
E. Csuhaj-Varjú, P. Dömösi, Gy. Vaszil (Eds.): 15th International

Conference on Automata and Formal Languages (AFL 2017)

EPTCS 252, 2017, pp. 26–40, doi:10.4204/EPTCS.252.7

c© J. Becker, F. Blanchet-Sadri, L. Flapan & S. Watkins

This work is licensed under the

Creative Commons Attribution License.

Unavoidable Sets of Partial Words of

Uniform Length

Joey Becker

Department of Mathematics
University of Nebraska

P.O. Box 880130
Lincoln, NE 68588–0130, USA

F. Blanchet-Sadri

Department of Computer Science
University of North Carolina

P.O. Box 26170
Greensboro, NC 27402–6170, USA

blanchet@uncg.edu

Laure Flapan

Department of Mathematics
Yale University

P.O. Box 203164
New Haven, CT 06520, USA

Stephen Watkins

Department of Mathematics
Vanderbilt University

PMB 352864
Nashville, TN 37235, USA

A set X of partial words over a finite alphabet A is called unavoidable if every two-sided infinite

word over A has a factor compatible with an element of X . Unlike the case of a set of words without

holes, the problem of deciding whether or not a given finite set of n partial words over a k-letter

alphabet is avoidable is NP-hard, even when we restrict to a set of partial words of uniform length.

So classifying such sets, with parameters k and n, as avoidable or unavoidable becomes an interesting

problem. In this paper, we work towards this classification problem by investigating the maximum

number of holes we can fill in unavoidable sets of partial words of uniform length over an alphabet

of any fixed size, while maintaining the unavoidability property.

1 Introduction

The study of combinatorics on partial words has been developing in recent years (see, e.g., [3]). A partial

word is a finite sequence over a finite alphabet A, a sequence that may have some undefined positions,

called holes and denoted by ⋄’s, where the ⋄ symbol is compatible with every letter of A. For example,

a⋄⋄c⋄⋄⋄⋄b is a partial word with six holes over the alphabet {a,b,c}. Now let w be a two-sided infinite

word and u be a partial word. Then, w meets u if w has a factor compatible with u; otherwise, w avoids u.

A set X of partial words over A is unavoidable if every two-sided infinite word over A meets an element

of X ; otherwise, it is avoidable. It is important to note that if X is unavoidable, then every infinite unary

word has a factor compatible with a member of X . Unavoidable sets of partial words were introduced

in [5]. In the context of total words, those without holes, this concept of unavoidable sets has been

extensively studied (see, e.g., [1, 9, 10, 12, 13, 14, 15, 17, 18, 19]).

There are two major problems that have been identified in the context of unavoidable sets of partial

words. The first one is the problem of deciding whether a given finite set of partial words over a k-letter

alphabet is avoidable, where k ≥ 2. Unlike for total words, this problem is NP-hard [8] (see [11, 16]

for an algorithm that efficiently decides the avoidability of sets of total words). While several variations

of this problem are NP-hard, others are efficiently decidable [2, 7]. The second problem is the one of

characterizing the unavoidable sets of n partial words over an alphabet of size k. As shown in [5], it is

enough to consider the case where k ≤ n and when k ≥ 3, the case where k < n. The n = 1 and k = 1

cases being trivial, the n = 2,k = 2 case was completely characterized by coloring Cayley graphs [4]. So

the next step is to study the n = 3,k = 2 case.
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A problem, related to the characterization problem, we are concerned with is “What is the minimum

number of holes in an m-uniform unavoidable set of partial words (summed over all partial words in the

set)?” By m-uniform here, we mean each element in the set has constant length m. In [6], it was proved

that for m ≥ 4, the minimum number of holes in an m-uniform unavoidable set of size three over a binary

alphabet is 2m−5 if m is even, and 2m−6 if m is odd. An easier way to think of it is the following.

Theorem 1. [6] Let m ≥ 4 and let X = {a⋄m−2a,b⋄m−2b,a⋄m−2b} be an unavoidable set over {a,b}.

Then the maximum number of holes we can fill in X, while maintaining the unavoidability property, is

m−1 if m is even, and m if m is odd.

In this paper, given a k-letter alphabet Ak = {a1, . . . ,ak}, we consider subsets of X0 = {ai⋄
m−2a j | i ≤

j}. We denote by Hk
m,n the minimum number of holes in any unavoidable m-uniform set (summed over

all partial words in the set) of size n over Ak. Thus Theorem 1 states that for m ≥ 4, H2
m,3 = 2m−5 if m

is even, and H2
m,3 = 2m− 6 if m is odd. Without loss of generality, we require that 0,m− 1 are defined

positions, i.e., 0,m−1 are not holes, in each partial word in any unavoidable m-uniform set.

The contents of our paper are as follows. In Section 2, we review some background material on

unavoidable sets of partial words. We also give the k+
(

k
2

)
lower bound on the size of an m-uniform

unavoidable set over Ak. In Section 3, we give results on m-uniform unavoidable sets over A3 which

are useful to show our main result. In Section 4, we calculate the minimum number of holes in an m-

uniform unavoidable set X over Ak, where X has size exactly k+
(

k
2

)
. In Section 5, we conclude with

some remarks.

2 Preliminaries on unavoidable sets

An alphabet A is a non-empty finite set of letters. A finite word over A is a finite sequence of elements

from A; in other words, it is a function w : {0, . . . , |w|−1} → A, where |w| denotes the length of w. We

write w(i) for the letter at position i of w (positions are indexed starting at 0).

A two-sided infinite word over A is a function w : Z→ A. It is called p-periodic, or has period p, if p

is a positive integer such that w(i) = w(i+ p) for all i ∈ Z. For a non-empty finite word v, we write vZ

for the unique two-sided infinite |v|-periodic word w such that w(0) · · ·w(|v|− 1) = v, and we write vN

for the unique one-sided infinite |v|-periodic word w such that w(0) · · ·w(|v|−1) = v. A finite word u is

a factor of a two-sided infinite word w if w(i) · · ·w(i+ |u|−1) = u for some i ∈ Z.

A (finite) partial word over A is a function u : {0, . . . , |u|−1} → A⋄, where A⋄ = A∪{⋄} with ⋄ 6∈ A.

For 0 ≤ i < |u|, if u(i) ∈ A then i ∈ D(u) or i is defined in u; otherwise, i is a hole in u. We write h(u) for

the number of holes in u. We say u is a total word when h(u) = 0. Letting u and v be two partial words

of equal length, u is compatible with v, denoted u ↑ v, if u(i) = v(i) whenever i ∈ D(u)∩D(v).

To strengthen a partial word is to replace a ⋄ with a letter in A, while to weaken a partial word is to set

u(i) = ⋄ for some i ∈ D(u). For example, aa⋄cb is a strengthening of aa⋄⋄b and a⋄⋄⋄b is a weakening

of aa⋄⋄b. We say that we have “filled a hole” or “inserted a letter” in a partial word u to mean that we

have strengthened u. We also say that the partial word v is a strengthening of the partial word u, denoted

v ≻ u, if v has a factor strengthening u. We similarly define weakening.

We extend these notions to sets X ,Y of partial words as follows. The set X is a strengthening of Y ,

denoted X ≻Y , if for every x ∈ X there exists y ∈Y such that x ≻ y. Similarly for X is a weakening of Y .

It is important to note that if an infinite word w meets a set X , then it also meets every weakening of X ,

while if w avoids X then it avoids any strengthening of X . This means that if X is unavoidable, so are all

weakenings of X , while if X is avoidable, so are all strengthenings of X .
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If X is a set of partial words and Y is the set resulting from performing operations on X called

factoring (if there exist partial words x,y∈X such that y is a weakening of a factor of x, then Y =X \{x}),

prefix-suffix (if there exists a partial word x = ya ∈ X with a ∈ A such that for every b ∈ A there exists a

suffix z of y and a partial word v ∈ X with v a weakening of zb, then Y = (X \{x})∪{y}), hole truncation

(if x⋄n ∈ X for some positive integer n, then Y = (X \ {x⋄n})∪{x}), and expansion (Y = (X \ {x})∪
{x1,x2, . . . ,xn}, where {x1,x2, . . . ,xn} is a partial expansion on x ∈ X ), then X is avoidable if and only

if Y is avoidable [5]. If u = u1⋄u2⋄ . . .un−1⋄un, then {u1a1u2a2 . . .un−1an−1un | a1,a2, . . . ,an−1 ∈ A} is

called a partial expansion on u (note that u1,u2, . . . ,un are partial words that may contain holes, and also

note that u is a weakening of v for every member v of a partial expansion on u).

Letting p be a prime and q,m ∈ N, we write pq‖m if pq maximally divides m, i.e., pq divides m, but

pq+1 does not divide m.

We end this section by establishing a lower bound on the size of an m-uniform unavoidable set over

a k-ary alphabet.

Proposition 1. There is no non-trivial unavoidable m-uniform set of size less than k+
(

k
2

)
over Ak (we

call trivial any set of partial words containing the empty word or ⋄n for some positive integer n).

Proof. Let X be an m-uniform unavoidable set over Ak. None of the two-sided infinite words wi = aZi
and wi, j = (am−1

i am−1
j )Z, i < j, can avoid X . Therefore, X must contain an element compatible with a

length m factor of wi (by our convention, that element starts and ends with ai), for each i, and an element

compatible with a length m factor of wi, j (by our convention, that element starts with ai and ends with a j

or vice versa), for each i < j. Since these elements are distinct, we deduce that |X | ≥ k+
(

k
2

)
.

3 Uniform unavoidable sets over the ternary alphabet

In examining the minimum number of holes in m-uniform unavoidable sets over {a,b,c}, we must con-

sider sets of size at least 3+
(

3
2

)
= 6. As mentioned earlier, we restrict our attention to sets of size exactly

six. By the proof of Proposition 1, a⋄m−2a,b⋄m−2b,c⋄m−2c must be in the set, as well as one of a⋄m−2b

or b⋄m−2a, one of a⋄m−2c or c⋄m−2a, and one of b⋄m−2c or c⋄m−2b. There result eight possible sets:

{a⋄m−2a,b⋄m−2b,c⋄m−2c,a⋄m−2b,a⋄m−2c,b⋄m−2c},

{a⋄m−2a,b⋄m−2b,c⋄m−2c,a⋄m−2b,a⋄m−2c,c⋄m−2b},

{a⋄m−2a,b⋄m−2b,c⋄m−2c,a⋄m−2b,c⋄m−2a,c⋄m−2b},

{a⋄m−2a,b⋄m−2b,c⋄m−2c,b⋄m−2a,a⋄m−2c,b⋄m−2c},

{a⋄m−2a,b⋄m−2b,c⋄m−2c,b⋄m−2a,c⋄m−2a,b⋄m−2c},

{a⋄m−2a,b⋄m−2b,c⋄m−2c,b⋄m−2a,c⋄m−2a,c⋄m−2b},

{a⋄m−2a,b⋄m−2b,c⋄m−2c,a⋄m−2b,c⋄m−2a,b⋄m−2c},

{a⋄m−2a,b⋄m−2b,c⋄m−2c,b⋄m−2a,a⋄m−2c,c⋄m−2b}.

The last two are avoidable by (am−1cm−1bm−1)Z and (bm−1cm−1am−1)Z respectively, while the six others

are equivalent up to renamings of letters (in fact, there is an unavoidable m-uniform set of minimal size

for any total order on the alphabet). So we define the basic m-uniform unavoidable set of minimal size

over {a,b,c} as X0 = T0 ∪T ′
0, where

T0 = {a⋄m−2a,b⋄m−2b,c⋄m−2c} and T ′
0 = {a⋄m−2b,a⋄m−2c,b⋄m−2c}.

The set T0 contains only the words whose endpoints are the same, while T ′
0 contains only those whose

endpoints are different. We begin by filling in the holes in X0 one at a time to classify which strengthen-

ings preserve unavoidability. In the rest of the paper, the notation Xi refers to a set created by filling in i

holes in X0.
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3.1 Filling in holes in T0

When we attempt to strengthen one of the T0 words, we need to consider the following two cases: we

can either insert a into a⋄m−2a, say, to obtain a⋄x1a⋄x2 a, or we can insert b, say, into a⋄m−2a to obtain

a⋄x1 b⋄x2a. However, filling in one hole of a⋄m−2a with an a is equivalent to filling in any number of

holes in a⋄m−2a with a if that is the only word we strengthen.

Proposition 2. 1. For all q ∈ N, the m-uniform set Xq = (X0 \ {a⋄m−2a})∪{a⋄x1 a⋄x2a · · ·a⋄xqa} is

unavoidable.

2. The m-uniform set X1 = (X0 \{a⋄m−2a})∪{a⋄x1b⋄x2 a} is avoidable.

Now, let us fill in two holes in two words of T0. Recall that strengthenings of avoidable sets are

avoidable. We just noticed that if we want to preserve unavoidability, we cannot fill any of the holes in

a⋄m−2a with b. Furthermore, filling in any number of the holes in a⋄m−2a with a’s preserves unavoid-

ability. The only remaining way to fill in two of the holes in T0 is when one hole from a⋄m−2a is filled

with an a and one hole from b⋄m−2b is filled with a b.

Proposition 3. Let X2 = (X0 \ {a⋄m−2a,b⋄m−2b})∪{a⋄x1 a⋄x2a,b⋄y1 b⋄y2b} be an m-uniform set. Fur-

thermore, let 2r‖x1 + 1, 2s‖y1 + 1, and 2t‖m − 1. Then, X2 is avoidable if and only if m is odd and

r = s < t.

Next, we address what happens when we fill in one hole in each of the three words in T0. From

[5, Lemma 3], there exists a two-sided infinite word wi over {a,b,c} with period m − 1 that avoids

{a⋄ia,b⋄ib,c⋄ic} for every i ≤ ⌊m−3
2

⌋. However, since wi has period m−1, wi avoids the set

Z = T ′
0 ∪{a⋄ia⋄m−i−3a,b⋄ib⋄m−i−3b,c⋄ic⋄m−i−3c}.

Proposition 4. Any m-uniform set of the form X3 = T3∪T ′
0, where T3 = {a⋄x1a⋄x2 a,b⋄y1 b⋄y2 b,c⋄z1c⋄z2c},

is avoidable.

3.2 Filling in holes in T ′
0

First, there are two cases to consider when filling a hole in a⋄m−2b: the added letter is distinct from both

a and b, or it is one of a or b. For the former case, the m-uniform set (X0 \
{

a⋄m−2b
}
)∪{a⋄x1 c⋄x2 b} is

avoidable by the infinite word (am−1bm−1)Z. For the latter case, the following proposition holds.

Proposition 5. 1. If x2+1 6≡ 0 (mod x1+1), the m-uniform set X1 = (X0 \
{

a⋄m−2c
}
)∪{a⋄x1c⋄x2 c}

is avoidable. Otherwise, x2 ≥ x1 and w = (ax1+1bx2+1cx1+1ax2+1bx1+1cx2+1)Z avoids X1.

2. If x1 +1 6≡ 0 (mod x2 +1), then the m-uniform set X1 = (X0 \
{

a⋄m−2c
}
)∪{a⋄x1a⋄x2 c} is avoid-

able. Otherwise, x1 ≥ x2 and w = (ax1+1bx2+1cx1+1)Z avoids X1.

Consequently, if (X0 \ {a⋄m−2c})∪ {x}, where x ↑ a⋄m−2c, is unavoidable, then x has no interior

defined positions.

Filling holes in the words a⋄m−2b and b⋄m−2c is not as simple as filling holes in a⋄m−2c while

maintaining unavoidability. We know that inserting a letter different from the endpoints of the word into

which it was inserted makes the resulting set avoidable. Thus we only consider the case when we insert

a letter that is the same as one of the endpoints. If we insert one letter into a⋄m−2b, then no c can appear

in an avoiding word w. This is because w must avoid a⋄m−2c, b⋄m−2c, and c⋄m−2c. Thus if w were to

contain a c, there would be no possible letter for the position m− 1 spaces before the c. Likewise, if

we insert one letter into b⋄m−2c, any word w which contains an a must meet one of a⋄m−2a, a⋄m−2b, or

a⋄m−2c. So in both of these cases, we are reduced to the use of a binary alphabet.
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Proposition 6. If any of the following conditions 1–4 hold, then the m-uniform set X1 is unavoidable if

and only if r ≤ s:

1. X1 = (X0 \{a⋄m−2b})∪{a⋄x1 b⋄x2 b}, and 2s‖m−1 and 2r‖x1 +1.

2. X1 = (X0 \{a⋄m−2b})∪{a⋄x1 a⋄x2 b}, and 2s‖m−1 and 2r‖x2 +1.

3. X1 = (X0 \{b⋄m−2c})∪{b⋄x1 b⋄x2 c}, and 2s‖m−1 and 2r‖x2 +1.

4. X1 = (X0 \{b⋄m−2c})∪{b⋄x1 c⋄x2 c}, and 2s‖m−1 and 2r‖x1 +1.

Second, let us fill in two holes in T ′
0 . We have seen that inserting any letter into a⋄m−2c causes X0 to

become avoidable, but that inserting a letter into only one of a⋄m−2b or b⋄m−2c only sometimes causes

X0 to become avoidable. Inserting a letter in a⋄m−2b or b⋄m−2c that is different from both endpoints

makes X0 avoidable. Thus, in examining what happens when we fill in two holes in T ′
0 we have two cases

to consider. The first is when we fill two of the holes in either a⋄m−2b or b⋄m−2c with letters that match

the endpoints. The second case to consider is we fill one hole from a⋄m−2b and one hole from b⋄m−2c

with letters matching one of the endpoints of their respective partial words. We consider the first case

first, for which results from [6] prove useful.

Let X2 be the set created from X0 by filling in two of the holes in the same word in T ′
0 . If we have filled

in two holes in a⋄m−2b, then, as before, any word avoiding X2 must be a word over {a,b}. Similarly, if

we have filled in two holes in b⋄m−2c, any word avoiding X2 must be a word over {b,c}. Let Y be the

set created by removing all of the elements of X2 that contain the letter that cannot be contained in X2’s

avoiding word. In either case, X2 has the same avoidability as Y , since any word avoiding Y automatically

avoids X2 and vice versa. The avoidability of Y is completely characterized in [6].

Theorem 2. [6] Let Y = {a⋄m−2a,b⋄m−2b,a⋄x1 b⋄x2b⋄x3 b} be an m-uniform set over {a,b}. Let 2s‖m−1,

2t‖x1 + 1, 2r‖x1 + x2 + 2. Then Y is unavoidable if and only if s ≥ t,r holds in addition to one of (i)
x1 = x2, (ii) x1 = x3, or (iii) m = 7(x1 +1)+1 and x2 +1 ∈ {2(x1 +1),4(x1 +1)}.

Theorem 3. [6] Let i1 < · · · < is < j1 < · · · < jr be elements of the set {1, . . . ,m−2}. Let x be defined

as follows: x(i) = a if i ∈ {0, i1, . . . , is}, x(i) = b if i ∈ { j1, . . . , jr,m− 1}, and x(i) = ⋄ otherwise. Then

Y = {a⋄m−2a,b⋄m−2b,x} has the same avoidability as some set Z = {a⋄m−2a,b⋄m−2b,z}, where z is

created by filling in r+ s of the holes in a⋄m−2b with b’s.

We now focus on the set created by filling in one hole in a⋄m−2b and one hole in b⋄m−2c. We define

such a set, with x1 + x2 = y1 + y2 = m−3, as

X2 = T0 ∪{a⋄x1 b⋄x2b,b⋄y1 b⋄y2c,a⋄m−2c}. (1)

Such set has the same avoidability as

Y2 = T0 ∪{a⋄y2 b⋄y1b,b⋄x2 b⋄x1c,a⋄m−2c}.

Proposition 7. The m-uniform sets

Y2 = (X0 \{a⋄m−2b,b⋄m−2c})∪{a⋄y2b⋄y1 b,b⋄x2b⋄x1 c}

and X2, defined by Eq. (1), have the same avoidability.

From Proposition 7, when considering X2, defined by Eq. (1), we can assume without loss of gen-

erality that x1 ≤ y2. If y2 < x1, X2 has the same avoidability as the set Y2 obtained by switching x1 and

y2.
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Proposition 8. If x1 ≤ x2, there exist integers p,q > 0, with p+ q = m− 1, such that the infinite word

w = (apcqbp)Z avoids X2, defined by Eq. (1).

Proof. Set v = apcqbp. If w(i) = a, we know w(i+m−1) = b. Thus in order for w to avoid X2, we need

p ≤ x2 + 1, to ensure that w avoids a⋄x1 b⋄x2 b. Since x1 + x2 + 2 = p+ q = m− 1, p ≤ x2 + 1 implies

q ≥ x1 +1. Additionally, if w(i) = c, we need q ≤ p in order to ensure that w(i+m−1) is an a and not

a c. Finally, if w(i) = b, then w(i+m− 1) ∈ {a,c}. In fact, m− 1 spaces after the first p− q b’s in v

is an a and m−1 spaces after the last q b’s in v is a c. Thus to ensure that w avoids b⋄y1 b⋄y2c, we need

q ≤ y2 + 1. Consequently, w avoids X2 if x1 ≤ y2, which we have already assumed, and if we can find

p,q such that x1 +1 ≤ q ≤ p ≤ x2 +1. This occurs when x1 ≤ x2.

Thus the set X2, defined by Eq. (1), is always avoidable except possibly when y1 ≤ x2 ≤ x1 ≤ y2.

Extensive computations yield the following conjecture.

Conjecture 1. Set X2, defined by Eq. (1), is avoidable when y1 ≤ x2 ≤ x1 ≤ y2.

We now discuss some results towards a proof of this conjecture. Table 1 gives specific examples of

words that avoid sets defined by Eq. (1) under conditions on m,x1, and y1. We prove only the third item

in Table 1, i.e, Proposition 9, as the proofs of the other items are analogous.

Proposition 9. The infinite word w = ((ab)pa(bc)q)Z, where p ≥ 0,q > 0, avoids X2, defined by Eq. (1),

if and only if the following conditions hold:

1. m ≡ 2 (mod 2(p+q)+1);

2. x1 ≡ 2 j−1 (mod 2(p+q)+1) for some j ∈ [0..q];

3. y1 ≡ 2k−1 (mod 2(p+q)+1) for some k ∈ [q..p+q+1].

Proof. For the remainder of the proof, assume all congruences are modulo 2(p+ q)+ 1. Suppose X2

satisfies the above conditions. Since m ≡ 2 by Condition 1 and, thus, m − 1 ≡ 1, w(i) = a implies

w(i+m−1) = b since any letter after an a is a b. Similarly, w(i) = b implies w(i+m−1) ∈ {a,c}, and

w(i) = c implies w(i+m−1) ∈ {a,b}. Thus w avoids a⋄m−2a, b⋄m−2b, c⋄m−2c, and a⋄m−2c.

Suppose w(i) = a. Consider w(i+ x1 + 1). By Condition 2, x1 ≡ 2 j− 1 for some j ∈ [0..q], which

implies w(i+ x1 + 1) = w(i+ 2 j). Since any letter an even distance at most 2q spaces ahead of an a is

in {a,c}, w(i+ x1 + 1) 6= b. Therefore, w avoids a⋄x1 b, which implies that w avoids a⋄x1 b⋄x2 b. Next,

suppose w(i) = b. By Condition 3, y1 ≡ 2k−1 for some k ∈ [q..p+q+1]. Equivalently, 2k−1+y2+3≡
y1 + y2 +3 = m ≡ 2. Thus, y2 +1 ≡ 2r for some r ∈ [0..p+1]. Since any letter an even distance at most

2p+ 2 spaces ahead of a b is in {a,b}, w(i+ y2 + 1) = w(i+ 2r) 6= c. Therefore, w avoids b⋄y2 c and,

thus, b⋄y1 b⋄y2c. Therefore, if Conditions 1–3 are satisfied, then w avoids X2.

Now, suppose w avoids X2. We show that X2 satisfies Conditions 1–3. Suppose for a contradiction

that Condition 1 does not hold. Then either m ≡ 2r + 1 for some r ∈ [0..p+ q] or m ≡ 2r for some

r ∈ [2..p+q]. Suppose m ≡ 2r+1 for some r ∈ [0..p+q]. Without loss of generality, suppose w(i) = a

begins a period of w and, thus, w(i− 2) = b. Consider w(i− 2+m− 1) = w(i+ 2r − 2). Since any

letter an even distance after the first letter in the period is in {a,c}, w meets either a⋄m−2a or a⋄m−2c, a

contradiction. Similarly, suppose m ≡ 2r for some r ∈ [2..p+q] and w(i) = a once again begins a period

of w. Consider w(i+m− 1) = w(i+ 2r). Since any letter an even distance after the first letter in the

period is in {a,c}, w meets either a⋄m−2a or a⋄m−2c, again a contradiction. Thus, Condition 1 holds.

Next, suppose for a contradiction that Condition 2 does not hold. There are two cases to consider.

The first is that x1 ≡ 2r for some r ∈ [0..p+q]. Suppose w(i) = a begins a period of w. Since any letter

an odd distance after the first letter in the period is a b, w(i+ x1 +1) = w(i+2r+1) = b. Furthermore,
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since w avoids X2, if w(i) = a, then w(i+m−1) = b. Thus, w meets a⋄x1 b⋄x2 b, which is a contradiction.

The second case is that x1+1 ≡ 2r for some r ∈ (q..p+q). Once again, let w(i) = a begin a period of w,

so w(i−2q−1) = a. Then w(i−2q−1+ x1 +1) = w(i+2r−2q−1). Since any letter an odd number

of spaces after the first a in the period is a b, this means w(i−2q−1+ x1 +1) = b. Since w avoids X2,

w(i− 2q− 1+m− 1) = b. Thus w meets a⋄x1b⋄x2 b, which is a contradiction. Thus, Condition 2 holds

as well.

Finally, suppose for a contradiction that Condition 3 does not hold. This means y1 6≡ 2k−1 for any

k ∈ [q..p+q+1]. By Condition 1, m ≡ 2 and since y1 + y2 +1 = m−2 ≡ 0, Condition 3 not holding is

equivalent to y2 +1 ≡ 2r+1 for some r ∈ [0..p+q) or y2 +1 ≡ 2r for some r ∈ [p+2..p+q]. Suppose

y2 + 1 ≡ 2r + 1 for some r ∈ [0..p + q). Now, let w(i) = c be the last letter in a period of w. Thus

w(i− (y2 +1)) = b and w(i− (m−1)) = b, since any letter an odd number of spaces before the last c in

the period is a b and since w avoids a⋄m−2c and c⋄m−2c. This contradicts the assumption that w avoids

b⋄y1 b⋄y2c. Similarly, suppose y2 +1 ≡ 2r for some r ∈ [p+2..p+q]. Let w(i) = a begin a period of w

and w(i− 2) = b. Consider w(i− 2+ y2 + 1) = w(i+ 2r− 2). Since any letter an odd distance at least

2p+ 2 spaces after the first letter in the period is a c, w(i− 2+ y2 + 1) = c. Since w avoids a⋄m−2c

and c⋄m−2c, we have that w(i− 2+ y2 + 1− (m− 1)) = b. This means w meets b⋄y1 b⋄y2c, which is a

contradiction. Thus, Condition 3 holds.

The following proposition also provides conditions for X2 to be avoidable.

Proposition 10. Let X2 be as defined by Eq. (1). Then X2 is avoided by an infinite word of period at most

m if one of the following conditions hold:

1. x1,y1 are even and y1 ≤ x2 ≤ x1;

2. y1 = 0 and x2 ≤ x1.

Tables 2, 3, and 4 summarize some sufficient conditions for patterns to avoid X2, defined by Eq. (1),

with respect to residues modulo 2, 3, and 4.

If X2, defined by Eq. (1), is avoidable, then all sets that contain strengthenings of two of the T ′
0 words

are avoidable.

Proposition 11. Let X2 be defined by Eq. (1) and let X ′
2 = (X2 \ {a⋄x1 b⋄x2b})∪{a⋄x2 a⋄x1 b}. Also let

Y ′
2 = (X ′

2 \ {a⋄x2 a⋄x1b,b⋄y1 b⋄y2c})∪{a⋄y2 b⋄y1 b,b⋄x1 c⋄x2 c} and Y2 = (Y ′
2 \ {a⋄y2 a⋄y1b})∪{a⋄y1b⋄y2 b}

be m-uniform sets.

1. If X2 is avoidable, then X ′
2 is avoidable.

2. The sets X ′
2 and Y ′

2 have the same avoidability.

3. If Y ′
2 is avoidable, then Y2 is avoidable.

Third, Theorems 2 and 3 state that filling in two holes in the same word in T ′
0 only sometimes makes

X0 avoidable. We now prove that once we have filled in three holes in the same word in T ′
0, X0 becomes

avoidable.

Proposition 12. If the m-uniform set X3 = (X0 \{a⋄m−2b})∪{x} is unavoidable, where x ↑ a⋄m−2b, then

x has at most two interior defined positions.

Proof. If more than two positions in x have been filled, we know that they have to be filled with a’s or b’s

otherwise X3 would be avoidable. However from [6, Corollary 4], {a⋄m−2a, b⋄m−2b,x} can be avoided

by an infinite word w over {a,b}. This means that w avoids c⋄m−2c, a⋄m−2c, and b⋄m−2c as well. Thus

w avoids all of X3 and thus X3 is avoidable.
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Table 1: Necessary and sufficient conditions for w to avoid sets defined by Eq. (1) when y1 ≤ x2 ≤ x1 ≤ y2

Avoiding word w Necessary and sufficient conditions

(apbp)Z m ≡ p+1 (mod 2p)
x1 ≡−1 (mod 2p)

(bpcp)Z m ≡ p+1 (mod 2p)
y1 ≡ p−1 (mod 2p)

((ab)pa(bc)q)Z m ≡ 2 (mod 2(p+q)+1)
p ≥ 0,q > 0 x1 ≡ 2 j−1 (mod 2(p+q)+1), j ∈ [0..q]

y1 ≡ 2k−1 (mod 2(p+q)+1), k ∈ [q..q+ p+1]

(ab((ab)pa(bc)q)r)Z m ≡ 2 (mod r(2p+2q+1)+2)
p ≥ 0,q > 0 x1 ≡ (2p+2q+1) j+2k−1 (mod r(2p+2q+1)+2)

j ∈ [0..r], k ∈ [1..r]
y1 ≡ (2q+2r+1)s+2t +1 (mod r(2p+2q+1)+2)

s ∈ [0..r), t ∈ [q..p+q)∪{0}

(((ab)pa(cb)q)r(ab)pa(cb)q−1)Z m ≡ 0 (mod (r+1)(2p+2q+1)−2)
p ≥ 0,q > 0 x1 ≡ (2p+2q+1) j+2k (mod (r+1)(2p+2q+1)−2)
r ≥ 0 j ∈ [0..r], k ∈ [p..p+q)

y1 ≡ (2p+2q+1)s+2t (mod (r+1)(2p+2q+1)−2)
s ∈ [0..r], t ∈ [−1..p]

(apbqcr)Z m ≡ q+1 (mod p+q+ r)
1 ≤ p ≤ q, 1 ≤ r ≤ q, x1 ≡ {p+q−1, . . . , p+q+ r−1} (mod p+q+ r)
q ≤ p+ r y1 ≡ {q−1, . . . , p+q−1} (mod p+q+ r)

(apcrbq)Z m ≡ p+ r+1 (mod p+q+ r)
1 ≤ p ≤ q, 1 ≤ r ≤ q, x1 ≡ {−1, . . . ,r−1} (mod p+q+ r)
q ≤ p+ r y1 ≡ {r−1, . . . , p+ r−1} (mod p+q+ r)

(ap+1bq−1crapbqcr−1)Z m ≡ p+ r+2q (mod 2p+2q+2r−1)
0 ≤ p < q, 1 ≤ r ≤ q, x1 ≡ {p+q−1, . . . , p+q+ r−2,2p+2q+ r−1,

q ≤ p+ r . . . ,2p+2q+2r−2} (mod 2p+2q+2r−1)
y1 ≡ {q−1, . . . , p+q−1, p+2q+ r−2,

. . . ,2p+2q+ r−2 (mod 2p+2q+2r−1)

(ap−1cr+1bq−1apcrbq)Z m ≡ p+ r+1 (mod 2p+2q+2r−1)
1 ≤ p ≤ q, 0 ≤ r < q, x1 ≡ {1, . . . ,r−1, p+ r+q−1, . . . , p+2r+q−1}
q ≤ p+ r (mod 2p+2q+2r−1)

y1 ≡ {r−1, . . . , p+ r−1,2p+ r, . . . ,2p+2r+q−2}
(mod 2p+2q+2r−1)

(ar(bqcq)p)Z m ≡ q+1 (mod 2pq+ r)
1 ≤ r ≤ q, p > 0 x1 ≡ {−1,2q j+ k} (mod 2pq+ r),

j ∈ [0..p),k ∈ [q+ r−1..2q)
y1 ≡ q−1 (mod 2pq+ r)

(ar(cqbq)p)Z m ≡−q+1 (mod 2pq+ r)
1 ≤ r ≤ q, p > 0 x1 ≡ {−1,2q j+ k} (mod 2pq+ r),

j ∈ [0..p),k ∈ [r−1..r+q−2]
y1 ≡ {−q−1,q−1} (mod 2pq+ r)

(aqbqcq(cqb2qcq)p)Z m ≡−2q+1 (mod (4p+3)q)
p ≥ 0,q > 0 x1 ≡ {−1,4q j+ k−1} (mod (4p+3)q),

j ∈ [0..p],k ∈ [2q..3q]
y1 ≡ {−2q−1,2q−1} (mod (4p+3)q)

((apcrbq)tb)Z m ≡ q+2 (mod t(p+q+ r)+1)
1 ≤ p ≤ q, x1 ≡ (2q+1) j+ k−1 (mod t(p+q+ r)+1)
p+ r = q+1 j ∈ [0..t], k ∈ [1..r]

y1 ≡ (2q+1)h+ i (mod t(p+q+ r)+1)
h ∈ [0..t], i ∈ [r..q]
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Table 2: Sufficient conditions on residues modulo 2 for w to avoid sets defined by Eq. (1)

Avoiding word w m x1 y1

(ab)Z 0 1 0,1

(bc)Z 0 0,1 0

((ab)pa(cb)q)Z 1 0 0

Table 3: Sufficient conditions on residues modulo 3 for w to avoid sets defined by Eq. (1)

Avoiding word w m x1 y1

(abc)Z 2 1,2 0,1

(acb)Z 0 0,2 0,1

(ab(abc)p)Z 1 1 0,= 1

((acb)pb)Z 1 0 = 0,1

3.3 Filling in holes in T0 and T ′
0

Since filling in any of the holes in a⋄m−2c results in an avoidable set, the only strengthenings of T ′
0 we

need to consider are strengthenings of a⋄m−2b and b⋄m−2c. Furthermore, in order to preserve unavoid-

ability, we must fill in a word in T0 with the same letter as its two endpoints. Thus when filling in one

hole in T0 and one hole in T ′
0 , there are two possible cases to consider: the endpoints of the T0 word are

the same as one of the endpoints of the T ′
0 word or the endpoints of the T0 word are different from the

two endpoints of the T ′
0 word. We now focus on the m-uniform set

X2 = (X0 \{a⋄m−2a,b⋄m−2c})∪{a⋄x1a⋄x2 a,b⋄y1c⋄y2 c}. (2)

When considering it, we can assume without loss of generality that x1 ≤ x2. Indeed, it is easy to show

that the m-uniform set X2, defined by Eq. (2), is avoidable if and only if the m-uniform set X ′
2 = (X0 \

{a⋄m−2a,b⋄m−2c})∪{a⋄x2 a⋄x1 a,b⋄y1 c⋄y2 c} is avoidable. It is also easy to show that if the m-uniform set

X2, defined by Eq. (2), is unavoidable, then so is Y2 = (X0 \{a⋄m−2a,b⋄m−2c})∪{a⋄x1 a⋄x2a,b⋄y2 b⋄y1c}.

Table 5 gives some of the recurring patterns of words avoiding sets defined by Eq. (2). For instance,

the last item in Table 5 translates as Proposition 13.

Proposition 13. Let u = (by2+1cy2+1)N. If y2 ≤ x1 ≤ x2 ≤ y1, there exist integers p,q > 0, p+q = m−1

such that the infinite word w = vZ avoids X2, defined by Eq. (2), where v = apuqapuq (here, uq denotes

the q-length prefix of u and uq denotes the complement of uq, where b = c and c = b).

Proposition 14. Let X2, defined by Eq. (2), and

Y ′
2 = (X0 \{a⋄m−2a,b⋄m−2c})∪{a⋄x1 a⋄x2 a,b⋄y2 b⋄y1 c}

Table 4: Sufficient conditions on residues modulo 4 for w to avoid sets defined by Eq. (1)

Avoiding word w m x1 y1

(a2b2)Z 3 3 0,1,2,3

(b2c2)Z 3 0,1,2,3 1
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Table 5: Conditions for w to avoid sets defined by Eq. (2); here, uq denotes the q-length prefix of u, uq

denotes the complement of uq where b = c and c = b, and p,q > 0 are integers such that p+q = m−1

Conditions Avoiding word w

m even, y1 even (a(bc)
m−2

2 a(cb)
m−2

2 )Z

m odd, x1 even, y1 even ((ab)
m−1

2 (ac)
m−1

2 )Z

y1 ≤ x1 ≤ x2 ≤ y2 (apbqapcq)Z

y2 ≤ x1 ≤ x2 ≤ y1 (apuqapuq)
Z, where u = (by2+1cy2+1)N

be m-uniform sets. Furthermore, let 2s‖x1 + 1 and 2t‖y1 + 1. If y1 = y2 and s 6= t, then X2 and Y ′
2 are

unavoidable.

Proof. Suppose y1 = y2 and s 6= t. From now on, we refer to y1 = y2 just as y. By performing the

operations of factoring, prefix-suffix, hole truncation, and expansion on X2 from [5], we obtain the set

Y = {a⋄x1a,b⋄yb,b⋄yc,c⋄yb,c⋄yc,a⋄ya⋄yb,a⋄ya⋄yc,b⋄ya⋄yb,c⋄ya⋄yc},

which has the same avoidability as X2.

Assume for contradiction that Y is avoidable. This implies there exists an infinite word w that avoids

Y . It is clear that w cannot contain only a’s since w must avoid a⋄x1a. Thus, w must contain a b or

a c. Without loss of generality let us assume that w contains a b since the argument if w contains a c

is identical. Now without loss of generality, assume w(y+ 1) = b. Since w avoids b⋄yb and b⋄yc, this

means w(2(y+1)) = a. Since w avoids b⋄ya⋄yb, w(3(y+1)) 6= b. If w(3(y+1)) = a, w(4(y+1)) = a

since w avoids a⋄ya⋄yb and a⋄ya⋄yc. But this means that w(5(y+1)) = a and so on. Thus inductively, if

w(3(y+ 1)) = a, then w(p(y+ 1)) = a for all p ≥ 2. If w(3(y+ 1)) = c, then w(4(y+ 1)) = a because

w must avoid c⋄yb and c⋄yc. Since w(4(y+1)) = a and w avoids c⋄ya⋄yc, then either w can degenerate

into a repeating string of a’s as before, or w(5(y+ 1)) = b and the sequence repeats. Thus it is easy to

see that w must be made up of two possible strings of letters:

a
︸︷︷︸

y

a
︸︷︷︸

y

a
︸︷︷︸

y

a
︸︷︷︸

y

a
︸︷︷︸

y

a,

a
︸︷︷︸

y

b
︸︷︷︸

y

a
︸︷︷︸

y

c
︸︷︷︸

y

a
︸︷︷︸

y

b.

Thus w must be 4(y+1)-periodic. Since the period of w must avoid a⋄x1 a, the period of w cannot contain

all a’s. Thus the second string must occur in the period of w.

Without loss of generality assume w(0) = a, w(y+ 1) = b, w(2(y+ 1)) = a, and w(3(y+ 1)) = c.

This implies for k ≥ 1 that w(k(y+1) = a if k is even and w(k(y+1)) ∈ {b,c} if k is odd.

Since w(0) = a and w avoids a⋄x1 a, w(x1 + 1) ∈ {b,c}. This means that w(x1 + y+ 1) = a. Now

assume w(n(x1 + 1)+ n(y+ 1)) = a and consider w((n+ 1)(x1 + 1)+ (n+ 1)(y+ 1)). Since w(n(x1 +
1) + n(y + 1)) = a, w((n+ 1)(x1 + 1) + n(y+ 1)) ∈ {b,c} because w avoids a⋄x1 a. This means that

w((n+1)(x1 +1)+ (n+1)(y+1)) = a. So by induction, w(n(x1 +1)+n(y+1)) = a for all n ∈N.

Now consider w(p(x1 +1)+q(y+1)) for p,q ∈N with one of p,q even and the other odd. We know

p±r = q for some odd r ∈N. Thus, w(p(x1+1)+q(y+1)) =w(p(x1+1)+ p(y+1)±r(y+1)) ∈{b,c}.
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Similarly, if we consider w(p(x1 + 1)+ q(y+ 1)) for p,q ∈ N with both of p,q even or both of p,q

odd, p±r = q for some even r ∈N. Thus, w(p(x1+1)+q(y+1)) = w(p(x1+1)+ p(y+1)±r(y+1)) =
a.

Now, let l be the least common multiple of x1 + 1 and y+ 1. Since s 6= t the power of two that

maximally divides l is the same as the power of two that maximally divides one of x1 +1 and y+1 and

is greater than the power of two that maximally divides the other. Thus l is even and l = α(x1 +1) and

l = β (y+1) where one of α ,β is odd and the other is even. This implies w(α(x1+1)+β (y+1))∈{b,c}.

However, w(α(x1 +1)+β (y+1)) = w(2l) = w(2β (y+1)) = a, which is a contradiction.

Thus, Y is unavoidable and so is X2. The set Y ′
2 is then unavoidable. To see this, assume for contradic-

tion that there exists an infinite word w that avoids Y ′
2. Since X2 is unavoidable, w must meet an element

of X2. This means w meets b⋄y1 c⋄y2 c. Suppose w(i) = b,w(i+y1 +1) = c, and w(i+y1+1+y2 +1) = c.

Since w avoids a⋄m−2c and c⋄m−2c, this means w(i+ y1 + 1− (m− 1)) = w(i− (y2 + 1)) = b. Thus,

w(i−(y2+1)) = b, w(i) = b, and w(i+y1+1) = c. This contradicts the fact that w avoids b⋄y2b⋄y1 c.

4 Minimum number of holes in uniform unavoidable sets

We now consider the minimum number of holes in an m-uniform unavoidable set of size k+
(

k
2

)
over Ak.

To do this, our results from Section 3 prove useful. As discussed in Section 3, there is an unavoidable

m-uniform set of minimal size for any total order on the alphabet and these sets are equivalent up to

renamings of letters. So we define the basic m-uniform unavoidable set of minimal size over Ak as

X0 = T0 ∪T ′
0, where T0 = {ai⋄

m−2ai | 1 ≤ i ≤ k} and T ′
0 = {ai⋄

m−2a j | 1 ≤ i < j ≤ k}.

Proposition 15. Let X2 = (X0 \ {ai1⋄
m−2ai2 ,ai3⋄

m−2ai4})∪{x,y} where the integers i1, i2, i3, i4 are all

distinct and where x ↑ ai1⋄
m−2ai2 and y ↑ ai3⋄

m−2ai4 . If x and y both have at least one defined interior

position, then X2 is avoidable.

Proof. If we fill in ai1⋄
m−2ai2 or ai3⋄

m−2ai4 with letters different from their endpoints, we know that X2

is avoidable by an infinite word over a ternary alphabet. Thus, we must fill in ai1⋄
m−2ai2 and ai3⋄

m−2ai4

with letters that are the same as their respective endpoints. For ease of notation, we let ai1 = a,ai2 =
b,ai3 = c,ai4 = d. Without loss of generality, assume x = a⋄x1 b⋄x2 b and y = c⋄y1 d⋄y2d. Filling in more

holes in x and y is just a strengthening of X2. Furthermore, filling in a⋄m−2b with an a instead of a b or

c⋄m−2d with a c instead of a d yield an equivalent proof. We thus have eight cases:

x1 ≤ y1 ≤ y2 ≤ x2; (3)

x1 ≤ y2 ≤ y1 ≤ x2; (4)

y1 ≤ x1 ≤ x2 ≤ y2; (5)

y2 ≤ x1 ≤ x2 ≤ y1; (6)

x2 ≤ y1 ≤ y2 ≤ x1; (7)

x2 ≤ y2 ≤ y1 ≤ x1; (8)

y1 ≤ x2 ≤ x1 ≤ y2; (9)

y2 ≤ x2 ≤ x1 ≤ y1. (10)

In any infinite word w that avoids X2, if w(i) = a, w(i+m− 1) = b and w(i+ 2(m− 1)) = a and

similarly if w(i) = c, w(i + m − 1) = d and w(i + 2(m − 1)) = c. So let a = b, b = a, c = d, and

d = c. Furthermore, given a one-sided infinite word v, let vi denote the prefix of v of length i. Now, let
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v = (ax2+1bx2+1)N and u = (cy2+1dy2+1)N. Define the infinite word w = (vpuqvpuq)
Z where p,q > 0 and

p+q = m−1. The word w avoids X2 as long as q > x2 and p > y2. This is because in w, m−1 spaces

after every a is a b and m−1 spaces after every b is an a and similarly for c and d. Furthermore, as long

as q > x2 and p > y2, if w(i) = b, then w(i− (m−1)) = a and if w(i) = d, then w(i− (m−1)) = c. Since

p+q = x1 + x2 +2 = y1 + y2 +2 = m−1, w avoids X2 in Cases (6), (7), (8), and (10).

Let us now define the infinite word w′ = (apcqbpdq)Z for some p,q > 0 such that p+q = m−1. We

claim that w′ avoids X2 as long as p ≤ x2 + 1 and q ≤ y2 + 1. If w′(i) = a, then w′(i+m− 1) = b, if

w′(i) = b, then w′(i+m−1) = a, and similarly for c and d. Furthermore, as long as p ≤ x2+1, w′ avoids

a⋄x1 b⋄x2b and as long as q ≤ y2+1, w′ avoids c⋄y1 d⋄y2d. Since p+q = x1+x2+2 = y1+y2+2 = m−1,

w′ avoids X2 in Cases (3), (4), (5), and (9).

We have thus found infinite words that avoid X2 for all eight cases and so X2 is avoidable.

Proposition 16. Let X1 = (X0 \{ai⋄
m−2ai+p})∪{x} where k ≥ i+ p ≥ i+2, x ↑ ai⋄

m−2ai+p, and x has

at least one defined interior position. Then X1 is avoidable.

Proof. Suppose an infinite word w avoids X1 and contains only the letters ai, ai+1, and ai+p. If w( j) = ai,

then w( j+m−1) = ai+p since w must avoid ai⋄
m−2ai and ai⋄

m−2ai+1. If w( j) = ai+1, then w( j+m−
1) = ai since w must avoid ai+1⋄

m−2ai+1 and ai+1⋄
m−2ai+p. Finally, if w( j) = ai+p, then w( j+m−1) =

ai or w( j+m−1)= ai+1 since w must avoid ai+p⋄
m−2ai+p. Therefore, the conditions on ai,ai+1, and ai+p

are identical to the conditions on the letters a,b, and c when we considered the avoidability over {a,b,c}
of {a⋄m−2a,b⋄m−2b,c⋄m−2c,a⋄m−2b,b⋄m−2c,x}, where x ↑ a⋄m−2c and x contains only a’s and c’s. Thus,

the proof that we can generate such an avoiding word is identical to the proof of Proposition 5.

To prove our main result, we show that X0 becomes avoidable once we fill in more than m−1 holes

if m is even and m holes if m is odd.

Theorem 4. For m ≥ 4, if Conjecture 1 is true, then the maximum number of holes we can fill into an

m-uniform unavoidable set of size k+
(

k
2

)
over Ak is m−1 if m is even and m if m is odd. In other words,

Hk

m,k+(k
2)
= (k+

(
k
2

)
)(m−2)− (m−1) if m is even, and Hk

m,k+(k
2)
= (k+

(
k
2

)
)(m−2)−m if m is odd.

Proof. When we fill in holes in T0, say we fill in a hole in ai⋄
m−2ai, the letter we fill in must be ai or else

the infinite word aZi avoids X0 (see Proposition 2). Additionally, filling in holes in more than two words

in T0 makes X0 avoidable. This is because by Proposition 4, if we fill in holes in three words in T0, there

exists an infinite word w that avoids X0 and that contains three distinct letters. Since w does not contain

any of the letters that make up the other elements of X0, w avoids all of the elements of X0 and thus X0 is

avoidable. Thus we can fill holes into at most two of the words in T0.

Using Proposition 11 we prove that if Conjecture 1 is true, then filling in holes in two T ′
0 words that

have an endpoint in common makes X0 avoidable. To prove this, it is enough to consider the 3-letter

alphabet {a,b,c}. Let Z2 = (X0 \{a⋄m−2b,b⋄m−2c})∪{x,y} where x ↑ a⋄m−2b, y ↑ b⋄m−2c, and x and y

each have at least one defined interior position. We show that if Conjecture 1 is true, then Z2 is avoidable.

Indeed, we know that if the defined interior letter in either x or y is different from the endpoints of its

respective word, then Z2 is avoidable. Thus,

X2 = (X0 \{a⋄m−2b,b⋄m−2c}) ∪ {a⋄x1 b⋄x2 b,b⋄y1 b⋄y2 c},
X ′

2 = (X0 \{a⋄m−2b,b⋄m−2c}) ∪ {a⋄x2 a⋄x1 b,b⋄y1 b⋄y2 c},
Y2 = (X0 \{a⋄m−2b,b⋄m−2c}) ∪ {a⋄y1 b⋄y2 b,b⋄x1c⋄x2 c},
Y ′

2 = (X0 \{a⋄m−2b,b⋄m−2c}) ∪ {a⋄y2 a⋄y1 b,b⋄x1 c⋄x2 c}
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represent the only remaining cases to consider. If Conjecture 1 is true, then X2 is avoidable for all

x1,x2,y1,y2 > 0. However if X2 is avoidable for all x1,x2,y1,y2 > 0, this implies X ′
2 is avoidable for all

x1,x2,y1,y2 > 0, which then implies Y ′
2 is avoidable for all x1,x2,y1,y2 > 0, which implies Y2 is avoidable

for all x1,x2,y1,y2 > 0.

Using Proposition 15, filling in holes in two T ′
0 words whose endpoints are all distinct also makes X0

avoidable. Thus we can fill in holes in at most one word in T ′
0 . Furthermore, we know that the letter we

fill in must be the same as one of the endpoints. From Proposition 16, the word we fill in must be of the

form ai⋄
m−2ai+1 and from Proposition 12, we cannot fill in more than two holes in any word in T ′

0 .

Thus if we want to preserve the unavoidability of X0, we can fill in holes in at most two of the T0

words and one of the T ′
0 words. Therefore, filling in holes in X0 is equivalent to filling in holes in subsets

of X0 of size three, where each subset contains two words from T0 and one word from T ′
0. So given a

word u in T ′
0, either none of the two T0 words share endpoints with u, both of the two T0 words share

endpoints with u, or one of the two T0 words shares an endpoint with u. Without loss of generality, these

subsets are of three possible forms:

Q = {ai⋄
m−2ai,a j⋄

m−2a j,al⋄
m−2al+1},

R = {ai⋄
m−2ai,ai+1⋄

m−2ai+1,ai⋄
m−2ai+1},

S = {ai⋄
m−2ai,a j⋄

m−2a j,ai⋄
m−2ai+1}.

We first consider Q. Let Z = (X0 \Q)∪{y,z,al⋄
x1d⋄x2 al+1} where y ↑ ai⋄

m−2ai, z ↑ a j⋄
m−2a j, and

d ∈ {al ,al+1}. We now show that if h(y)+h(z) = m−2 then Z is avoidable. So suppose h(y)+h(z) =
m−2. If h(y) = 0, then (am−2

j ala
m−2
j al+1)

Z avoids Z, and similarly, if h(z) = 0, then (am−2
i ala

m−2
i al+1)

Z

avoids Z. Thus, suppose h(y),h(z) ≥ 1. Let h(y) = n− 2 and h(z) = m− n. If the m− n holes in z

are not consecutive, then the (m− 1)-periodic word (an−1
j am−n

i )Z avoids Z, while if the m− n holes in

z are consecutive, then the (m−1)-periodic word (an−2
j aia ja

m−n−1
i )Z avoids Z. Filling in a second hole

in al⋄
m−2al+1 for a total of m holes filled is just a strengthening of Z and thus is also avoidable. Thus,

filling in more than m−1 holes in Q makes X0 avoidable.

We now consider S. Let Y = (X0 \S)∪{x,y,z} where x ↑ ai⋄
m−2ai, y ↑ a j⋄

m−2a j, and z ↑ ai⋄
m−2ai+1.

We show that filling in more than m− 1 holes in S makes Y avoidable (and thus X0 avoidable). As

discussed above, we can assume that x contains only the letter ai and y contains only the letter a j. If

h(y) = 0, then filling in any of the holes in S is equivalent to filling in holes in R, which we do below.

Thus, we assume h(y)≥ 1.

Let Y ′ = {x,y,ai⋄
x1ai⋄

x2ai+1,ai+1⋄
m−2ai+1,a j⋄

m−2ai,a j⋄
m−2ai+1}. We now show that if h(x) +

h(y) = m− 2, then Y ′ is avoidable. If h(x) = 0, then (a j
m−2aia j

m−2ai+1)
Z avoids Y ′. Thus, assume

h(x) ≥ 1. Let h(x) = m−n and h(y) = n−2. First, suppose the m−n holes in x do not appear in a con-

tiguous block. Then the (m−1)-periodic word w= (ai
n−1a j

m−n)Z avoids Y ′. Since w is (m−1)-periodic,

it does not meet a j⋄
m−2ai. Since w does not contain any ai+1’s it avoids ai+1⋄

m−2ai+1, a j⋄
m−2ai+1, and

ai⋄
x1ai⋄

x2 ai+1. Let u be an m-length factor of w such that u(0) = a j. We know that u contains n− 1

consecutive occurrences of ai. Since h(y) = n− 2, there is at least one instance where u has an ai in a

position where y has an a j. Thus, w does not meet y. Similarly, let v be an m-length factor of w such

that v(0) = ai. This means v contains a contiguous block of m− n a j’s. However, v 6↑ x since the holes

in x do not form a contiguous block. Now, suppose the m− n holes in x appear in a contiguous block.

Then the (m− 1)-periodic word w′ = (ai
n−2a jaia j

m−n−1)Z avoids Y ′. It avoids a j⋄
m−2ai, a j⋄

m−2ai+1,

ai⋄
x1ai⋄

x2 ai+1, ai+1⋄
m−2ai+1, and y for the same reasons that w does. However, since the m− n holes

in x appear in a contiguous block, and there are m− n a j’s in w′ that are not situated in a contiguous

block, w′ avoids x. Thus we have shown that filling in m− 2 holes in T0 and filling in a hole with ai
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in ai⋄
m−2ai+1 makes Y ′ avoidable. If we fill in a second hole with ai in ai⋄

m−2ai+1, for a total of m

holes filled, this is just a strengthening of the previous case and thus is also avoidable. Furthermore, by

Theorem 3 substituting ai+1’s for the ai’s would yield the same avoidability.

We finally consider R. Suppose an infinite word w avoids X = (X0 \R)∪{x,y,z} where x ↑ ai⋄
m−2ai,

y ↑ ai+1⋄
m−2ai+1, and z ↑ ai⋄

m−2ai+1. Since we want to show that we can fill in m− 1 holes, suppose

at least two of x,y,z have some defined interior positions. We prove that w must be over the binary

alphabet {ai,ai+1} by considering two cases. First, suppose ai = a1 (the proof is similar if ai+1 = ak). If

w(m− 1) = ak, then no letter works for w(0) since w must avoid a j⋄
m−2ak for all j ∈ {1, . . . ,k}; thus,

w does not contain any ak’s. Similarly if w(m− 1) = ak−1, then no letter works for w(0) since w must

avoid a j⋄
m−2ak−1, for all j ∈ {1, . . . ,k − 1}, and w does not contain any ak’s; thus, w cannot contain

any ak−1’s. We can continue eliminating potential letters from w until we are left with only a1 and a2.

If w(m− 1) = a2, then w(0) ∈ {a1,a2} depending on which of x,y,z have defined interior positions.

Similarly, if w(m− 1) = a1, then w(0) ∈ {a1,a2}. Thus, w is over {a1,a2}. Now, suppose ai 6= a1 and

ai+1 6= ak. If w(m−1) = ak, then as above we can show that w cannot contain any of ai+2, . . . ,ak, and if

w(0) = a1, that w cannot contain any of a1, . . . ,ai−1. If w(0) = ai, then w(m−1) ∈ {ai,ai+1} depending

on which of x,y,z have defined interior positions. Similarly, if w(0) = ai+1, then w(m−1) ∈ {ai,ai+1}.

We have shown that any infinite word that avoids X must be over the alphabet {ai,ai+1}. Thus, by

Theorem 1, the maximum number of holes we can fill in X while maintaining the unavoidability property

is m−1 if m is even and m if m is odd.

5 Conclusion

In this paper, we have considered m-uniform unavoidable sets of partial words over an arbitrary alphabet

Ak = {a1, . . . ,ak}. We have formulated a conjecture, Conjecture 1, that states that the sets defined by

Eq. (1) are avoidable when y1 ≤ x2 ≤ x1 ≤ y2 and a,b,c are distinct letters. If Conjecture 1 is true, for

m ≥ 4, we have exhibited a formula that calculates the maximum number of holes we can fill in any

m-uniform unavoidable set of partial words over Ak, while maintaining the unavoidability property.

We believe that Conjecture 1 is true and have tested it for all m-uniform sets defined by Eq. (1) up

to m = 100 that satisfy y1 ≤ x2 ≤ x1 ≤ y2. We have found that these sets are all avoidable. In fact, all

of the sets we tested have an avoiding word with period less than 2m. Of the 41,650 such sets, only 4

were found to require avoiding words that did not match any of our patterns. Furthermore, only 77 of the

roughly 42 million sets for m ≤ 1000 are not covered by our patterns. However, we are doubtful that a

small number of similar patterns could be shown to cover the remaining cases.
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