t) = (Mω)p1
+ ∑

2≤ j≤k

(M∗)p1...p j−1,ε(M
ω)p j

= ∑
1≤ j≤k

(M⋆)p1...p j−1,ε(M
ω)p j

.

Intuitively, our next theorem states that the infinite computations starting with p on the pushdown

tape yield the same matrix (Mω)p as summing up, for all π = p1 . . . pk and all 1 ≤ j ≤ k the product of

Mp,π (i.e., changing the contents of the pushdown tape from p to π) with the matrix (M∗)p1...p j−1,ε (i.e.,

emptying the pushdown tape with contents p1 . . . p j−1 by finite computations) and eventually with the

matrix (Mω)p j
(i.e., the infinite computations starting with p j on the pushdown tape).

This means that in π the pushdown symbols p1, . . . , p j−1 are emptied by finite computations and p j

is chosen for starting the infinite computations. Clearly, p j+1, . . . , pk are not read.

Theorem 3. Let (S,V ) be a complete semiring-semimodule pair and let M ∈ (Sn×n)Γ∗×Γ∗
be a pushdown

transition matrix. Then, for all p ∈ Γ,

(Mω)p = ∑
p1...pk∈Γ+

Mp,p1...pk ∑
1≤ j≤k

(M∗)p1...p j−1,ε(M
ω)p j

.

Proof. We obtain, by Lemma 2

∑
p1...pk∈Γ+

Mp,p1...pk ∑
1≤ j≤k

(M∗)p1...p j−1,ε(M
ω)p j

= ∑
p1...pk∈Γ+

Mp,p1...pk
(Mω)p1...pk

= ∑
π∈Γ∗

Mp,π(M
ω)π = (MMω) = Mω

.
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We define the matrices (AM)p,p′ ∈ Sn×n, M ∈ (Sn×n)Γ∗×Γ∗
a pushdown transition matrix, p, p′ ∈ Γ, by

(AM)p,p′ = ∑
π=p1...pk∈Γ+

p j=p′

Mp,π(M
∗)p1,ε . . . (M

∗)p j−1,ε ,

and AM ∈ (Sn×n)Γ×Γ by AM = ((AM)p,p′)p,p′∈Γ. Whenever we use the notation AM we mean the matrix

just defined.

Theorem 4. Let (S,V ) be a complete semiring-semimodule pair and let M ∈ (Sn×n)Γ∗×Γ∗
be a pushdown

transition matrix. Then, for all p ∈ Γ,

(Mω)p = ∑
p′∈Γ

(AM)p,p′(M
ω)p′ .

Proof. We obtain by Theorem 3

∑
p′∈Γ

(AM)p,p′(M
ω)p′ = ∑

p′∈Γ
∑

π=p1...pk∈Γ+
∑

1≤ j≤k

δp j ,p′Mp,π(M
∗)p1...p j−1,ε(M

ω)p′

= ∑
p1...pk∈Γ+

Mp,p1...pk ∑
1≤ j≤k

∑
p′∈Γ

δp j ,p′(M
∗)p1...p j−1,ε (M

ω)p′

= ∑
p1...pk∈Γ+

Mp,p1...pk ∑
1≤ j≤k

(M∗)p1...p j−1,ε (M
ω)p j

= (Mω)p .

When we say “G is the graph with adjacency matrix M ∈ (Sn×n)Γ∗×Γ∗
” then it means that G is

the graph with adjacency matrix M′ ∈ S(Γ
∗×n)×(Γ∗×n), where M corresponds to M′ with respect to the

canonical isomorphism between (Sn×n)Γ∗×Γ∗
and S(Γ

∗×n)×(Γ∗×n).

Let now M be a pushdown transition matrix and 0 ≤ l ≤ n. Then Mω ,l is the column vector in (V n)Γ∗

defined as follows: For π ∈ Γ∗ and 1 ≤ i ≤ n, let ((Mω ,l)π)i be the sum of all weights of paths in the

graph with adjacency matrix M that have initial vertex (π, i) and visit vertices (π ′
, i′), π ′ ∈ Γ∗, 1 ≤ i′ ≤ l,

infinitely often. Observe that Mω ,0 = 0 and Mω ,n = Mω .

Let Pl = {( j1, j2, . . . ) ∈ {1, . . . ,n}ω | jt ≤ l for infinitely many t ≥ 1}.

Then for π ∈ Γ+, 1 ≤ j ≤ n, we obtain

((Mω ,l)π) j = ∑
π1,π2,···∈Γ+

∑
( j1, j2,... )∈Pl

(Mπ,π1
) j, j1(Mπ1,π2

) j1, j2(Mπ2,π3
) j2, j3 . . . .

Lemma 5. Let (S,V ) be a complete semiring-semimodule pair and let M ∈ (Sn×n)Γ∗×Γ∗
be a pushdown

transition matrix. Then, for all p1, . . . , pk ∈ Γ, 0 ≤ l ≤ n,

(Mω ,l)p1...pk
= ∑

1≤ j≤k

(M∗)p1...p j−1,ε (M
ω ,l)p j

.

Proof. By the proof of Lemma 2 and the following summation identity: Assume that A1,A2, . . . are

matrices in Sn×n. Then, for 0 ≤ l ≤ n, 1 ≤ j ≤ n, and m ≥ 1,

∑
( j1, j2,... )∈Pl

(A1) j, j1(A2) j1, j2... = ∑
1≤ j1,..., jm≤n

(A1) j, j1 . . . (Am) jm−1, jm ∑
( jm+1, jm+2,... )∈Pl

(Am+1) jm, jm+1
. . . .
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Theorem 6 generalizes Theorem 4 from Mω ,n to Mω ,l, 0 ≤ l ≤ n.

Theorem 6. Let (S,V ) be a complete semiring-semimodule pair and let M ∈ (Sn×n)Γ∗×Γ∗
be a pushdown

transition matrix. Then, for all p ∈ Γ, 0 ≤ l ≤ n,

(Mω ,l)p = ∑
p′∈Γ

(AM)p,p′(M
ω ,l)p′ .

3 Algebraic systems and ω-pushdown automata

In this section, we define ω-pushdown automata and show that for an ω-pushdown automaton P there

exists an algebraic system over a quemiring such that the behavior ‖P‖ of P is a component of a

solution of this system.

For the definition of an S′-algebraic system over a quemiring S×V we refer the reader to [7], page

136, and for the definition of quemirings to [7], page 110. Here we note that a quemiring T is isomorphic

to a quemiring S×V determined by the semiring-semimodule pair (S,V ), cf. [7], page 110.

In the sequel, (S,V ) is a complete semiring-semimodule pair and S′ is a subset of S containing 0 and

1. Let M ∈ (S′n×n)Γ∗×Γ∗
be a pushdown matrix. Consider the S′

n×n
-algebraic system over the complete

semiring-semimodule pair (Sn×n
,V n), i.e., over the quemiring Sn×n ×V n,

yp = ∑
π∈Γ∗

Mp,πyπ , p ∈ Γ . (1)

(See Section 5.6 of Ésik, Kuich [7].) The variables of this system (1) are yp, p ∈ Γ, and yπ ,π ∈ Γ∗, is

defined by ypπ = ypyπ for p ∈ Γ, π ∈ Γ∗ and yε = ε . Hence, for π = p1 . . . pk, yπ = yp1
. . .ypk

. The

variables yp are variables for (Sn×n
,V n).

Let x = (xp)p∈Γ, where xp, p ∈ Γ, are variables for Sn×n. Then, for p ∈ Γ, π = p1 p2 . . . pk, (Mp,πyπ)x

is defined to be

(Mp,πyπ)x = (Mp,π yp1
. . .ypk

)x = Mp,πzp1
+Mp,πxp1

zp2
+ · · ·+Mp,πxp1

. . .xpk−1
zpk

.

Here zp, p ∈ Γ, are variables for V n.

We obtain, for p ∈ Γ, π = p1 . . . pk,

(Mp,πyπ)x = ∑
p′∈Γ

∑
π=p1...pk∈Γ+

p j=p′

Mp,πxp1
. . .xp j−1

zp′

= ∑
π=p1...pk∈Γ+

Mp,π ∑
1≤ j≤k

xp1
. . .xp j−1

zp j
.

The system (1) induces the following mixed ω-algebraic system:

xp = ∑
π∈Γ∗

Mpπxπ , p ∈ Γ, (2)

zp = ∑
π∈Γ∗

(Mp,π yπ)(xp)p∈Γ
= ∑

p′∈Γ
∑

π=p1...pk∈Γ+

p j=p′

Mp,πxp1
. . .xp j−1

zp′ . (3)

Here (2) is an S′
n×n

-algebraic system over the semiring Sn×n (see Section 2.3 of Ésik, Kuich [7]) and

(3) is an Sn×n-linear system over the semimodule V n (see Section 5.5 of Ésik, Kuich [7]).
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In the classical theory of automata and formal languages, equation (2) plays a crucial role in the

transition from pushdown automata to context-free grammars. It is, in the form of matrix notation, the

well-known triple construction. (See Harrison [12], Theorem 5.4.3; Bucher, Maurer [2], Sätze 2.3.10,

2.3.30; Kuich, Salomaa [14], pages 178, 306; Kuich [13], page 642; Ésik, Kuich [7], pages 77, 78.)

By Theorem 5.6.1 of Ésik, Kuich [7], (A,U) ∈ ((Sn×n)Γ
,(V n)Γ) is a solution of (1) iff A is a solution

of (2) and (A,U) is a solution of (3). We now compute such solutions (A,U).

Theorem 7. Let S be a complete starsemiring and M ∈ (S′n×n)Γ∗×Γ∗
be a pushdown transition matrix.

Then ((M∗)p,ε )p∈Γ is a solution of (2).

Proof. By Theorem 1.

We now substitute in (3) for (xp)p∈Γ the solution ((M∗)p,ε )p∈Γ of (1) and obtain the S′
n×n

-linear

system (4) over the semimodule V n

zp = ∑
p′∈Γ

(AM)p,p′zp′ , p ∈ Γ . (4)

Theorem 8. Let (S,V ) be a complete semiring-semimodule pair and M ∈ (S′n×n)Γ∗×Γ∗
be a pushdown

transition matrix. Then, for all 0 ≤ l ≤ n, ((Mω ,l)p)p∈Γ is a solution of (4).

Proof. By Theorem 6.

Corollary 9. Let (S,V ) be a complete semiring-semimodule pair and M ∈ (S′n×n)Γ∗×Γ∗
be a pushdown

transition matrix. Then, for all 0 ≤ l ≤ n,

(((M∗)p,ε )p∈Γ,((M
ω ,l)p)p∈Γ)

is a solution of (1).

We can write the system (4) in matrix notation in the form

z = AMz (5)

with column vector z = (zp)p∈Γ.

Corollary 10. Let (S,V ) be a complete semiring-semimodule pair and M ∈ (S′n×n)Γ∗×Γ∗
be a pushdown

transition matrix. Then for all 0 ≤ l ≤ n, ((Mω ,l)p)p∈Γ is a solution of (5).

We now introduce pushdown automata and ω-pushdown automata (see Kuich, Salomaa [14], Kuich

[13], Cohen, Gold [3]).

Let S be a complete semiring and S′ ⊆ S with 0,1 ∈ S′. An S′-pushdown automaton over S

P = (n,Γ, I,M,P, p0)

is given by

(i) a finite set of states {1, . . . ,n}, n ≥ 1,

(ii) an alphabet Γ of pushdown symbols,

(iii) a pushdown transition matrix M ∈ (S′n×n)Γ∗×Γ∗
,

(iv) an initial state vector I ∈ S′
1×n

,
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(v) a final state vector P ∈ S′
n×1

,

(vi) an initial pushdown symbol p0 ∈ Γ,

The behavior ‖P‖ of P is an element of S and is defined by ‖P‖= I(M∗)p0,ε P.

For a complete semiring-semimodule pair (S,V ), an S′-ω-pushdown automaton (over (S,V ))

P = (n,Γ, I,M,P, p0, l)

is given by an S′-pushdown automaton (n,Γ, I,M,P, p0) and an l ∈ {0, . . . ,n} indicating that the states

1, . . . , l are repeated states.

The behavior ‖P‖ of the S′-ω-pushdown automaton P is defined by

‖P‖= I(M∗)p0,ε P+ I(Mω ,l)p0
.

Here I(M∗)p0,ε P is the behavior of the S′-ω-pushdown automaton P1 = (n,Γ, I,M,P, p0,0) and

I(Mω ,l)p0
is the behavior of the S′-ω-pushdown automaton P2 = (n,Γ, I,M,0, p0, l). Observe that P2 is

an automaton with the Büchi acceptance condition: if G is the graph with adjacency matrix M, then only

paths that visit the repeated states 1, . . . , l infinitely often contribute to ‖P2‖. Furthermore, P1 contains

no repeated states and behaves like an ordinary S′-pushdown automaton.

Theorem 11. Let (S,V ) be a complete semiring-semimodule pair and let P = (n,Γ, I,M,P, p0, l) be an

S′-ω-pushdown automaton over (S,V ). Then (‖P‖,(((M∗)p,ε)p∈Γ,((M
ω ,l)p)p∈Γ)) is a solution of the

S′
n×n

-algebraic system

y0 = Iyp0
P,yp = ∑

π∈Γ∗

Mp,πyπ , p ∈ Γ

over the complete semiring-semimodule pair (Sn×n
,V n).

Proof. By Corollary 9, (((M∗)p,ε )p∈Γ,((M
ω ,l)p)p∈Γ) is a solution of the second equation. Since

I(((M∗)p0,ε),((M
ω ,l)p0

))P = (I(M∗)p0,ε P, I(Mω ,l)p0
) = ‖P‖ ,

(‖P‖,(((M∗)p,ε)p∈Γ,((M
ω ,l)p)p∈Γ)) is a solution of the given S′

n×n
-algebraic system.

Let S be a complete star-omega semiring and Σ be an alphabet. Then by Theorem 5.5.5 of Ésik,

Kuich [7], (S ≪ Σ∗ ≫,S ≪ Σω ≫) is a complete semiring-semimodule pair. Let P = (n,Γ,M, I,P, p0, l)
be an S〈Σ∪{ε}〉-ω-pushdown automaton over (S ≪ Σ∗ ≫, S ≪ Σω ≫). Consider the algebraic system

over the complete semiring-semimodule pair ((S ≪ Σ∗ ≫)n×n
,(S ≪ Σω ≫)n)

y0 = Iyp0
P,yp = ∑

π∈Γ∗

Mp,πyπ , p ∈ Γ (6)

and the mixed algebraic system (7) over ((S ≪ Σ∗ ≫)n×n
,(S ≪ Σω ≫)n) induced by (6)

x0 = Ixp0
P,xp = ∑

π=p1...pk∈Γ∗

Mp,πxp1
. . .xpk

, p ∈ Γ ,

z0 = Izp0
,zp = ∑

π=p1...pk∈Γ+

Mp,π ∑
1≤ j≤k

xp1
. . .xp j−1

zp j
, p ∈ Γ .

(7)

Corollary 12. Let (S,V ) be a complete semiring-semimodule pair, Σ be an alphabet and P =(n,Γ,M, I,P,

p0, l) be an S〈Σ∪{ε}〉-ω-pushdown automaton over (S ≪ Σ∗ ≫,S ≪ Σω ≫).
Then (I(M∗)p0,ε P,((M∗)p,ε )p∈Γ, I(M

ω ,l)p0
,((Mω ,l)p)p∈Γ) is a solution of (7). It is called solution of

order l.
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Let now in (7)

x = ([i, p, j])1≤i, j≤n, p ∈ Γ,

be n×n-matrices of variables and

z = ([i, p])1≤i≤n, p ∈ Γ

be n-dimensional column vectors of variables. If we write the mixed algebraic system (7) component-

wise, we obtain a mixed algebraic system over ((S ≪ Σ∗ ≫),(S ≪ Σω ≫)) with variables [i, p, j] over

S ≪ Σ∗ ≫, where p ∈ Γ, 1 ≤ i, j ≤ n, and variables [i, p] over S ≪ Σω ≫, where p ∈ Γ, 1 ≤ i ≤ n.

Writing the mixed algebraic system (7) component-wise, we obtain the system (8):

x0 = ∑
1≤m1,m2≤n

Im1
[m1, p0,m2]Pm2

,

[i, p, j] = ∑
k≥0

∑
p1,...,pk∈Γ

∑
1≤m1,...,mk≤n

(Mp, p1 . . . pk)i,m1
[m1, p1,m2][m2, p2,m3] . . . [mk, pk, j],

p ∈ Γ,1 ≤ i, j ≤ n,

z0 = ∑
1≤m≤n

Im[m, p0]

[i, p] = ∑
k≥1

∑
p1,...,pk∈Γ

∑
1≤ j≤k

∑
1≤m1,...,m j≤n

(Mp, p1 . . . pk)i,m1
[m1, p1,m2] . . . [m j-1, p j-1,m j][m j, p j],

p ∈ Γ,1 ≤ i ≤ n .

(8)

Theorem 13. Let (S,V ) be a complete semiring-semimodule pair and P = (n,Γ,M, I, p0,P, l) be a S′-

ω-pushdown automaton. Then

(I(M∗)p0,ε P,(((M∗)p,ε)i, j)p∈Γ,1≤i, j≤n, I(M
ω ,l)p0

,((Mω ,l)p)i)p∈Γ,1≤i≤n

is a solution of the system (8) called solution of order l with ‖P‖= (I(M∗)p0,ε P, I(Mω ,l)p0
).

4 Mixed algebraic systems and mixed context-free grammars

In this section we associate a mixed context-free grammar with finite and infinite derivations to the

algebraic system (8). The language generated by this mixed context-free grammar is then the behavior

‖P‖ of the ω-pushdown automaton P . The construction of the mixed context-free grammar from the

ω-pushdown automaton P is a generalization of the well known triple construction and is called now

triple-pair construction for ω-pushdown automata. We will consider the commutative complete star-

omega semirings B= ({0,1},∨,∧,∗,0,1) with 0∗ = 1∗ = 1 and N
∞ = (N∪{∞},+, ·,∗ ,0,1) with 0∗ = 1

and a∗ = ∞ for a 6= 0.

If S = B or S = N
∞ and 0 ≤ l ≤ n, then we associate to the mixed algebraic system (8) over ((S ≪

Σ∗ ≫),(S ≪ Σω ≫)), and hence to the ω-pushdown automaton P = (n,Γ, I,M,P, p0, l), the mixed

context-free grammar

Gl = (X ,Z,Σ,PX ,PZ,x0,z0, l) .

( See also Ésik, Kuich [7, page 139].) Here

(i) X = {x0}∪{[i, p, j] | 1 ≤ i, j ≤ n, p ∈ Γ} is a set of variables for finite derivations;

(ii) Z = {z0}∪{[i, p] | 1 ≤ i ≤ n, p ∈ Γ} is a set of variables for infinite derivations;

(iii) Σ is an alphabet of terminal symbols;
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(iv) PX is a finite set of productions for finite derivations given below;

(v) PZ is a finite set of productions for infinite derivations given below;

(vi) x0 is the start variable for finite derivations;

(vii) z0 is the start variable for infinite derivations;

(viii) {[i, p] | 1 ≤ i ≤ l, p ∈ Γ} is the set of repeated variables for infinite derivations.

In the definition of Gl the sets PX and PZ are as follows:

PX = {x0 → a1[m1, p0,m2]a2 |

1 ≤ m1,m2 ≤ n,(Im1
,a1) 6= 0,(Pm2

,a2) 6= 0,a1,a2 ∈ Σ∪{ε}} ∪

{[i, p, j]→ a[m1, p1,m2][m2, p2,m3] . . . [mk, pk, j] | p ∈ Γ,1 ≤ i, j ≤ n,k ≥ 0,

p1, . . . , pk ∈ Γ,1 ≤ m1, . . . ,mk ≤ n,((Mp,p1...pk
)i,m1

,a) 6= 0,a ∈ Σ∪{ε}} ,

PZ = {z0 → a[m, p0] | 1 ≤ m ≤ n,(Im,a) 6= 0,a ∈ Σ∪{ε}} ∪

{[i, p]→ a[m1, p1,m2] . . . [m j−1, p j−1,m j][m j, p j] | p, p1, . . . , pk ∈ Γ,1 ≤ i ≤ n,

k ≥ 1,1 ≤ j ≤ k,1 ≤ m1, . . . ,m j ≤ n,((Mp,p1 ...pk
)i,m1

,a) 6= 0,a ∈ Σ∪{ε}} .

For the remainder of this section, P always denotes the ω-pushdown automaton P =(n,Γ, I,M,P, p0, l).
Especially this means that l is a fixed parameter. Observe that ((Mp,p1...pk

)i,m1
,a) 6= 0 iff (m1, pk . . . p1) ∈

δ (i,a, p) in the usual δ -notation for the transition function of a classical pushdown automaton. (See

Harrison [12] and Kuich [13] pages 638/639.) Here we have to reverse p1 . . . pk since the pushdown tape

of classical pushdown automata has its rightmost element as top element.

A finite leftmost derivation α1 ⇒∗
L α2, where α1,α2 ∈ (X ∪Σ)∗, by productions in PX is defined as

usual. An infinite (leftmost) derivation π : z0 ⇒
ω
L w, for z0 ∈ Z,w ∈ Σω , is defined as follows:

π : z0 ⇒L α0[i0, p0]⇒
∗
L w0[i0, p0]⇒L w0α1[i1, p1]⇒

∗
L w0w1[i1, p1]⇒L . . .

⇒∗
L w0w1 . . .wm[im, pm]⇒L w0w1 . . .wmαm+1[im+1, pm+1]⇒

∗
L . . . ,

where z0 → α0[i0, p0], [i0, p0]→ α1[i1, p1], . . . , [im, pm]→ αm+1[im+1, pm+1], . . . are productions in PZ and

w = w0w1 . . .wm . . . .

We now define an infinite derivation πl : z0 ⇒ω ,l
L w for 0 ≤ l ≤ n, z0 ∈ Z, w ∈ Σω : We take the

above definition for π : z0 ⇒
ω
L w and consider the sequence of the first elements i of the triple variables

[i, p, j] of X that are rewritten in the finite leftmost derivation αm ⇒∗
L wm, m ≥ 0. Assume this sequence

is i1m, i
2
m, . . . , i

tm
m for some tm, m ≥ 1. Then, to obtain πl from π , the condition i0, i

1
1, i

2
1 . . . , i

t1
1 , i1, i

1
2, . . . ,

i
t2
2 , i2, . . . , im, i

1
m+1, . . . , i

tm+1

m+1, im+1, · · · ∈ Pl has to be satisfied.

Then we define

L(Gl) = {w ∈ Σ∗ | x0 ⇒
∗
L w} ∪ {w ∈ Σω | π : z0 ⇒

ω ,l
L w} .

Observe that the construction of Gl from P is nothing else than a generalization of the triple construction

for ω-pushdown automata, since the construction of the context-free grammar G = (X ,Σ,PX ,x0) is the

triple construction. (See Harrison [12], Theorem 5.4.3; Bucher, Maurer [2], Sätze 2.3.10, 2.3.30; Kuich,

Salomaa [14], pages 178, 306; Kuich [13], page 642; Ésik, Kuich [7], pages 77, 78.)

We call the construction of the mixed context-free grammar Gl from P the triple-pair construction

for ω-pushdown automata. This is justified by the definition of the sets of variables {[i, p, j] | 1 ≤ i, j,≤
n, p ∈ Γ} and {[i, p] | 1 ≤ i ≤ n, p ∈ Γ} of Gl and by the forthcoming Corollary 15.

In the next theorem we use the isomorphism between B≪ Σ∗ ≫×B≪ Σω ≫ and 2Σ∗
×2Σω

.
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Theorem 14. Assume that (σ ,τ) is the solution of order l of the mixed algebraic system (8) over (B≪
Σ∗ ≫,B≪ Σω ≫) for k ∈ {0, . . . ,n}. Then

L(Gl) = σx0
∪ τz0

.

Proof. By Theorem IV.1.2 of Salomaa, Soittola [16] and by Theorem 13, we obtain σx0
= {w ∈ Σ∗ |

x0 ⇒
∗
L w}. We now show that τz0

is generated by the infinite derivations ⇒ω ,l
L from z0. First observe that

the rewriting by the typical [i, p, j]- and [i, p]- production corresponds to the situation that in the graph of

the ω-pushdown automaton P the edge from (pρ , i) to (p1 . . . p jρ , j), ρ ∈ Γ∗, is passed after the state i

is visited. The first step of the infinite derivation πl is given by z0 ⇒L α0[i0, p] and indicates that the path

in the graph of P corresponding to πl starts in state i0. Furthermore, the sequence of the first elements of

variables that are rewritten in πl , i.e., i0, i
1
1, . . . , i

t1
1 , i1, i

1
2, . . . , i

t2
2 , i2, . . . , im, i

1
m+1, . . . , i

tm+1

m+1, im+1, . . . indicates

that the path in the graph of P corresponding to πl visits these states. Since this sequence is in Pl the cor-

responding path contributes to ‖P‖. Hence, by Theorem IV.1.2 of Salomaa, Soittola [16] and Theorem

13 for the finite leftmost derivations αm ⇒∗
L wm, m≥ 1, and by Theorem 5.5.9 of Ésik, Kuich [7] and The-

orem 13 for the infinite derivation [i0, p0]⇒ α1[i1, p1]⇒ α1α2[i2, p2]⇒ ··· ⇒ α1α2 . . .αm[im, pm]⇒ . . .

we obtain

τz0
= {w ∈ Σω | π : z0 ⇒

ω ,l
L w} .

Corollary 15. Assume that the mixed context free grammar Gl associated to the mixed algebraic system

(8) is constructed from the B〈Σ∪{ε}〉-ω-pushdown automaton P . Then

L(Gl) = ‖P‖ .

Proof. By Theorems 13 and 14.

For the remainder of this section our basic semiring is N∞, which allows us to draw some stronger

conclusions.

Theorem 16. Assume that (σ ,τ) is the solution of order l of the mixed algebraic system (8) over (N∞ ≪
Σ∗ ≫,N

∞ ≪ Σω ≫) where the entries of I,M,P are in {0,1}〈Σ∪{ε}〉. Denote by d(w), for w ∈ Σ∗, the

number (possibly ∞) of distinct finite leftmost derivations of w from x0 with respect to Gl; and by c(w),
for w ∈ Σω , the number (possibly ∞) of distinct infinite leftmost derivations π of w from z0 with respect

to Gl. Then

σx0
= ∑

w∈Σ∗

d(w)w and τz0
= ∑

w∈Σω

c(w)w .

Proof. The proof of Theorem 16 is identical to the proof of Theorem 14 with the exceptions that Theorem

IV.1.2 of Salomaa, Soittola [16] is replaced by Theorem IV.1.5 and Theorem 5.5.9 of Ésik, Kuich [7] is

replaced by Theorem 5.5.10.

In the forthcoming Corollary 17 we consider, for a given {0,1}〈Σ ∪{ε}〉-ω-pushdown automaton

P = (n,Γ, I,M,P, p0, l) the number of distinct computations from an initial instantaneous description

(i,w, p0) for w ∈ Σ∗, Ii 6= 0, to an accepting instantaneous description ( j,ε ,ε), with Pj 6= 0, i, j ∈
{0, . . . ,n}.

Here (i,w, p0) means that P starts in the initial state i with w on its input tape and p0 on its pushdown

tape; and ( j,ε ,ε) means that P has entered the final state j with empty input tape and empty pushdown

tape.
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Furthermore, we consider the number of distinct infinite computations starting in an initial instanta-

neous description (i,w, p0) for w ∈ Σ∞, Ii 6= 0.

Corollary 17. Assume that the mixed context-free grammar Gl associated to the mixed algebraic system

(8) is constructed from the {0,1}〈Σ∪{ε}〉-ω-pushdown automaton P . Then the number (possibly ∞) of

distinct finite leftmost derivations of w, w ∈ Σ∗, from x0 equals the number of distinct finite computations

from an initial instantaneous description for w to an accepting instantaneous description; moreover, the

number (possibly ∞) of distinct infinite (leftmost) derivations of w, w ∈ Σω , from z0 equals the number of

distinct infinite computations starting in an initial instantaneous description for w.

Proof. By Corollary 6.11 of Kuich [13] and the definition of infinite derivations with respect to Gl .

The context-free grammar Gl associated to (8) is called unambiguous if each w ∈ L(Gl), w ∈ Σ∗ has a

unique finite leftmost derivation and each w ∈ L(Gl), w ∈ Σω , has a unique infinite (leftmost) derivation.

An N
∞〈Σ∪{ε}〉-ω-pushdown automaton P is called unambiguous if (‖P‖,w) ∈ {0,1} for each

w ∈ Σ∗∪Σω .

Corollary 18. Assume that the mixed context-free grammar Gl associated to the mixed algebraic system

(8) is constructed from the {0,1}〈Σ∪{ε}〉-ω-pushdown automaton P . Then Gl is unambiguous iff ‖P‖
is unambiguous.
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