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We consider tissue P systems working on vesicles of multisets with the very simple operations of
insertion, deletion, and substitution of single objects. With the whole multiset being enclosed in a
vesicle, sending it to a target cell can be indicated in those simple rules working on the multiset. As
derivation modes we consider the sequential mode, where exactly one rule is applied in a derivation
step, and the set maximal mode, where in each derivation step a non-extendable set of rules is ap-
plied. With the set maximal mode, computational completeness can already be obtained with tissue
P systems having a tree structure, whereas tissue P systems even with an arbitrary communication
structure are not computationally complete when working in the sequential mode. Adding polariza-
tions – -1, 0, 1 are sufficient – allows for obtaining computational completeness even for tissue P
systems working in the sequential mode.

1 Introduction

Membrane systems were introduced at the end of last century by Gheorghe Păun, e.g., see [6] and [16],
motivated by the biological interaction of molecules between cells and their surrounding environment. In
the basic model, the membranes are organized in a hierarchical membrane structure (i.e., the connection
structure between the compartments/regions within the membranes being representable as a tree), and
the multisets of objects in the membrane regions evolve in a maximally parallel way, with the resulting
objects also being able to pass through the surrounding membrane to the parent membrane region or
to enter an inner membrane. Since then, a lot of variants of membrane systems, for obvious reasons
mostly called P systems, most of them being computationally complete, i.e., being able to simulate the
computations of register machines. If an arbitrary graph is used as the connection structure between the
cells/membranes, the systems are called tissue P systems, see [13].

Instead of multisets of plain symbols coming from a finite alphabet, P systems quite often operate
on more complex objects (e.g., strings, arrays), too. A comprehensive overview of different flavors of
(tissue) P systems and their expressive power is given in the handbook which appeared in 2010, see [17].

http://dx.doi.org/10.4204/EPTCS.252.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


12 (Tissue) P Systems with Vesicles of Multisets

For a state of the art snapshot of the domain, we refer the reader to the P systems website [20], as well
as to the Bulletin series of the International Membrane Computing Society [19].

Very simple biologically motivated operations on strings are the so-called point mutations, i.e., inser-
tion, deletion, and substitution, which mean inserting or deleting one symbol in a string or replacing one
symbol by another one. For example, graph-controlled insertion-deletion systems have been investigated
in [8], and P systems using these operations at the left or right end of string objects were introduced
in [12], where also a short history of using these point mutations in formal language theory can be found.

When dealing with multisets of objects, the close relation of insertion and deletion with the increment
and decrement instructions in register machines looks rather obvious. The power of changing states
in connection with the increment and decrement instructions then has to be mimicked by moving the
whole multiset representing the configuration of a register machine from one cell to another one in the
corresponding tissue system. Yet usually moving the whole multiset of objects in a cell to another one,
besides maximal parallelism, requires target agreement between all applied rules, i.e., that all results are
moved to the same target cell, e.g., see [10].

In this paper we choose a different approach to guarantee that the whole multiset is moved even if
only some point mutations are applied – the multiset is enclosed in a vesicle, and this vesicle is moved
from one cell to another one as a whole, no matter how many rules have been applied. One constraint, of
course, is that a common target has been selected by all rules to be applied; in the sequential derivation
mode, this is no restriction at all, whereas in the set maximal derivation mode this means that the multiset
of rules to be applied must be non-extendable, but all rules must indicate the same target cell. As we will
show, with the set maximal derivation mode computational completeness can be obtained, whereas with
the sequential mode we achieve a characterization of the family of sets of (vectors of) natural numbers
defined by partially blind register machines, which itself corresponds with the family of sets of (vectors
of) natural numbers obtained as number (Parikh) sets of string languages generated by matrix grammars
without appearance checking.

The idea of using vesicles of multisets has already been used in variants of P systems using the
operations drip and mate, corresponding with the operations cut and paste well-known from the area of
DNA computing, see [9]. Yet in that case, always two vesicles (one of them possibly an axiom available
in an unbounded number) have to interact. In this paper, the rules (bounded in number) are always
applied to the same vesicle.

The point mutations, i.e., insertion, deletion, and substitution, well-known from biology as opera-
tions on DNA, have also widely been used in the variants of networks of evolutionary processors (NEPs),
which consist of cells (processors) each of them allowing for specific operations on strings. Networks
of Evolutionary Processors (NEPs) were introduced in [5] as a model of string processing devices dis-
tributed over a graph, with the processors carrying out these point mutations. Computations in such a
network consist of alternatingly performing two steps – an evolution step where in each cell all possible
operations on all strings currently present in the cell are performed, and a communication step in which
strings are sent from one cell to another cell provided specific conditions are fulfilled. Examples of such
conditions are (output and input) filters which have to be passed, and these (output and input) filters can
be specific types of regular languages or permitting and forbidden context conditions. The set of strings
obtained as results of computations by the NEP is defined as the set of objects which appear in some
distinguished node in the course of a computation.

In hybrid networks of evolutionary processors (HNEPs), each language processor performs only one
of these operations at a certain position of the strings. Furthermore, the filters are defined by some
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variants of random-context conditions, i.e., they check the presence and the absence of certain symbols
in the strings. For an overview on HNEPs and the best results known so far, we refer the reader to [1].

In networks of evolutionary processors with polarizations, each symbol has assigned a fixed integer
value; the polarization of a string is computed according to a given evaluation function, and in the com-
munication step the obtained string is moved to any of the connected cells having the same polarization.
Networks of polarized evolutionary processors were considered in [3] and [4]), and networks of evolu-
tionary processors only using the elementary polarizations−1,0,1 were investigated in [15]. The number
of processors (cells) needed to obtain computational completeness has been improved in a considerable
way in [11] making these results already comparable with those obtained in [1] for hybrid networks
of evolutionary processors using permitting and forbidden contexts as filters for the communication of
strings between cells.

Seen from a biological point of view, networks of evolutionary processors are a collection of cells
communicating via membrane channels, which makes them closely related to tissue-like P systems con-
sidered in the area of membrane computing. Hence, in this paper we will also take over the idea of
polarizations; as in [15] and in [11], we will only consider the elementary polarizations −1,0,1 for the
symbols as well as for the cells. Using this variant of tissue P systems, we are going to show computa-
tional completeness even with the sequential derivation mode.

The rest of the paper is structured as follows: In Section 2 we recall some well-known definitions
from formal language theory, and in the succeeding Section 3 we give the definitions of the model
of tissue P systems with vesicles of multisets as well as its variants to be considered in this paper,
especially the variant with elementary polarizations −1,0,1. In Section 4 we show our main results for
tissue P systems with vesicles of multisets using all three operations insertion, deletion, and substitution,
but without using polarizations, i.e., that computational completeness can be achieved by using the set
maximally parallel derivation mode, whereas with the sequential mode we get a characterization of the
families of sets of natural numbers and Parikh sets of natural numbers generated by partially blind register
machines. In Section 5 we show that even with the sequential derivation mode we obtain computational
completeness when using polarizations (only −1,0,1 are needed). A summary of the results and an
outlook to future research conclude the paper.

2 Prerequisites

We start by recalling some basic notions of formal language theory. An alphabet is a non-empty finite
set. A finite sequence of symbols from an alphabet V is called a string over V . The set of all strings over
V is denoted by V ∗; the empty string is denoted by λ ; moreover, we define V+ = V ∗ \{λ}. The length
of a string x is denoted by |x|, and by |x|a we denote the number of occurrences of a letter a in a string x.
For a string x, alph(x) denotes the smallest alphabet Σ such that x ∈ Σ∗.

A multiset M with underlying set A is a pair (A, f ) where f : A→ N is a mapping, with N denoting
the set of natural numbers (non-negative integers). If M = (A, f ) is a multiset then its support is defined
as supp(M) = {x ∈ A | f (x)> 0}. A multiset is empty (respectively finite) if its support is the empty set
(respectively a finite set). If M = (A, f ) is a finite multiset over A and supp(M) = {a1, . . . ,ak}, then it can
also be represented by the string a f (a1)

1 . . .a f (ak)
k over the alphabet {a1, . . . ,ak} (the corresponding vector

f (a1), . . .a, f (ak) of natural numbers is called Parikh vector of the string a f (a1)
1 . . .a f (ak)

k ), and, moreover,
all permutations of this string precisely identify the same multiset M (they have the same Parikh vector).
The set of all multisets over the alphabet V is denoted by V ◦.

The family of all recursively enumerable sets of strings is denoted by RE, the corresponding family
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of recursively enumerable sets of Parikh sets (vectors of natural numbers) is denoted by PsRE. For more
details of formal language theory the reader is referred to the monographs and handbooks in this area,
such as [18].

2.1 Insertion, deletion, and substitution

For an alphabet V , let a→ b be a rewriting rule with a,b ∈ V ∪{λ}, and ab 6= λ ; we call such a rule a
substitution rule if both a and b are different from λ ; such a rule is called a deletion rule if a 6= λ and
b = λ , and it is called an insertion rule if a = λ and b 6= λ . The set of all insertion rules, deletion rules,
and substitution rules over an alphabet V is denoted by InsV ,DelV , and SubV , respectively. Whereas an
insertion rule is always applicable, the applicability of a deletion and a substitution rules depends on the
presence of the symbol a. We remark that insertion rules, deletion rules, and substitution rules can be
applied to strings as well as to multisets, too. Whereas in the string case, the position of the inserted,
deleted, and substituted symbol matters, in the case of a multiset this only means incrementing the
number of symbols b, decrementing the number of symbols a, or decrementing the number of symbols
a and at the same time incrementing the number of symbols b.

2.2 Register machines

Register machines are well-known universal devices for computing (generating or accepting) sets of
vectors of natural numbers.

Definition 1 A register machine is a construct

M = (m,B, l0, lh,P)

where

• m is the number of registers,

• B is a set of labels bijectively labeling the instructions in the set P,

• l0 ∈ B is the initial label, and

• lh ∈ B is the final label.

The labeled instructions of M in P can be of the following forms:

• p : (ADD(r) ,q,s), with p ∈ B\{lh}, q,s ∈ B, 1≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to instruction q or s.

• p : (SUB(r) ,q,s), with p ∈ B\{lh}, q,s ∈ B, 1≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one (decrement case)
and jump to instruction q, otherwise jump to instruction s (zero-test case).

• lh : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each register and by the value
of the current label, which indicates the next instruction to be executed.
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In the accepting case, a computation starts with the input of a k-vector of natural numbers in its first
k registers and by executing the first instruction of P (labeled with l0); it terminates with reaching the
HALT -instruction. Without loss of generality, we may assume all registers to be empty at the end of the
computation.

In the generating case, a computation starts with all registers being empty and by executing the first
instruction of P (labeled with l0); it terminates with reaching the HALT -instruction and the output of a
k-vector of natural numbers in its first k registers. Without loss of generality, we may assume all registers
> k to be empty at the end of the computation. The set of vectors of natural numbers computed by M
in this way is denoted by Ps(M). If we want to generate only numbers (1-dimensional vectors), then
we have the result of a computation in register 1 and the set of numbers computed by M in this way is
denoted by N(R). By NRM and PsRM we denote the families of sets of natural numbers and of sets of
vectors of natural numbers, respectively, generated by register machines. It is folklore (e.g., see [14]) that
PsRE = PsRM and NRE = NRM (actually, three registers are sufficient in order to generate any set from
the family NRE, and, in general, k+2 registers needed to generate any set of from the family NRE).

2.2.1 Partially blind register machines

In the case when a register machine cannot check whether a register is empty we say that it is partially
blind: the registers are increased and decreased by one as usual, but if the machine tries to subtract
from an empty register, then the computation aborts without producing any result (that is we may say
that the subtract instructions are of the form p : (SUB(r) ,q,abort); instead, we simply will write p :
(SUB(r) ,q,abort). Moreover, acceptance or generation now by definition also requires all registers,
except the first k output registers, to be empty (which means all registers k+1, ...,m have to be empty at
the end of the computation), i.e., there is an implicit test for zero, at the end of a (successful) computation,
that is why we say that the device is partially blind. By NPBRM and PsPBRM we denote the families
of sets of natural numbers and of sets of vectors of natural numbers, respectively, computed by partially
blind register machines. It is known (e.g., see [7]) that partially blind register machines are strictly less
powerful than general register machines (hence than Turing machines); moreover, NPBRM and PsPBRM
characterize the number and Parikh sets, respectively, obtained by matrix grammars without appearance
checking.

3 Tissue P systems working on vesicles of multisets

We first define our basic model of tissue P systems working on vesicles of multisets in the maximally
parallel set derivation mode:

Definition 2 A tissue P systems working on vesicles of multisets (a tPV system for short) is a tuple

Π = (L,V,T,R,(i0,w0),h)

where

• L is a set of labels identifying in a one-to-one manner the |L| cells of the tissue P system Π;

• V is the alphabet of the system,

• T is the terminal alphabet of the system,
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• R is a set of rules of the form (i, p, j) where i, j ∈ L and p ∈ InsV ∪DelV ∪ SubV , i.e., p is an
insertion, deletion or substitution rule over the alphabet V ; we may collect all rules from cell i in
one set and then write Ri = {(i, p, j) | (i, p, j) ∈ R}, so that R =

⋃
i∈L Ri; moreover, for the sake of

conciseness, we may simply write Ri = {(p, j) | (i, p, j) ∈ R}, too;

• (i0,w0) describes the initial vesicle containing the multiset w0 in cell i0.

As in the case of NEPs and HNEPs, we call Π a hybrid tPV system if every cell is “specialized” in
one type of evolution rules from (at most) one of the sets InsV ,DelV , and SubV , respectively.

The tPV system can work with different derivation modes for applying the rules in R. The simplest
case is the sequential mode (abbreviated sequ), where in each derivation step, with the vesicle enclosing
the multiset w being in cell i, exactly one rule (i, p, j) from Ri is applied, which in fact means that p is
applied to w and the resulting multiset in its vesicle is moved to cell j. Using the set maximally parallel
derivation mode (abbreviated smax), with the vesicle enclosing the multiset w being in cell i, we apply
a non-extendable multiset of rules from Ri, which has to obey the condition that all the evolution rules
(i, p, j) in this multiset of rules specify the same target cell j.

In any case, the computation of Π starts with a vesicle containing the multiset w0 in cell i0, and the
computation proceeds in the underlying derivation mode until an output condition is fulfilled, which in all
possible cases means that the vesicle has arrived in the output cell h. As we are dealing with membrane
systems, the classic additional condition may be that the computation halts, i.e., in cell h no rule can
be applied any more to the multiset in the vesicle which has arrived there. As we have also specified a
terminal alphabet, another condition – for its own or in combination with halting – is that the multiset in
the vesicle which has arrived in cell h only contains terminal symbols. Hence, we may specify one of the
following output strategies:

• halt: the only condition is that the system halts, the result is the multiset contained in the vesicle
to be found in cell h (which in fact means that specifying the terminal alphabet is obsolete);

• term: the resulting multiset contained in the vesicle to be found in cell h consists of terminal
symbols only (yet the system need not have reached a halting configuration).

• (halt, term): both conditions must be fulfilled, i.e., the system halts and the resulting multiset
contained in the vesicle to be found in cell h consists of terminal symbols only.

The set of all multisets obtained as results of computations in Π working in the derivation mode α ∈
{sequ,smax}with the output being obtained by taking the output condition β ∈ {halt, term,(halt, term)}
is denoted by Ps(Π,α,β ); if we are only interested in the number of symbols in the resulting mul-
tiset, the corresponding set of natural numbers is denoted by N(Π,α,β ). The families of sets of (k-
dimensional) vectors of natural numbers and sets of natural numbers generated by tPV systems with
at most n cells working in the derivation mode α and using the output strategy β are denoted by
Ps(tPVn,α,β ) (Psk(tPVn,α,β )) and N(tPVn,α,β ), respectively. If n is not bounded, we simply omit
the subscript in these notations.

We should like to mention that the communication structure between the cells in a tPV system is
implicitly given by the rules in R, i.e., the underlying (directed! graph) G = (N,E) with N being the set
of nodes and E being the set of (directed) edges is given by

• N = L and

• E = {(i, j) | (i, p, j) ∈ R}.
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In general, we do not forbid G to have loops. Moreover, if G can be interpreted as a tree, then we call
the tPV system a hierarchical P system working on vesicles of multisets (abbreviated PV system); in all
definitions given above for the families of sets of (vectors of) natural numbers we then write PV instead
of tPV .

4 Results for tissue P systems with vesicles of multisets

Our first result shows that with the derivation mode smax and using all three types of point mutation rules
computational completeness can even be obtained with PV systems:

Theorem 1 PsRE ⊆ Ps(PV,smax,β ) for any β ∈ {(halt, term),halt, term}.

Proof. Let K be an arbitrary recursively enumerable set of k-dimensional vectors of natural numbers.
Then K can be generated by a register machine M with two working registers also using decrement
instructions and k output registers. In order to have a general construction, we do not restrict the number
of working registers in the following. Let M = (m,B, l0, lh,P) be a register machine generating K.

We now define a PV system Π generating K, i.e., Ps(Π,smax,β ) = K:

Π = (L,V,T,R,(i0,w0),h) ,

L = {r | 1≤ r ≤ k}∪{r,r−,r0 | k+1≤ r ≤ m}∪{h},
V = L∪{ar | 1≤ r ≤ m}∪{#},
T = {ar | 1≤ r ≤ k},
R = {(0, p→ q,r),(0, p→ s,r),(r,λ → ar,0) | p : (ADD(r) ,q,s) ∈ P},
∪{(0, p→ q,r−),(0, p→ s,r0) | p : (SUB(r) ,q,s) ∈ P}
∪{(r−,ar→ λ ,0),(r0,s→ s,0),(r0,ar→ #,0) | p : (SUB(r) ,q,s) ∈ P},
∪{(0, lh→ λ ,h),(h,#→ #,0),(0,#→ #,h)},

(i0,w0) = (0, l0).

0

r h

r− r0
ADD(r)

SUB(r)

halting
and trap

Figure 1: Communication structure of the two-level hierarchical PV system. Each node with a dashed
contour is replicated for every register r.

The root of the communication tree is cell 0. From there, all simulations of register machine instruc-
tions are initiated:

(ADD(r) ,q,s) is simulated by moving the vesicle from the root cell to cell r by applying one of the rules
from {(0, p→ q,r),(0, p→ s,r),(r,λ → ar,0)}; in cell r the number of symbols ar representing
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the contents of register r is incremented by the insertion rule (r,λ → ar,0), which also sends back
the vesicle to the root cell.

(SUB(r) ,q,s) is simulated by first choosing one of the rules from {(0, p→ s,r0),(0, p→ q,r−)} in a
non-deterministic way, guessing whether the number of symbols ar representing the contents of
register r is zero or not. If the number is not zero, then in cell r− the deletion operation in the
rule (r−,ar → λ ,0) can be carried out and the vesicle is sent back to cell 0, whereas otherwise
the vesicle gets stuck in cell r− and therefore no result can be obtained in the output cell h. If the
number of symbols ar has been assumed to be zero and the vesicle is in cell r0, then there the rule
(r0,s→ s,0) can be applied in any case, and the vesicle is sent back to cell 0. Yet if the assumption
has been wrong, then in parallel the rule (r0,ar→ #,0) must be applied, thus introducing the trap
symbol #. This is the only case in the whole construction where the possibility of applying (at
least) two rules in parallel is used for appearance checking. We point out that both rules have the
same target 0.

Any halting computation in M finally reaches the halting instruction labeled by lh, and thus in Π, by
applying the rule (0, lh→ λ ,h), the vesicle obtained so far is moved to the final cell h. Provided no trap
symbol # has been generated during the simulation of the computation in M by the tPV system Π, the
multiset in this vesicle only contains terminal symbols and the computation in Π halts as well.

In sum, we conclude that Ps(Π,smax,β ) = K for any β ∈ {(halt, term),halt, term}.

The construction given in the preceding proof offers some additional nice features:

• The PV system Π is a hybrid one, as in each cell only one kind of rules is employed: substitution
in cells 0 and h and in cells r0, insertion in cells r, deletion in cells r−.

• The trap rules (h,#→ #,0),(0,#→ #,h), guaranteeing a non-halting computation as soon as the
introduction of the trap symbol # has been enforced by a wrong guess, are only needed in the case
of the output strategy halt.

• The vesicle must always leave the current cell whenever a rule can be applied.

• The number of cells in the PV system Π only depends on the number of registers in the register
machine M. Suppose M has k output registers and 2 working registers. Since the output registers
are never decremented, we only need one cell r for each such register. We need 3 cells (r, r−,
and r0) for each of the two working (decrementable) registers. Finally, we need the cells 0 and h,
which amounts in a total of k+2 ·3+2 = k+8 cells to simulate M. This also means that only 9
cells are needed for generating number sets.

If the underlying register machine is partially blind, we only have to consider the decrement case,
which then still works correctly, whereas we can omit the zero test case, and thus can omit the parallelism.
Hence, we immediately infer the following result:

Theorem 2 PsPBRM ⊆ Ps(PV,sequ,β ) for any β ∈ {(halt, term),halt, term}.

Proof. Let K ∈ PsPBRM, i.e., the vector set K can be generated by a partially blind register machine
M = (m,B, l0, lh,P). As in the preceding proof, we now define a PV system Π generating K in the
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sequential derivation mode, i.e., Ps(Π,sequ,β ) = K:

Π = (L,V,T,R,(i0,w0),h) ,

L = {r | 1≤ r ≤ k}∪{r,r− | k+1≤ r ≤ m}∪{h},
V = L∪{ar | 1≤ r ≤ m}∪{#},
T = {ar | 1≤ r ≤ k},
R = {(0, p→ q,r),(0, p→ s,r),(r,λ → ar,0) | p : (ADD(r) ,q,s) ∈ P},
∪{(0, p→ q,r−),(r−,ar→ λ ,0) | p : (SUB(r) ,q) ∈ P},
∪{(0, lh→ λ ,h),(h,#→ #,0),(0,#→ #,h)}∪{(h,ar→ #,0) | k+1≤ r ≤ m},

(i0,w0) = (0, l0).

The simulation of the computations in M by Π works in a similar way as in the preceding proof, with
the main reduction that no zero test case has to be simulated, hence, everything can be carried out in a
sequential way.

Any halting computation in M finally reaches the halting instruction labeled by lh, and thus in Π,
by applying the rule (0, lh→ λ ,h), the vesicle obtained so far is moved to the final cell h. Provided no
non-terminal symbol ar with k+1≤ r ≤ m is still present, the computation in Π will halt, but otherwise
the trap symbol # will be introduced by (one of) the rules from {(h,ar → #,0) | k+ 1 ≤ r ≤ m}, thus
causing an infinite loop.

In sum, we conclude that Ps(Π,sequ,β ) = K for any β ∈ {(halt, term),halt, term}.

The following corollary is immediate consequence of Theorem 1 proved above:

Corollary 3 PsRE = Ps(PV,smax,β ) = Ps(tPV,smax,β ) for any β ∈ {(halt, term),halt, term}.

Proof. By definition, any PV system is a tPV system, too. Hence, it only remains to show that
Ps(tPV,smax,β )⊆ PsRE, yet we omit a direct construction as the result can be inferred from the Turing-
Church thesis.

We now also show that the computations of a sequential tPV system using the output strategy term
can be simulated by a partially blind register machine.

Theorem 4 Ps(tPV,sequ, term)⊆ PsPBRM.

Proof. (Sketch) Let Π = (L,V,T,R,(i0,w0),h) be an arbitrary tPV system working in the sequential
derivation mode yielding an output in the output cell provided the multiset in the vesicle having arrived
there contains only terminal symbols; without loss of generality we assume L = {i | 1≤ i≤ l}.

We now construct a register machine M = (m,B, l0, lh,P) generating Ps(Π,sequ, term), yet using a
more relaxed definition for the labeling of instructions in M, i.e., one label may be used for different
instructions, which does not affect the computational power of the register machine as shown in [7].
For example, instead of a nondeterministic ADD-instruction p : (ADD(r) ,q,s) we use the two ADD-
instructions p : (ADD(r) ,q) and p : (ADD(r) ,s). Moreover, we omit the generation of w0 in l0 by a
sequence of ADD-instructions finally ending up with label l0 and the correct values in registers r for the
numbers of symbols ar in cell l0.

We now sketch how the rules of Π can be simulated by register machine instructions in M:

(i,λ → b, j) is simulated by i : (ADD(b) , j).
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(i,a→ λ , j) is simulated by i : (SUB(a) , j).

(i,a→ b, j) is simulated by the sequence of two instructions i : (SUB(a) , i′) and i′ : (ADD(b) , j) using
an intermediate label i′.

Hence, for these simulations we may need 2l labels in the sense explained above. If a vesicle reaches the
final cell h with the multiset inside only consisting of terminal symbols, we also have to allow M to have
this multiset as a result: this goal can be accomplished by using the final sequence

h :
(
ADD(1) , h̃

)
,

h̃ :
(
SUB(1) , ĥ

)
,

ĥ : HALT.

We observe that h̃, ĥ are labels different from h′. Since ĥ is now the only halting instruction of M, it must
reset to zero all its working registers before reaching ĥ to satisfy the final zero check, which corresponds
to Π producing a multiset consisting exclusively of terminal symbols.

In sum, we conclude that Ps(M) = Ps(Π,sequ, term).

As a consequence of Theorems 2 and 4 we obtain:

Corollary 5 PsPBRM = Ps(PV,sequ, term).

5 Polarized tissue P systems with vesicles of multisets

In a polarized tissue P system Π working on vesicles of multisets, each cell gets assigned an elementary
polarization from {−1,0,1}; each symbol from the alphabet V also has an integer polarization but every
terminal symbol from the terminal alphabet has polarization 0. As we shall see later, we can even restrict
ourselves to elementary polarizations from {−1,0,1} for each symbol, too.

Given a multiset, we need an evaluation function computing the polarization of the whole multiset
from the polarizations of the symbols it contains. Given the result m of this evaluation of the multiset
in the vesicle, we apply the sign function sign(m), which returns one of the values +1/0/−1, provided
that m is a positive integer / is 0 / is a negative integer, respectively.

The main difference between polarized tPV systems and normal tPV systems, besides the polariza-
tions assigned to symbols and multisets as well as to the cells, is the way the resulting vesicles are moved
from one cell to another one: although in the rules themselves still a target is specified, the vesicle can
only move to a cell having the same polarization as the multiset contained in it. As a special additional
feature we require that the vesicle must not stay in the current cell even if its polarization would fit
(if there is no other cell with a fitting polarization, the vesicle is eliminated from the system). As by
the convention mentioned above we assume every terminal symbol from the terminal alphabet to have
polarization 0, it is necessary that the output cell itself also has to have polarization 0.

Definition 3 A polarized tissue P systems working on vesicles of multisets (a ptPV system for short) is
a tuple

Π = (L,V,T,R,(i0,w0),h,πL,πV ,ϕ)

where

• L is a set of labels identifying in a one-to-one manner the |L| cells of the tissue P system Π;



A. Alhazov, R. Freund, S. Ivanov & S. Verlan 21

• V is the polarized alphabet of the system,

• T is the terminal alphabet of the system (the terminal symbols have no polarization, i.e., polariza-
tion 0),

• R is a set of rules of the form (i, p, j) where i, j ∈ L and p ∈ InsV ∪DelV ∪ SubV , i.e., p is an
insertion, deletion or substitution rule over the alphabet V ; we may collect all rules from cell i in
one set and then write Ri = {(i, p, j) | (i, p, j) ∈ R}, so that R =

⋃
i∈L Ri; moreover, for the sake of

conciseness, we may simply write Ri = {(p, j) | (i, p, j) ∈ R}, too;

• (i0,w0) describes the initial vesicle containing the multiset w0 in cell i0;

• πL is the function assigning an integer polarization to each cell (as already mentioned above, we
here restrict ourselves to the elementary polarizations from {−1,0,1});

• πV is the function assigning an integer polarization to each symbol in V (as already mentioned
above, we here restrict ourselves to the elementary polarizations from {−1,0,1});

• ϕ is the evaluation function yielding an integer value for each multiset.

As in the case of NEPs and HNEPs, we call Π a hybrid ptPV system if a cell is “specialized” in one
type of evolution rules from (at most) one of the sets InsV ,DelV , and SubV , respectively.

The ptPV system again can work with different derivation modes for applying the rules in R, e.g.,
the sequential mode sequ or the set maximally parallel derivation mode smax. Yet a derivation step now
consists of two substeps – the evolutionary step with applying the rule(s) from R in the way required by
the derivation mode (caution: we allow the set of applied rules to be empty) and the communication step
with sending the vesicle to a cell with the same polarization as the multiset in it.

In the following, we will only use the evaluation function ϕ which computes the value of a multiset
as the sum of the values of the symbols contained in it; we write ϕs for this function.

In any case, the computation of Π starts with a vesicle containing the multiset w0 in cell i0 (obvi-
ously, the initial multiset w0 has to have the same polarization as the initial cell i0), and the computation
proceeds using the underlying derivation mode for the evolutionary steps until an output condition is
fulfilled, which in all possible cases means that the vesicle has arrived in the output cell h. Again we use
one of the output strategies halt, term and (halt, term).

The set of all multisets obtained as results of computations in Π working in the derivation mode α ∈
{sequ,smax}, using the evaluation function ϕs and the output condition β ∈ {halt, term,(halt, term)}, is
denoted by Ps(Π,α,β ); if we are only interested in the number of symbols in the resulting multiset, the
corresponding set of natural numbers is denoted by N(Π,α,β ). The families of sets of (k-dimensional)
vectors of natural numbers and sets of natural numbers generated by ptPV systems with at most n
cells working in the derivation mode α and using the output strategy β are denoted by Ps(ptPVn,α,β )
(Psk(ptPVn,α,β )) and N(ptPVn,α,β ), respectively. If n is not bounded, we simply omit the subscript
in these notations.

We should like to mention that again the communication structure between the cells in a ptPV system
is implicitly given by the rules in R, i.e., the underlying (directed! graph) G = (N,E) with N being the
set of nodes and E being the set of (directed) edges is given by

• N = L and

• E = {(i, j) | (i, p, j) ∈ R}.
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In general, we do not forbid G to have loops. Moreover, if G can be interpreted as a tree, then we call
the ptPV system Π a hierarchical polarized P system working on vesicles of multisets (abbreviated pPV
system); in all definitions given above for the families of sets of (vectors of) natural numbers we then
write pPV instead of ptPV .

Moreover, there is another variant of interpreting the functioning of the ptPV Π if G is interpreted
as an undirected graph (L,{{i, j} | (i, p, j) ∈ R}). Then we may adopt the way of communication from
polarized HNEPs and instead of specifying the set of rules as given above, change the definition in the
following way:

Π = (L,V,T,R,(i0,w0),h,πL,πV ,ϕ,G)

where G now is an undirected graph defining the communication structure between the cells, and the
rules in R are specified without targets, i.e., they are written as (i, p) instead of (i, p, j) as the targets now
are specified by the communication graph G. Yet as G is an undirected graph this makes a big difference
as communication now by default is bidirectional, i.e., we cannot enforce the direction of the movement
of the vesicle any more. According to these explanations it becomes obvious that this variant is a special
case of ptPV systems. In fact, in this variant, if (i, p, j) is a rule in R, then also ( j, p, i) must be a rule
in R. As a special variant of ptPV systems, we then call it a uptPV system (with u specifying that the
communication structure is an undirected graph).

Even with uptPV systems we can obtain computational completeness with the sequential derivation
mode:

Theorem 6 PsRE ⊆ Ps(uptPVn,sequ, term).

Proof. Let M = (m,B, l0, lh,P) be an arbitrary register machine generating k-dimensional vectors. We
now construct a uptPV system Π generating the same set of multisets as M, i.e., Ps(Π,sequ, term) =
Ps(M).

0

〈0〉
0′

〈0〉

r+
〈+〉

r̃+
〈+〉

r−
〈+〉

r0

〈−〉

r̃−
〈0〉

r̄−
〈−〉

0−
〈0〉

r̃0

〈−〉
00

〈0〉

ADD(r)

SUB(r), empty register r

SUB(r), successful decrement of r
lh

〈0〉

l̃h
〈0〉

halting

Figure 2: The communication graph G of the computationally complete uptPV system. We also represent
the polarizations of the nodes in angular brackets. Each node with a dashed contour is replicated for every
register r.
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Π =
(
L,V,T,R,(0, l0), l̃h,πL,πV ,ϕs,G

)
,

L = {0,0′,00,0−, lh, l̃h}∪{r+,r0,r−, r̃+, r̃0, r̃−, r̂− | 1≤ r ≤ m},
V = {ar,ar

−,ar
+ | 1≤ r ≤ m}∪{p, p+, p− | p ∈ B},

T = {ar | 1≤ r ≤ k}.

The evaluation πV for the symbols in V corresponds to the superscript of the symbol, i.e., for αz ∈
V with z ∈ {+,0,−} we define πV (α

0) = 0 (we usually omit the superscript 0), πV (α
+) = +1, and

πV (α
−) =−1.

The connection structure, i.e., the undirected graph G, as well as the polarizations of the cells given
by πL can directly be derived from the graph depicted in Figure 2. The rules from R are grouped in five
different groups; R is the union of all the sets Ru, u ∈ L as defined below:

root cell 0 All simulations start from cell 0 and again end there.
R0 = {p→ p | p : (ADD(r) ,q,s) ∈ P}∪{p→ p+, p→ p− | p : (SUB(r) ,q,s) ∈ P}∪{lh→ lh}

increment group Any ADD-instruction p : (ADD(r) ,q,s) is simulated by passing from cell 0 to 0′,
from where only the correct path through r+ and then r̃+ for the suitable r will lead back to cell 0.
R0′ = {p→ p+ | p : (ADD(r) ,q,s) ∈ P}
Rr+ = {λ → ar} In order to guarantee that the rule λ → ar is applied only once, we need the
condition that after the application of a rule the vesicle has to leave the cell, which here means to
pass to cell r̃+ where the polarization is changed so that the vesicle will not be able to immediately
return to cell r+.
Rr̃+ = {p+→ q, p+→ s | p : (ADD(r) ,q,s) ∈ P}
We observe that no vesicle with a p+ can go from cell 0 to cell r̃+ without the vesicle then imme-
diately being caught there in cells r̃+ and r+, as the p+ from cell 0 is for a SUB-instruction and
the rules in r̃+ are for labels of ADD-instructions.

zero check Rr0 = {ar→ ar
+}. Cell 0 sends the vesicle to r0 by non-deterministically applying the rule

p→ p− and thus setting the polarization of the multiset to −1. If the rule ar→ ar
+ is applicable,

then the polarization goes back to 0 and therefore the correct continuation in cell r̃0 is blocked.
On the other hand, when the vesicle returns back to cell 0, no rule can be applied there, and then
moving to cell 0′ or cell lh also does not yield a successful continuation.
Rr̃0 = {p−→ s | p : (SUB(r) ,q,s) ∈ P}
Cell 00 is needed for blocking the way from cell 0 to cell r̃0.
The rule set R00 can be taken to be empty. If for formal reasons one would not like to have such a
situation where a vesicle can pass through a cell without undergoing an evolution rule, we could
take:
R00 = {s→ s | s ∈ B}

decrement Passing the sequence of cells 0–r−–r̃−–r̄−–0− allows for decrementing the number of sym-
bols ar. Cell 0 sends the vesicle to r− by non-deterministically applying the rule p→ p+ and by
setting the polarization of the multiset to +1.
Rr− = {ar → ar

−} After the application of the rule ar → ar
− the polarization is again 0, so the

vesicle might also go back to cell 0, but all possible continuations from there finally get blocked
with the p+ in there for a label p of a SUB-instruction when moving into the increment group.
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Rr̃− = {p+→ q} With the application of the rule p+→ q the polarization changes; if the wrong
r-branch has been chosen from cell 0, the computation gets stuck here.

Rr̄− = {ar
−→ λ}

As in the zero-check group, the set R00 can be chosen to be empty or we take:

R00 = {s→ s | s ∈ B}

halting group As soon as M has reached the HALT -label lh, we may pass to cell lh containing the rule
lh→ λ ; the resulting vesicle then can go to the output cell l̃h to yield the result of the computation.

In the way described above Π can simulate the computations of M. If the vesicle reaches the output
cell l̃h, only terminal symbols from {ar | 1 ≤ r ≤ k} are contained in its multiset which represents the
k-dimensional vector computed by M by the number of symbols ar for the number contained in register r.

6 Conclusion and future research

In this paper, we have investigated tissue P systems operating on vesicles of multisets with point muta-
tions, i.e., with insertion, deletion, and substitution of single symbols, working either in the maximally
parallel set derivation mode or in the sequential derivation mode. Without any additional control fea-
tures, when using the sequential derivation mode, we obtain a characterization of the sets of (vectors of)
natural numbers generated by partially blind register machines, whereas when using all three operations
insertion, deletion, and substitution on the vesicles of multisets we can generate every recursively enu-
merable set of (vectors of) natural numbers. If we add the feature of elementary polarizations −1,0,1 to
the multisets and to the cells of the tissue P systems, even sequential tissue P systems are computationally
complete.

Besides the maximally parallel set derivation mode, also the other set derivation modes (see [2])
promise to yield similar results. Another topic is to investigate the influence of the underlying communi-
cation structure on the generative power, especially in the case of polarized tissue P systems. Moreover,
complexity issues like the number of cells remain to be investigated in the future, for example, also with
respect to find small universal devices, e.g., see [2]. We may also consider tissue P systems with more
than one vesicle moving around, which, for example, offers the possibility to require the whole system
to halt in order to obtain a result. Finally, using different evaluation functions may have an influence on
the descriptional complexity of polarized tissue P systems.
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