Unavoidable Sets of Partial Words of Uniform Length

Joey Becker
Department of Mathematics University of Nebraska P.O. Box 880130
Lincoln, NE 68588-0130, USA

F. Blanchet-Sadri
Department of Computer Science University of North Carolina
P.O. Box 26170
Greensboro, NC 27402-6170, USA

blanchet@uncg.edu
Stephen Watkins
Department of Mathematics
Vanderbilt University
PMB 352864
Nashville, TN 37235 , USA

Abstract

A set X of partial words over a finite alphabet A is called unavoidable if every two-sided infinite word over A has a factor compatible with an element of X. Unlike the case of a set of words without holes, the problem of deciding whether or not a given finite set of n partial words over a k-letter alphabet is avoidable is NP-hard, even when we restrict to a set of partial words of uniform length. So classifying such sets, with parameters k and n, as avoidable or unavoidable becomes an interesting problem. In this paper, we work towards this classification problem by investigating the maximum number of holes we can fill in unavoidable sets of partial words of uniform length over an alphabet of any fixed size, while maintaining the unavoidability property.

1 Introduction

The study of combinatorics on partial words has been developing in recent years (see, e.g., [3]). A partial word is a finite sequence over a finite alphabet A, a sequence that may have some undefined positions, called holes and denoted by \diamond 's, where the \diamond symbol is compatible with every letter of A. For example, $a \diamond \diamond c \diamond \diamond \diamond \diamond b$ is a partial word with six holes over the alphabet $\{a, b, c\}$. Now let w be a two-sided infinite word and u be a partial word. Then, w meets u if w has a factor compatible with u; otherwise, w avoids u. A set X of partial words over A is unavoidable if every two-sided infinite word over A meets an element of X; otherwise, it is avoidable. It is important to note that if X is unavoidable, then every infinite unary word has a factor compatible with a member of X. Unavoidable sets of partial words were introduced in [5]. In the context of total words, those without holes, this concept of unavoidable sets has been extensively studied (see, e.g., [1, 9, 10, 12, 13, 14, 15, 17, 18, 19]).

There are two major problems that have been identified in the context of unavoidable sets of partial words. The first one is the problem of deciding whether a given finite set of partial words over a k-letter alphabet is avoidable, where $k \geq 2$. Unlike for total words, this problem is NP-hard [8] (see [11, 16] for an algorithm that efficiently decides the avoidability of sets of total words). While several variations of this problem are NP-hard, others are efficiently decidable [2, 7]. The second problem is the one of characterizing the unavoidable sets of n partial words over an alphabet of size k. As shown in [5], it is enough to consider the case where $k \leq n$ and when $k \geq 3$, the case where $k<n$. The $n=1$ and $k=1$ cases being trivial, the $n=2, k=2$ case was completely characterized by coloring Cayley graphs [4]. So the next step is to study the $n=3, k=2$ case.

[^0]© J. Becker, F. Blanchet-Sadri, L. Flapan \& S. Watkins This work is licensed under the
Creative Commons Attribution License.

A problem, related to the characterization problem, we are concerned with is "What is the minimum number of holes in an m-uniform unavoidable set of partial words (summed over all partial words in the set)?" By m-uniform here, we mean each element in the set has constant length m. In [6], it was proved that for $m \geq 4$, the minimum number of holes in an m-uniform unavoidable set of size three over a binary alphabet is $2 m-5$ if m is even, and $2 m-6$ if m is odd. An easier way to think of it is the following.

Theorem 1. [6] Let $m \geq 4$ and let $X=\left\{a \diamond^{m-2} a, b \diamond^{m-2} b, a \diamond^{m-2} b\right\}$ be an unavoidable set over $\{a, b\}$. Then the maximum number of holes we can fill in X, while maintaining the unavoidability property, is $m-1$ if m is even, and m if m is odd.

In this paper, given a k-letter alphabet $A_{k}=\left\{a_{1}, \ldots, a_{k}\right\}$, we consider subsets of $X_{0}=\left\{a_{i} \diamond^{m-2} a_{j} \mid i \leq\right.$ $j\}$. We denote by $H_{m, n}^{k}$ the minimum number of holes in any unavoidable m-uniform set (summed over all partial words in the set) of size n over A_{k}. Thus Theorem 1 states that for $m \geq 4, H_{m, 3}^{2}=2 m-5$ if m is even, and $H_{m, 3}^{2}=2 m-6$ if m is odd. Without loss of generality, we require that $0, m-1$ are defined positions, i.e., $0, m-1$ are not holes, in each partial word in any unavoidable m-uniform set.

The contents of our paper are as follows. In Section 2, we review some background material on unavoidable sets of partial words. We also give the $k+\binom{k}{2}$ lower bound on the size of an m-uniform unavoidable set over A_{k}. In Section 3, we give results on m-uniform unavoidable sets over A_{3} which are useful to show our main result. In Section 4, we calculate the minimum number of holes in an m uniform unavoidable set X over A_{k}, where X has size exactly $k+\binom{k}{2}$. In Section 5 , we conclude with some remarks.

2 Preliminaries on unavoidable sets

An alphabet A is a non-empty finite set of letters. A finite word over A is a finite sequence of elements from A; in other words, it is a function $w:\{0, \ldots,|w|-1\} \rightarrow A$, where $|w|$ denotes the length of w. We write $w(i)$ for the letter at position i of w (positions are indexed starting at 0).

A two-sided infinite word over A is a function $w: \mathbb{Z} \rightarrow A$. It is called p-periodic, or has period p, if p is a positive integer such that $w(i)=w(i+p)$ for all $i \in \mathbb{Z}$. For a non-empty finite word v, we write $v^{\mathbb{Z}}$ for the unique two-sided infinite $|v|$-periodic word w such that $w(0) \cdots w(|v|-1)=v$, and we write $v^{\mathbb{N}}$ for the unique one-sided infinite $|v|$-periodic word w such that $w(0) \cdots w(|v|-1)=v$. A finite word u is a factor of a two-sided infinite word w if $w(i) \cdots w(i+|u|-1)=u$ for some $i \in \mathbb{Z}$.

A (finite) partial word over A is a function $u:\{0, \ldots,|u|-1\} \rightarrow A_{\diamond}$, where $A_{\diamond}=A \cup\{\diamond\}$ with $\diamond \notin A$. For $0 \leq i<|u|$, if $u(i) \in A$ then $i \in D(u)$ or i is defined in u; otherwise, i is a hole in u. We write $h(u)$ for the number of holes in u. We say u is a total word when $h(u)=0$. Letting u and v be two partial words of equal length, u is compatible with v, denoted $u \uparrow v$, if $u(i)=v(i)$ whenever $i \in D(u) \cap D(v)$.

To strengthen a partial word is to replace $\mathrm{a} \diamond$ with a letter in A, while to weaken a partial word is to set $u(i)=\diamond$ for some $i \in D(u)$. For example, $a a \diamond c b$ is a strengthening of $a a \diamond \diamond b$ and $a \diamond \diamond \diamond b$ is a weakening of $a a \diamond \diamond b$. We say that we have "filled a hole" or "inserted a letter" in a partial word u to mean that we have strengthened u. We also say that the partial word v is a strengthening of the partial word u, denoted $v \succ u$, if v has a factor strengthening u. We similarly define weakening.

We extend these notions to sets X, Y of partial words as follows. The set X is a strengthening of Y, denoted $X \succ Y$, if for every $x \in X$ there exists $y \in Y$ such that $x \succ y$. Similarly for X is a weakening of Y. It is important to note that if an infinite word w meets a set X, then it also meets every weakening of X, while if w avoids X then it avoids any strengthening of X. This means that if X is unavoidable, so are all weakenings of X, while if X is avoidable, so are all strengthenings of X.

If X is a set of partial words and Y is the set resulting from performing operations on X called factoring (if there exist partial words $x, y \in X$ such that y is a weakening of a factor of x, then $Y=X \backslash\{x\}$), prefix-suffix (if there exists a partial word $x=y a \in X$ with $a \in A$ such that for every $b \in A$ there exists a suffix z of y and a partial word $v \in X$ with v a weakening of $z b$, then $Y=(X \backslash\{x\}) \cup\{y\})$, hole truncation (if $x \diamond^{n} \in X$ for some positive integer n, then $\left.Y=\left(X \backslash\left\{x \diamond^{n}\right\}\right) \cup\{x\}\right)$, and expansion $(Y=(X \backslash\{x\}) \cup$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, where $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a partial expansion on $x \in X$), then X is avoidable if and only if Y is avoidable [5]. If $u=u_{1} \diamond u_{2} \diamond \ldots u_{n-1} \diamond u_{n}$, then $\left\{u_{1} a_{1} u_{2} a_{2} \ldots u_{n-1} a_{n-1} u_{n} \mid a_{1}, a_{2}, \ldots, a_{n-1} \in A\right\}$ is called a partial expansion on u (note that $u_{1}, u_{2}, \ldots, u_{n}$ are partial words that may contain holes, and also note that u is a weakening of v for every member v of a partial expansion on u).

Letting p be a prime and $q, m \in \mathbb{N}$, we write $p^{q} \| m$ if p^{q} maximally divides m, i.e., p^{q} divides m, but p^{q+1} does not divide m.

We end this section by establishing a lower bound on the size of an m-uniform unavoidable set over a k-ary alphabet.
Proposition 1. There is no non-trivial unavoidable m-uniform set of size less than $k+\binom{k}{2}$ over A_{k} (we call trivial any set of partial words containing the empty word or \diamond^{n} for some positive integer n).
Proof. Let X be an m-uniform unavoidable set over A_{k}. None of the two-sided infinite words $w_{i}=a_{i}^{\mathbb{Z}}$ and $w_{i, j}=\left(a_{i}^{m-1} a_{j}^{m-1}\right)^{\mathbb{Z}}, i<j$, can avoid X. Therefore, X must contain an element compatible with a length m factor of w_{i} (by our convention, that element starts and ends with a_{i}), for each i, and an element compatible with a length m factor of $w_{i, j}$ (by our convention, that element starts with a_{i} and ends with a_{j} or vice versa), for each $i<j$. Since these elements are distinct, we deduce that $|X| \geq k+\binom{k}{2}$.

3 Uniform unavoidable sets over the ternary alphabet

In examining the minimum number of holes in m-uniform unavoidable sets over $\{a, b, c\}$, we must consider sets of size at least $3+\binom{3}{2}=6$. As mentioned earlier, we restrict our attention to sets of size exactly six. By the proof of Proposition $1, a \diamond^{m-2} a, b \diamond^{m-2} b, c \diamond^{m-2} c$ must be in the set, as well as one of $a \diamond^{m-2} b$ or $b \diamond^{m-2} a$, one of $a \diamond^{m-2} c$ or $c \diamond^{m-2} a$, and one of $b \diamond^{m-2} c$ or $c \diamond^{m-2} b$. There result eight possible sets:

$$
\begin{aligned}
& \left\{a \diamond^{m-2} a, b \diamond^{m-2} b, c \diamond^{m-2} c, a \diamond^{m-2} b, a \diamond^{m-2} c, b \diamond^{m-2} c\right\}, \\
& \left\{a \diamond^{m-2} a, b \diamond^{m-2} b, c \diamond^{m-2} c, a \diamond^{m-2} b, a \diamond^{m-2} c, c \diamond^{m-2} b\right\}, \\
& \left\{a \diamond^{m-2} a, b \diamond^{m-2} b, c \diamond^{m-2} c, a \diamond^{m-2} b, c \diamond^{m-2} a, c \diamond^{m-2} b\right\}, \\
& \left\{a \diamond^{m-2} a, b \diamond^{m-2} b, c \diamond^{m-2} c, b \diamond^{m-2} a, a \diamond^{m-2} c, b \diamond^{m-2} c\right\}, \\
& \left\{a \diamond^{m-2} a, b \diamond^{m-2} b, c \diamond^{m-2} c, b \diamond^{m-2} a, c \diamond^{m-2} a, b \diamond^{m-2} c\right\}, \\
& \left\{a \diamond^{m-2} a, b \diamond^{m-2} b, c \diamond^{m-2} c, b \diamond^{m-2} a, c \diamond^{m-2} a, c \diamond^{m-2} b\right\}, \\
& \left\{a \diamond^{m-2} a, b \diamond^{m-2} b, c \diamond^{m-2} c, a \diamond^{m-2} b, c \diamond^{m-2} a, b \diamond^{m-2} c\right\}, \\
& \left\{a \diamond^{m-2} a, b \diamond^{m-2} b, c \diamond^{m-2} c, b \diamond^{m-2} a, a \diamond^{m-2} c, c \diamond^{m-2} b\right\} .
\end{aligned}
$$

The last two are avoidable by $\left(a^{m-1} c^{m-1} b^{m-1}\right)^{\mathbb{Z}}$ and $\left(b^{m-1} c^{m-1} a^{m-1}\right)^{\mathbb{Z}}$ respectively, while the six others are equivalent up to renamings of letters (in fact, there is an unavoidable m-uniform set of minimal size for any total order on the alphabet). So we define the basic m-uniform unavoidable set of minimal size over $\{a, b, c\}$ as $X_{0}=T_{0} \cup T_{0}^{\prime}$, where

$$
T_{0}=\left\{a \diamond^{m-2} a, b \diamond^{m-2} b, c \diamond^{m-2} c\right\} \text { and } T_{0}^{\prime}=\left\{a \diamond^{m-2} b, a \diamond^{m-2} c, b \diamond^{m-2} c\right\} .
$$

The set T_{0} contains only the words whose endpoints are the same, while T_{0}^{\prime} contains only those whose endpoints are different. We begin by filling in the holes in X_{0} one at a time to classify which strengthenings preserve unavoidability. In the rest of the paper, the notation X_{i} refers to a set created by filling in i holes in X_{0}.

3.1 Filling in holes in T_{0}

When we attempt to strengthen one of the T_{0} words, we need to consider the following two cases: we can either insert a into $a \diamond^{m-2} a$, say, to obtain $a \diamond^{x_{1}} a \diamond^{x_{2}} a$, or we can insert b, say, into $a \diamond^{m-2} a$ to obtain $a \diamond^{x_{1}} b \diamond^{x_{2}} a$. However, filling in one hole of $a \diamond^{m-2} a$ with an a is equivalent to filling in any number of holes in $a \diamond^{m-2} a$ with a if that is the only word we strengthen.
Proposition 2. 1. For all $q \in \mathbb{N}$, the m-uniform set $X_{q}=\left(X_{0} \backslash\left\{a \diamond^{m-2} a\right\}\right) \cup\left\{a \diamond^{x_{1}} a \diamond^{x_{2}} a \cdots a \diamond^{x_{q}} a\right\}$ is unavoidable.
2. The m-uniform set $X_{1}=\left(X_{0} \backslash\left\{a \diamond^{m-2} a\right\}\right) \cup\left\{a \diamond^{x_{1}} b \diamond^{x_{2}} a\right\}$ is avoidable.

Now, let us fill in two holes in two words of T_{0}. Recall that strengthenings of avoidable sets are avoidable. We just noticed that if we want to preserve unavoidability, we cannot fill any of the holes in $a \diamond^{m-2} a$ with b. Furthermore, filling in any number of the holes in $a \diamond^{m-2} a$ with a 's preserves unavoidability. The only remaining way to fill in two of the holes in T_{0} is when one hole from $a \diamond^{m-2} a$ is filled with an a and one hole from $b \diamond^{m-2} b$ is filled with a b.
Proposition 3. Let $X_{2}=\left(X_{0} \backslash\left\{a \diamond^{m-2} a, b \diamond^{m-2} b\right\}\right) \cup\left\{a \diamond^{x_{1}} a \diamond^{x_{2}} a, b \diamond^{y_{1}} b \diamond^{y_{2}} b\right\}$ be an m-uniform set. Furthermore, let $2^{r}\left\|x_{1}+1,2^{s}\right\| y_{1}+1$, and $2^{t} \| m-1$. Then, X_{2} is avoidable if and only if m is odd and $r=s<t$.

Next, we address what happens when we fill in one hole in each of the three words in T_{0}. From [5] Lemma 3], there exists a two-sided infinite word w_{i} over $\{a, b, c\}$ with period $m-1$ that avoids $\left\{a \diamond^{i} a, b \diamond^{i} b, c \diamond^{i} c\right\}$ for every $i \leq\left\lfloor\frac{m-3}{2}\right\rfloor$. However, since w_{i} has period $m-1, w_{i}$ avoids the set

$$
Z=T_{0}^{\prime} \cup\left\{a \diamond^{i} a \diamond^{m-i-3} a, b \diamond^{i} b \diamond^{m-i-3} b, c \diamond^{i} c \diamond^{m-i-3} c\right\} .
$$

Proposition 4. Any m-uniform set of the form $X_{3}=T_{3} \cup T_{0}^{\prime}$, where $T_{3}=\left\{a \diamond^{x_{1}} a \diamond^{x_{2}} a, b \diamond^{y_{1}} b \diamond^{y_{2}} b, c \diamond^{z_{1}} c \diamond^{z_{2}} c\right\}$, is avoidable.

3.2 Filling in holes in T_{0}^{\prime}

First, there are two cases to consider when filling a hole in $a \diamond^{m-2} b$: the added letter is distinct from both a and b, or it is one of a or b. For the former case, the m-uniform set $\left(X_{0} \backslash\left\{a \diamond^{m-2} b\right\}\right) \cup\left\{a \diamond^{x_{1}} c \diamond^{x_{2}} b\right\}$ is avoidable by the infinite word $\left(a^{m-1} b^{m-1}\right)^{\mathbb{Z}}$. For the latter case, the following proposition holds.
Proposition 5. 1. If $x_{2}+1 \not \equiv 0\left(\bmod x_{1}+1\right)$, the m-uniform set $X_{1}=\left(X_{0} \backslash\left\{a \diamond^{m-2} c\right\}\right) \cup\left\{a \diamond^{x_{1}} c \diamond^{x_{2}} c\right\}$ is avoidable. Otherwise, $x_{2} \geq x_{1}$ and $w=\left(a^{x_{1}+1} b^{x_{2}+1} c^{x_{1}+1} a^{x_{2}+1} b^{x_{1}+1} c^{x_{2}+1}\right)^{\mathbb{Z}}$ avoids X_{1}.
2. If $x_{1}+1 \not \equiv 0\left(\bmod x_{2}+1\right)$, then the m-uniform set $X_{1}=\left(X_{0} \backslash\left\{a \diamond^{m-2} c\right\}\right) \cup\left\{a \diamond^{x_{1}} a \diamond^{x_{2}} c\right\}$ is avoidable. Otherwise, $x_{1} \geq x_{2}$ and $w=\left(a^{x_{1}+1} b^{x_{2}+1} c^{x_{1}+1}\right)^{\mathbb{Z}}$ avoids X_{1}.
Consequently, if $\left(X_{0} \backslash\left\{a \diamond^{m-2} c\right\}\right) \cup\{x\}$, where $x \uparrow a \diamond^{m-2} c$, is unavoidable, then x has no interior defined positions.

Filling holes in the words $a \diamond^{m-2} b$ and $b \diamond^{m-2} c$ is not as simple as filling holes in $a \diamond^{m-2} c$ while maintaining unavoidability. We know that inserting a letter different from the endpoints of the word into which it was inserted makes the resulting set avoidable. Thus we only consider the case when we insert a letter that is the same as one of the endpoints. If we insert one letter into $a \diamond^{m-2} b$, then no c can appear in an avoiding word w. This is because w must avoid $a \diamond^{m-2} c, b \diamond^{m-2} c$, and $c \diamond^{m-2} c$. Thus if w were to contain a c, there would be no possible letter for the position $m-1$ spaces before the c. Likewise, if we insert one letter into $b \diamond^{m-2} c$, any word w which contains an a must meet one of $a \diamond^{m-2} a, a \diamond^{m-2} b$, or $a \diamond^{m-2} c$. So in both of these cases, we are reduced to the use of a binary alphabet.

Proposition 6. If any of the following conditions 1-4 hold, then the m-uniform set X_{1} is unavoidable if and only if $r \leq s$:

1. $X_{1}=\left(X_{0} \backslash\left\{a \diamond^{m-2} b\right\}\right) \cup\left\{a \diamond^{x_{1}} b \diamond^{x_{2}} b\right\}$, and $2^{s} \| m-1$ and $2^{r} \| x_{1}+1$.
2. $X_{1}=\left(X_{0} \backslash\left\{a \diamond^{m-2} b\right\}\right) \cup\left\{a \diamond^{x_{1}} a \diamond^{x_{2}} b\right\}$, and $2^{s} \| m-1$ and $2^{r} \| x_{2}+1$.
3. $X_{1}=\left(X_{0} \backslash\left\{b \diamond^{m-2} c\right\}\right) \cup\left\{b \diamond^{x_{1}} b \diamond^{x_{2}} c\right\}$, and $2^{s} \| m-1$ and $2^{r} \| x_{2}+1$.
4. $X_{1}=\left(X_{0} \backslash\left\{b \diamond^{m-2} c\right\}\right) \cup\left\{b \diamond^{x_{1}} c \diamond^{x_{2}} c\right\}$, and $2^{s} \| m-1$ and $2^{r} \| x_{1}+1$.

Second, let us fill in two holes in T_{0}^{\prime}. We have seen that inserting any letter into $a \diamond^{m-2} c$ causes X_{0} to become avoidable, but that inserting a letter into only one of $a \diamond^{m-2} b$ or $b \diamond^{m-2} c$ only sometimes causes X_{0} to become avoidable. Inserting a letter in $a \diamond^{m-2} b$ or $b \diamond^{m-2} c$ that is different from both endpoints makes X_{0} avoidable. Thus, in examining what happens when we fill in two holes in T_{0}^{\prime} we have two cases to consider. The first is when we fill two of the holes in either $a \diamond^{m-2} b$ or $b \diamond^{m-2} c$ with letters that match the endpoints. The second case to consider is we fill one hole from $a \diamond^{m-2} b$ and one hole from $b \diamond^{m-2} c$ with letters matching one of the endpoints of their respective partial words. We consider the first case first, for which results from [6] prove useful.

Let X_{2} be the set created from X_{0} by filling in two of the holes in the same word in T_{0}^{\prime}. If we have filled in two holes in $a \diamond^{m-2} b$, then, as before, any word avoiding X_{2} must be a word over $\{a, b\}$. Similarly, if we have filled in two holes in $b \diamond^{m-2} c$, any word avoiding X_{2} must be a word over $\{b, c\}$. Let Y be the set created by removing all of the elements of X_{2} that contain the letter that cannot be contained in X_{2} 's avoiding word. In either case, X_{2} has the same avoidability as Y, since any word avoiding Y automatically avoids X_{2} and vice versa. The avoidability of Y is completely characterized in [6].
Theorem 2. [6] Let $Y=\left\{a \diamond^{m-2} a, b \diamond^{m-2} b, a \diamond^{x_{1}} b \diamond^{x_{2}} b \diamond^{x_{3}} b\right\}$ be an m-uniform set over $\{a, b\}$. Let $2^{s} \| m-1$, $2^{t}\left\|x_{1}+1,2^{r}\right\| x_{1}+x_{2}+2$. Then Y is unavoidable if and only if $s \geq t, r$ holds in addition to one of (i) $x_{1}=x_{2}$, (ii) $x_{1}=x_{3}$, or (iii) $m=7\left(x_{1}+1\right)+1$ and $x_{2}+1 \in\left\{2\left(x_{1}+1\right), 4\left(x_{1}+1\right)\right\}$.
Theorem 3. [6] Let $i_{1}<\cdots<i_{s}<j_{1}<\cdots<j_{r}$ be elements of the set $\{1, \ldots, m-2\}$. Let x be defined as follows: $x(i)=a$ if $i \in\left\{0, i_{1}, \ldots, i_{s}\right\}, x(i)=b$ if $i \in\left\{j_{1}, \ldots, j_{r}, m-1\right\}$, and $x(i)=\diamond$ otherwise. Then $Y=\left\{a \diamond^{m-2} a, b \diamond^{m-2} b, x\right\}$ has the same avoidability as some set $Z=\left\{a \diamond^{m-2} a, b \diamond^{m-2} b, z\right\}$, where z is created by filling in $r+s$ of the holes in $a \diamond^{m-2} b$ with b 's.

We now focus on the set created by filling in one hole in $a \diamond^{m-2} b$ and one hole in $b \diamond^{m-2} c$. We define such a set, with $x_{1}+x_{2}=y_{1}+y_{2}=m-3$, as

$$
\begin{equation*}
X_{2}=T_{0} \cup\left\{a \diamond^{x_{1}} b \diamond^{x_{2}} b, b \diamond^{y_{1}} b \diamond^{y_{2}} c, a \diamond^{m-2} c\right\} . \tag{1}
\end{equation*}
$$

Such set has the same avoidability as

$$
Y_{2}=T_{0} \cup\left\{a \diamond^{y_{2}} b \diamond^{y_{1}} b, b \diamond^{x_{2}} b \diamond^{x_{1}} c, a \diamond^{m-2} c\right\} .
$$

Proposition 7. The m-uniform sets

$$
Y_{2}=\left(X_{0} \backslash\left\{a \diamond^{m-2} b, b \diamond^{m-2} c\right\}\right) \cup\left\{a \diamond^{y_{2}} b \diamond^{y_{1}} b, b \diamond^{x_{2}} b \diamond^{x_{1}} c\right\}
$$

and X_{2}, defined by Eq. (17), have the same avoidability.
From Proposition 7] when considering X_{2}, defined by Eq. (1), we can assume without loss of generality that $x_{1} \leq y_{2}$. If $y_{2}<x_{1}, X_{2}$ has the same avoidability as the set Y_{2} obtained by switching x_{1} and y_{2}.

Proposition 8. If $x_{1} \leq x_{2}$, there exist integers $p, q>0$, with $p+q=m-1$, such that the infinite word $w=\left(a^{p} c^{q} b^{p}\right)^{\mathbb{Z}}$ avoids X_{2}, defined by Eq. (I).

Proof. Set $v=a^{p} c^{q} b^{p}$. If $w(i)=a$, we know $w(i+m-1)=b$. Thus in order for w to avoid X_{2}, we need $p \leq x_{2}+1$, to ensure that w avoids $a \diamond^{x_{1}} b \diamond^{x_{2}} b$. Since $x_{1}+x_{2}+2=p+q=m-1, p \leq x_{2}+1$ implies $q \geq x_{1}+1$. Additionally, if $w(i)=c$, we need $q \leq p$ in order to ensure that $w(i+m-1)$ is an a and not a c. Finally, if $w(i)=b$, then $w(i+m-1) \in\{a, c\}$. In fact, $m-1$ spaces after the first $p-q b$'s in v is an a and $m-1$ spaces after the last $q b$'s in v is a c. Thus to ensure that w avoids $b \diamond^{y_{1}} b \diamond^{y_{2}} c$, we need $q \leq y_{2}+1$. Consequently, w avoids X_{2} if $x_{1} \leq y_{2}$, which we have already assumed, and if we can find p, q such that $x_{1}+1 \leq q \leq p \leq x_{2}+1$. This occurs when $x_{1} \leq x_{2}$.

Thus the set X_{2}, defined by Eq. (1), is always avoidable except possibly when $y_{1} \leq x_{2} \leq x_{1} \leq y_{2}$. Extensive computations yield the following conjecture.

Conjecture 1. Set X_{2}, defined by Eq. (I), is avoidable when $y_{1} \leq x_{2} \leq x_{1} \leq y_{2}$.
We now discuss some results towards a proof of this conjecture. Table 1 gives specific examples of words that avoid sets defined by Eq. (1) under conditions on m, x_{1}, and y_{1}. We prove only the third item in Table 1, i.e, Proposition 9 , as the proofs of the other items are analogous.
Proposition 9. The infinite word $w=\left((a b)^{p} a(b c)^{q}\right)^{\mathbb{Z}}$, where $p \geq 0, q>0$, avoids X_{2}, defined by Eq. ((l), if and only if the following conditions hold:

1. $m \equiv 2(\bmod 2(p+q)+1)$;
2. $x_{1} \equiv 2 j-1(\bmod 2(p+q)+1)$ for some $j \in[0 . . q]$;
3. $y_{1} \equiv 2 k-1(\bmod 2(p+q)+1)$ for some $k \in[q . . p+q+1]$.

Proof. For the remainder of the proof, assume all congruences are modulo $2(p+q)+1$. Suppose X_{2} satisfies the above conditions. Since $m \equiv 2$ by Condition 1 and, thus, $m-1 \equiv 1, w(i)=a$ implies $w(i+m-1)=b$ since any letter after an a is a b. Similarly, $w(i)=b$ implies $w(i+m-1) \in\{a, c\}$, and $w(i)=c$ implies $w(i+m-1) \in\{a, b\}$. Thus w avoids $a \diamond^{m-2} a, b \diamond^{m-2} b, c \diamond^{m-2} c$, and $a \diamond^{m-2} c$.

Suppose $w(i)=a$. Consider $w\left(i+x_{1}+1\right)$. By Condition $2, x_{1} \equiv 2 j-1$ for some $j \in[0 . . q]$, which implies $w\left(i+x_{1}+1\right)=w(i+2 j)$. Since any letter an even distance at most $2 q$ spaces ahead of an a is in $\{a, c\}, w\left(i+x_{1}+1\right) \neq b$. Therefore, w avoids $a \diamond^{x_{1}} b$, which implies that w avoids $a \diamond^{x_{1}} b \diamond^{x_{2}} b$. Next, suppose $w(i)=b$. By Condition $3, y_{1} \equiv 2 k-1$ for some $k \in[q . . p+q+1]$. Equivalently, $2 k-1+y_{2}+3 \equiv$ $y_{1}+y_{2}+3=m \equiv 2$. Thus, $y_{2}+1 \equiv 2 r$ for some $r \in[0 . . p+1]$. Since any letter an even distance at most $2 p+2$ spaces ahead of $\mathrm{a} b$ is in $\{a, b\}, w\left(i+y_{2}+1\right)=w(i+2 r) \neq c$. Therefore, w avoids $b \diamond^{y_{2}} c$ and, thus, $b \diamond^{y_{1}} b \diamond^{y_{2}} c$. Therefore, if Conditions $1-3$ are satisfied, then w avoids X_{2}.

Now, suppose w avoids X_{2}. We show that X_{2} satisfies Conditions 1-3. Suppose for a contradiction that Condition 1 does not hold. Then either $m \equiv 2 r+1$ for some $r \in[0 . . p+q]$ or $m \equiv 2 r$ for some $r \in[2 . . p+q]$. Suppose $m \equiv 2 r+1$ for some $r \in[0 . . p+q]$. Without loss of generality, suppose $w(i)=a$ begins a period of w and, thus, $w(i-2)=b$. Consider $w(i-2+m-1)=w(i+2 r-2)$. Since any letter an even distance after the first letter in the period is in $\{a, c\}, w$ meets either $a \diamond^{m-2} a$ or $a \diamond^{m-2} c$, a contradiction. Similarly, suppose $m \equiv 2 r$ for some $r \in[2 . . p+q]$ and $w(i)=a$ once again begins a period of w. Consider $w(i+m-1)=w(i+2 r)$. Since any letter an even distance after the first letter in the period is in $\{a, c\}, w$ meets either $a \diamond^{m-2} a$ or $a \diamond^{m-2} c$, again a contradiction. Thus, Condition 1 holds.

Next, suppose for a contradiction that Condition 2 does not hold. There are two cases to consider. The first is that $x_{1} \equiv 2 r$ for some $r \in[0 . . p+q]$. Suppose $w(i)=a$ begins a period of w. Since any letter an odd distance after the first letter in the period is a $b, w\left(i+x_{1}+1\right)=w(i+2 r+1)=b$. Furthermore,
since w avoids X_{2}, if $w(i)=a$, then $w(i+m-1)=b$. Thus, w meets $a \diamond^{x_{1}} b \diamond^{x_{2}} b$, which is a contradiction. The second case is that $x_{1}+1 \equiv 2 r$ for some $r \in(q . . p+q)$. Once again, let $w(i)=a$ begin a period of w, so $w(i-2 q-1)=a$. Then $w\left(i-2 q-1+x_{1}+1\right)=w(i+2 r-2 q-1)$. Since any letter an odd number of spaces after the first a in the period is a b, this means $w\left(i-2 q-1+x_{1}+1\right)=b$. Since w avoids X_{2}, $w(i-2 q-1+m-1)=b$. Thus w meets $a \diamond^{x_{1}} b \diamond^{x_{2}} b$, which is a contradiction. Thus, Condition 2 holds as well.

Finally, suppose for a contradiction that Condition 3 does not hold. This means $y_{1} \not \equiv 2 k-1$ for any $k \in[q . . p+q+1]$. By Condition $1, m \equiv 2$ and since $y_{1}+y_{2}+1=m-2 \equiv 0$, Condition 3 not holding is equivalent to $y_{2}+1 \equiv 2 r+1$ for some $r \in[0 . . p+q)$ or $y_{2}+1 \equiv 2 r$ for some $r \in[p+2 . . p+q]$. Suppose $y_{2}+1 \equiv 2 r+1$ for some $r \in[0 . . p+q)$. Now, let $w(i)=c$ be the last letter in a period of w. Thus $w\left(i-\left(y_{2}+1\right)\right)=b$ and $w(i-(m-1))=b$, since any letter an odd number of spaces before the last c in the period is a b and since w avoids $a \diamond^{m-2} c$ and $c \diamond^{m-2} c$. This contradicts the assumption that w avoids $b \diamond^{y_{1}} b \diamond^{y_{2}} c$. Similarly, suppose $y_{2}+1 \equiv 2 r$ for some $r \in[p+2 . . p+q]$. Let $w(i)=a$ begin a period of w and $w(i-2)=b$. Consider $w\left(i-2+y_{2}+1\right)=w(i+2 r-2)$. Since any letter an odd distance at least $2 p+2$ spaces after the first letter in the period is a $c, w\left(i-2+y_{2}+1\right)=c$. Since w avoids $a \diamond^{m-2} c$ and $c \diamond^{m-2} c$, we have that $w\left(i-2+y_{2}+1-(m-1)\right)=b$. This means w meets $b \diamond^{y_{1}} b \diamond^{y_{2}} c$, which is a contradiction. Thus, Condition 3 holds.

The following proposition also provides conditions for X_{2} to be avoidable.
Proposition 10. Let X_{2} be as defined by Eq. (l). Then X_{2} is avoided by an infinite word of period at most m if one of the following conditions hold:

1. x_{1}, y_{1} are even and $y_{1} \leq x_{2} \leq x_{1}$;
2. $y_{1}=0$ and $x_{2} \leq x_{1}$.

Tables 2, 3, and 4 summarize some sufficient conditions for patterns to avoid X_{2}, defined by Eq. (1), with respect to residues modulo 2,3 , and 4 .

If X_{2}, defined by Eq. (1), is avoidable, then all sets that contain strengthenings of two of the T_{0}^{\prime} words are avoidable.

Proposition 11. Let X_{2} be defined by Eq. (7) and let $X_{2}^{\prime}=\left(X_{2} \backslash\left\{a \diamond^{x_{1}} b \diamond^{x_{2}} b\right\}\right) \cup\left\{a \diamond^{x_{2}} a \diamond^{x_{1}} b\right\}$. Also let $Y_{2}^{\prime}=\left(X_{2}^{\prime} \backslash\left\{a \diamond^{x_{2}} a \diamond^{x_{1}} b, b \diamond^{y_{1}} b \diamond^{y_{2}} c\right\}\right) \cup\left\{a \diamond^{y_{2}} b \diamond^{y_{1}} b, b \diamond^{x_{1}} c \diamond^{x_{2}} c\right\}$ and $Y_{2}=\left(Y_{2}^{\prime} \backslash\left\{a \diamond^{y_{2}} a \diamond^{y_{1}} b\right\}\right) \cup\left\{a \diamond^{y_{1}} b \diamond^{y_{2}} b\right\}$ be m-uniform sets.

1. If X_{2} is avoidable, then X_{2}^{\prime} is avoidable.
2. The sets X_{2}^{\prime} and Y_{2}^{\prime} have the same avoidability.
3. If Y_{2}^{\prime} is avoidable, then Y_{2} is avoidable.

Third, Theorems [2 and 3 state that filling in two holes in the same word in T_{0}^{\prime} only sometimes makes X_{0} avoidable. We now prove that once we have filled in three holes in the same word in T_{0}^{\prime}, X_{0} becomes avoidable.

Proposition 12. If the m-uniform set $X_{3}=\left(X_{0} \backslash\left\{a \diamond^{m-2} b\right\}\right) \cup\{x\}$ is unavoidable, where $x \uparrow a \diamond^{m-2} b$, then x has at most two interior defined positions.

Proof. If more than two positions in x have been filled, we know that they have to be filled with a 's or b 's otherwise X_{3} would be avoidable. However from [6, Corollary 4], $\left\{a \diamond^{m-2} a, b \diamond^{m-2} b, x\right\}$ can be avoided by an infinite word w over $\{a, b\}$. This means that w avoids $c \diamond^{m-2} c, a \diamond^{m-2} c$, and $b \diamond^{m-2} c$ as well. Thus w avoids all of X_{3} and thus X_{3} is avoidable.

Table 1: Necessary and sufficient conditions for w to avoid sets defined by Eq. (1) when $y_{1} \leq x_{2} \leq x_{1} \leq y_{2}$

Avoiding word w	Necessary and sufficient conditions
$\left(a^{p} b^{p}\right)^{\mathbb{Z}}$	$\begin{aligned} & \hline \hline m \equiv p+1(\bmod 2 p) \\ & x_{1} \equiv-1(\bmod 2 p) \\ & \hline \end{aligned}$
$\left(b^{p} c^{p}\right)^{\mathbb{Z}}$	$\begin{aligned} & m \equiv p+1(\bmod 2 p) \\ & y_{1} \equiv p-1(\bmod 2 p) \end{aligned}$
$\begin{aligned} & \left((a b)^{p} a(b c)^{q}\right)^{\mathbb{Z}} \\ & p \geq 0, q>0 \end{aligned}$	$\begin{aligned} & m \equiv 2(\bmod 2(p+q)+1) \\ & x_{1} \equiv 2 j-1(\bmod 2(p+q)+1), j \in[0 . . q] \\ & y_{1} \equiv 2 k-1(\bmod 2(p+q)+1), k \in[q . . q+p+1] \\ & \hline \end{aligned}$
$\begin{aligned} & \left(a b\left((a b)^{p} a(b c)^{q}\right)^{r}\right)^{\mathbb{Z}} \\ & p \geq 0, q>0 \end{aligned}$	$\begin{aligned} & m \equiv 2(\bmod r(2 p+2 q+1)+2) \\ & x_{1} \equiv(2 p+2 q+1) j+2 k-1(\bmod r(2 p+2 q+1)+2) \\ & \quad j \in[0 . . r], k \in[1 . . r] \\ & y_{1} \equiv(2 q+2 r+1) s+2 t+1(\bmod r(2 p+2 q+1)+2) \\ & \quad s \in[0 . . r), t \in[q . . p+q) \cup\{0\} \\ & \quad \end{aligned}$
$\begin{aligned} & \left(\left((a b)^{p} a(c b)^{q}\right)^{r}(a b)^{p} a(c b)^{q-1}\right)^{\mathbb{Z}} \\ & p \geq 0, q>0 \\ & r \geq 0 \end{aligned}$	$\begin{aligned} & \hline m \equiv 0(\bmod (r+1)(2 p+2 q+1)-2) \\ & x_{1} \equiv(2 p+2 q+1) j+2 k(\bmod (r+1)(2 p+2 q+1)-2) \\ & \quad j \in[0 . . r], k \in[p . . p+q) \\ & y_{1} \equiv(2 p+2 q+1) s+2 t(\bmod (r+1)(2 p+2 q+1)-2) \\ & \quad s \in[0 . . r], t \in[-1 . . p] \\ & \hline \end{aligned}$
$\begin{aligned} & \left(a^{p} b^{q} c^{r}\right)^{\mathbb{Z}} \\ & 1 \leq p \leq q, 1 \leq r \leq q, \\ & q \leq p+r \end{aligned}$	$\begin{aligned} & m \equiv q+1(\bmod p+q+r) \\ & x_{1} \equiv\{p+q-1, \ldots, p+q+r-1\}(\bmod p+q+r) \\ & y_{1} \equiv\{q-1, \ldots, p+q-1\}(\bmod p+q+r) \\ & \hline \end{aligned}$
$\begin{aligned} & \left(a^{p} c^{r} b^{q}\right)^{\mathbb{Z}} \\ & 1 \leq p \leq q, 1 \leq r \leq q, \\ & q \leq p+r \end{aligned}$	$\begin{aligned} & m \equiv p+r+1(\bmod p+q+r) \\ & x_{1} \equiv\{-1, \ldots, r-1\}(\bmod p+q+r) \\ & y_{1} \equiv\{r-1, \ldots, p+r-1\}(\bmod p+q+r) \\ & \hline \end{aligned}$
$\begin{aligned} & \left(a^{p+1} b^{q-1} c^{r} a^{p} b^{q} c^{r-1}\right)^{\mathbb{Z}} \\ & 0 \leq p<q, 1 \leq r \leq q, \\ & q \leq p+r \end{aligned}$	$\begin{aligned} & m \equiv p+r+2 q(\bmod 2 p+2 q+2 r-1) \\ & x_{1} \equiv\{p+q-1, \ldots, p+q+r-2,2 p+2 q+r-1, \\ &\ldots, 2 p+2 q+2 r-2\}(\bmod 2 p+2 q+2 r-1) \\ & y_{1} \equiv\{q-1, \ldots, p+q-1, p+2 q+r-2, \\ & \quad \ldots, 2 p+2 q+r-2(\bmod 2 p+2 q+2 r-1) \\ & \hline \end{aligned}$
$\begin{aligned} & \left(a^{p-1} c^{r+1} b^{q-1} a^{p} c^{r} b^{q}\right)^{\mathbb{Z}} \\ & 1 \leq p \leq q, 0 \leq r<q, \\ & q \leq p+r \end{aligned}$	$\begin{aligned} & \hline m \equiv p+r+1(\bmod 2 p+2 q+2 r-1) \\ & x_{1} \equiv\{1, \ldots, r-1, p+r+q-1, \ldots, p+2 r+q-1\} \\ &(\bmod 2 p+2 q+2 r-1) \\ & y_{1} \equiv\{r-1, \ldots, p+r-1,2 p+r, \ldots, 2 p+2 r+q-2\} \\ &(\bmod 2 p+2 q+2 r-1) \\ & \hline \end{aligned}$
$\begin{aligned} & \left(a^{r}\left(b^{q} c^{q}\right)^{p}\right)^{\mathbb{Z}} \\ & 1 \leq r \leq q, p>0 \end{aligned}$	$\begin{aligned} & m \equiv q+1(\bmod 2 p q+r) \\ & x_{1} \equiv\{-1,2 q j+k\}(\bmod 2 p q+r), \\ & \quad j \in[0 . . p), k \in[q+r-1 . .2 q) \\ & y_{1} \equiv q-1(\bmod 2 p q+r) \\ & \hline \end{aligned}$
$\begin{aligned} & \left(a^{r}\left(c^{q} b^{q}\right)^{p}\right)^{\mathbb{Z}} \\ & 1 \leq r \leq q, p>0 \end{aligned}$	$\begin{aligned} & m \equiv-q+1(\bmod 2 p q+r) \\ & x_{1} \equiv\{-1,2 q j+k\}(\bmod 2 p q+r), \\ & j \in[0 . . p), k \in[r-1 \ldots r+q-2] \\ & y_{1} \equiv\{-q-1, q-1\}(\bmod 2 p q+r) \\ & \hline \end{aligned}$
$\begin{aligned} & \left(a^{q} b^{q} c^{q}\left(c^{q} b^{2 q} c^{q}\right)^{p}\right)^{\mathbb{Z}} \\ & p \geq 0, q>0 \end{aligned}$	$\begin{aligned} & \hline m \equiv-2 q+1(\bmod (4 p+3) q) \\ & x_{1} \equiv\{-1,4 q j+k-1\}(\bmod (4 p+3) q), \\ & \quad j \in[0 . . p], k \in[2 q . .3 q] \\ & y_{1} \equiv\{-2 q-1,2 q-1\}(\bmod (4 p+3) q) \\ & \hline \end{aligned}$
$\begin{aligned} & \left(\left(a^{p} c^{r} b^{q}\right)^{t} b\right)^{\mathbb{Z}} \\ & 1 \leq p \leq q, \\ & p+r=q+1 \end{aligned}$	$\begin{aligned} & m \equiv q+2(\bmod t(p+q+r)+1) \\ & x_{1} \equiv(2 q+1) j+k-1(\bmod t(p+q+r)+1) \\ & \quad j \in[0 . . t], k \in[1 . . r] \\ & y_{1} \equiv(2 q+1) h+i(\bmod t(p+q+r)+1) \\ & \quad h \in[0 . t], i \in[r . . q] \end{aligned}$

Table 2: Sufficient conditions on residues modulo 2 for w to avoid sets defined by Eq. (1)

Avoiding word w	m	x_{1}	y_{1}
$(a b)^{\mathbb{Z}}$	0	1	0,1
$(b c)^{\mathbb{Z}}$	0	0,1	0
$\left((a b)^{p} a(c b)^{q}\right)^{\mathbb{Z}}$	1	0	0

Table 3: Sufficient conditions on residues modulo 3 for w to avoid sets defined by Eq. (1)

Avoiding word w	m	x_{1}	y_{1}
$(a b c)^{\mathbb{Z}}$	2	1,2	0,1
$(a c b)^{\mathbb{Z}}$	0	0,2	0,1
$\left(a b(a b c)^{p}\right)^{\mathbb{Z}}$	1	1	$0,=1$
$\left((a c b)^{p} b\right)^{\mathbb{Z}}$	1	0	$=0,1$

3.3 Filling in holes in T_{0} and T_{0}^{\prime}

Since filling in any of the holes in $a \diamond^{m-2} c$ results in an avoidable set, the only strengthenings of T_{0}^{\prime} we need to consider are strengthenings of $a \diamond^{m-2} b$ and $b \diamond^{m-2} c$. Furthermore, in order to preserve unavoidability, we must fill in a word in T_{0} with the same letter as its two endpoints. Thus when filling in one hole in T_{0} and one hole in T_{0}^{\prime}, there are two possible cases to consider: the endpoints of the T_{0} word are the same as one of the endpoints of the T_{0}^{\prime} word or the endpoints of the T_{0} word are different from the two endpoints of the T_{0}^{\prime} word. We now focus on the m-uniform set

$$
\begin{equation*}
X_{2}=\left(X_{0} \backslash\left\{a \diamond^{m-2} a, b \diamond^{m-2} c\right\}\right) \cup\left\{a \diamond^{x_{1}} a \diamond^{x_{2}} a, b \diamond^{y_{1}} c \diamond^{y_{2}} c\right\} \tag{2}
\end{equation*}
$$

When considering it, we can assume without loss of generality that $x_{1} \leq x_{2}$. Indeed, it is easy to show that the m-uniform set X_{2}, defined by Eq. (2), is avoidable if and only if the m-uniform set $X_{2}^{\prime}=\left(X_{0} \backslash\right.$ $\left.\left\{a \diamond^{m-2} a, b \diamond^{m-2} c\right\}\right) \cup\left\{a \diamond^{x_{2}} a \diamond^{x_{1}} a, b \diamond^{y_{1}} c \diamond^{y_{2}} c\right\}$ is avoidable. It is also easy to show that if the m-uniform set X_{2}, defined by Eq. (2), is unavoidable, then so is $Y_{2}=\left(X_{0} \backslash\left\{a \diamond^{m-2} a, b \diamond^{m-2} c\right\}\right) \cup\left\{a \diamond^{x_{1}} a \diamond^{x_{2}} a, b \diamond^{y_{2}} b \diamond^{y_{1}} c\right\}$.

Table 5 gives some of the recurring patterns of words avoiding sets defined by Eq. (2). For instance, the last item in Table 5 translates as Proposition 13 ,
Proposition 13. Let $u=\left(b^{y_{2}+1} c^{y_{2}+1}\right)^{\mathbb{N}}$. If $y_{2} \leq x_{1} \leq x_{2} \leq y_{1}$, there exist integers $p, q>0, p+q=m-1$ such that the infinite word $w=v^{\mathbb{Z}}$ avoids X_{2}, defined by Eq. (2), where $v=a^{p} u_{q} a^{p} \overline{u_{q}}$ (here, u_{q} denotes the q-length prefix of u and $\overline{u_{q}}$ denotes the complement of u_{q}, where $\bar{b}=c$ and $\bar{c}=b$).
Proposition 14. Let X_{2}, defined by Eq. (2), and

$$
Y_{2}^{\prime}=\left(X_{0} \backslash\left\{a \diamond^{m-2} a, b \diamond^{m-2} c\right\}\right) \cup\left\{a \diamond^{x_{1}} a \diamond^{x_{2}} a, b \diamond^{y_{2}} b \diamond^{y_{1}} c\right\}
$$

Table 4: Sufficient conditions on residues modulo 4 for w to avoid sets defined by Eq. (1)

Avoiding word w	m	x_{1}	y_{1}
$\left(a^{2} b^{2}\right)^{\mathbb{Z}}$	3	3	$0,1,2,3$
$\left(b^{2} c^{2}\right)^{\mathbb{Z}}$	3	$0,1,2,3$	1

Table 5: Conditions for w to avoid sets defined by Eq. (2); here, u_{q} denotes the q-length prefix of $u, \overline{u_{q}}$ denotes the complement of u_{q} where $\bar{b}=c$ and $\bar{c}=b$, and $p, q>0$ are integers such that $p+q=m-1$

Conditions	Avoiding word w
m even, y_{1} even	$\left(a(b c)^{\frac{m-2}{2}} a\left(c b b b \frac{m-2}{2}\right.\right.$
m odd, x_{1} even, y_{1} even	$\left((a b)^{\frac{\pi-1}{2}}(a c)^{\frac{m-1}{2}}\right)^{\mathbb{Z}}$
$y_{1} \leq x_{1} \leq x_{2} \leq y_{2}$	$\left(a^{p} b^{q} a^{p} c^{q}\right)^{\mathbb{Z}}$
$y_{2} \leq x_{1} \leq x_{2} \leq y_{1}$	$\left(a^{p} u_{q} a^{p} \overline{u_{q}}\right)^{\mathbb{Z}}$, where $u=\left(b^{y_{2}+1} c^{y_{2}+1}\right)^{\mathbb{N}}$

be m-uniform sets. Furthermore, let $2^{s} \| x_{1}+1$ and $2^{t} \| y_{1}+1$. If $y_{1}=y_{2}$ and $s \neq t$, then X_{2} and Y_{2}^{\prime} are unavoidable.

Proof. Suppose $y_{1}=y_{2}$ and $s \neq t$. From now on, we refer to $y_{1}=y_{2}$ just as y. By performing the operations of factoring, prefix-suffix, hole truncation, and expansion on X_{2} from [5], we obtain the set

$$
Y=\left\{a \diamond^{x_{1}} a, b \diamond^{y} b, b \diamond^{y} c, c \diamond^{y} b, c \diamond^{y} c, a \diamond^{y} a \diamond^{y} b, a \diamond^{y} a \diamond^{y} c, b \diamond^{y} a \diamond^{y} b, c \diamond^{y} a \diamond^{y} c\right\},
$$

which has the same avoidability as X_{2}.
Assume for contradiction that Y is avoidable. This implies there exists an infinite word w that avoids Y. It is clear that w cannot contain only a 's since w must avoid $a \diamond^{x_{1}} a$. Thus, w must contain a b or a c. Without loss of generality let us assume that w contains a b since the argument if w contains a c is identical. Now without loss of generality, assume $w(y+1)=b$. Since w avoids $b \diamond^{y} b$ and $b \diamond^{y} c$, this means $w(2(y+1))=a$. Since w avoids $b \diamond^{y} a \Delta^{y} b, w(3(y+1)) \neq b$. If $w(3(y+1))=a, w(4(y+1))=a$ since w avoids $a \diamond^{y} a \diamond^{y} b$ and $a \diamond^{y} a \diamond^{y} c$. But this means that $w(5(y+1))=a$ and so on. Thus inductively, if $w(3(y+1))=a$, then $w(p(y+1))=a$ for all $p \geq 2$. If $w(3(y+1))=c$, then $w(4(y+1))=a$ because w must avoid $c \diamond^{y} b$ and $c \diamond^{y} c$. Since $w(4(y+1))=a$ and w avoids $c \diamond^{y} a \diamond^{y} c$, then either w can degenerate into a repeating string of a 's as before, or $w(5(y+1))=b$ and the sequence repeats. Thus it is easy to see that w must be made up of two possible strings of letters:

Thus w must be $4(y+1)$-periodic. Since the period of w must avoid $a \diamond^{x_{1}} a$, the period of w cannot contain all a 's. Thus the second string must occur in the period of w.

Without loss of generality assume $w(0)=a, w(y+1)=b, w(2(y+1))=a$, and $w(3(y+1))=c$. This implies for $k \geq 1$ that $w(k(y+1)=a$ if k is even and $w(k(y+1)) \in\{b, c\}$ if k is odd.

Since $w(0)=a$ and w avoids $a \diamond{ }^{x_{1}} a, w\left(x_{1}+1\right) \in\{b, c\}$. This means that $w\left(x_{1}+y+1\right)=a$. Now assume $w\left(n\left(x_{1}+1\right)+n(y+1)\right)=a$ and consider $w\left((n+1)\left(x_{1}+1\right)+(n+1)(y+1)\right)$. Since $w\left(n\left(x_{1}+\right.\right.$ 1) $+n(y+1))=a, w\left((n+1)\left(x_{1}+1\right)+n(y+1)\right) \in\{b, c\}$ because w avoids $a \diamond^{x_{1}} a$. This means that $w\left((n+1)\left(x_{1}+1\right)+(n+1)(y+1)\right)=a$. So by induction, $w\left(n\left(x_{1}+1\right)+n(y+1)\right)=a$ for all $n \in \mathbb{N}$.

Now consider $w\left(p\left(x_{1}+1\right)+q(y+1)\right)$ for $p, q \in \mathbb{N}$ with one of p, q even and the other odd. We know $p \pm r=q$ for some odd $r \in \mathbb{N}$. Thus, $w\left(p\left(x_{1}+1\right)+q(y+1)\right)=w\left(p\left(x_{1}+1\right)+p(y+1) \pm r(y+1)\right) \in\{b, c\}$.

Similarly, if we consider $w\left(p\left(x_{1}+1\right)+q(y+1)\right)$ for $p, q \in \mathbb{N}$ with both of p, q even or both of p, q odd, $p \pm r=q$ for some even $r \in \mathbb{N}$. Thus, $w\left(p\left(x_{1}+1\right)+q(y+1)\right)=w\left(p\left(x_{1}+1\right)+p(y+1) \pm r(y+1)\right)=$ a.

Now, let l be the least common multiple of $x_{1}+1$ and $y+1$. Since $s \neq t$ the power of two that maximally divides l is the same as the power of two that maximally divides one of $x_{1}+1$ and $y+1$ and is greater than the power of two that maximally divides the other. Thus l is even and $l=\alpha\left(x_{1}+1\right)$ and $l=\beta(y+1)$ where one of α, β is odd and the other is even. This implies $w\left(\alpha\left(x_{1}+1\right)+\beta(y+1)\right) \in\{b, c\}$. However, $w\left(\alpha\left(x_{1}+1\right)+\beta(y+1)\right)=w(2 l)=w(2 \beta(y+1))=a$, which is a contradiction.

Thus, Y is unavoidable and so is X_{2}. The set Y_{2}^{\prime} is then unavoidable. To see this, assume for contradiction that there exists an infinite word w that avoids Y_{2}^{\prime}. Since X_{2} is unavoidable, w must meet an element of X_{2}. This means w meets $b \diamond^{y_{1}} c \diamond^{y_{2}} c$. Suppose $w(i)=b, w\left(i+y_{1}+1\right)=c$, and $w\left(i+y_{1}+1+y_{2}+1\right)=c$. Since w avoids $a \diamond^{m-2} c$ and $c \diamond^{m-2} c$, this means $w\left(i+y_{1}+1-(m-1)\right)=w\left(i-\left(y_{2}+1\right)\right)=b$. Thus, $w\left(i-\left(y_{2}+1\right)\right)=b, w(i)=b$, and $w\left(i+y_{1}+1\right)=c$. This contradicts the fact that w avoids $b \diamond^{y_{2}} b \diamond^{y_{1}} c$.

4 Minimum number of holes in uniform unavoidable sets

We now consider the minimum number of holes in an m-uniform unavoidable set of size $k+\binom{k}{2}$ over A_{k}. To do this, our results from Section 3 prove useful. As discussed in Section 3, there is an unavoidable m-uniform set of minimal size for any total order on the alphabet and these sets are equivalent up to renamings of letters. So we define the basic m-uniform unavoidable set of minimal size over A_{k} as $X_{0}=T_{0} \cup T_{0}^{\prime}$, where $T_{0}=\left\{a_{i} \diamond^{m-2} a_{i} \mid 1 \leq i \leq k\right\}$ and $T_{0}^{\prime}=\left\{a_{i} \diamond^{m-2} a_{j} \mid 1 \leq i<j \leq k\right\}$.
Proposition 15. Let $X_{2}=\left(X_{0} \backslash\left\{a_{i_{1}} \diamond^{m-2} a_{i_{2}}, a_{i_{3}} \diamond^{m-2} a_{i_{4}}\right\}\right) \cup\{x, y\}$ where the integers $i_{1}, i_{2}, i_{3}, i_{4}$ are all distinct and where $x \uparrow a_{i_{1}} \diamond^{m-2} a_{i_{2}}$ and $y \uparrow a_{i_{3}} \diamond^{m-2} a_{i_{4}}$. If x and y both have at least one defined interior position, then X_{2} is avoidable.

Proof. If we fill in $a_{i_{1}} \diamond^{m-2} a_{i_{2}}$ or $a_{i_{3}} \diamond^{m-2} a_{i_{4}}$ with letters different from their endpoints, we know that X_{2} is avoidable by an infinite word over a ternary alphabet. Thus, we must fill in $a_{i_{1}} \diamond^{m-2} a_{i_{2}}$ and $a_{i_{3}} \diamond^{m-2} a_{i_{4}}$ with letters that are the same as their respective endpoints. For ease of notation, we let $a_{i_{1}}=a, a_{i_{2}}=$ $b, a_{i_{3}}=c, a_{i_{4}}=d$. Without loss of generality, assume $x=a \diamond^{x_{1}} b \diamond^{x_{2}} b$ and $y=c \diamond^{y_{1}} d \diamond^{y_{2}} d$. Filling in more holes in x and y is just a strengthening of X_{2}. Furthermore, filling in $a \diamond^{m-2} b$ with an a instead of a b or $c \diamond^{m-2} d$ with a c instead of a d yield an equivalent proof. We thus have eight cases:

$$
\begin{align*}
& x_{1} \leq y_{1} \leq y_{2} \leq x_{2} \tag{3}\\
& x_{1} \leq y_{2} \leq y_{1} \leq x_{2} \tag{4}\\
& y_{1} \leq x_{1} \leq x_{2} \leq y_{2} \tag{5}\\
& y_{2} \leq x_{1} \leq x_{2} \leq y_{1} \tag{6}\\
& x_{2} \leq y_{1} \leq y_{2} \leq x_{1} \tag{7}\\
& x_{2} \leq y_{2} \leq y_{1} \leq x_{1} \tag{8}\\
& y_{1} \leq x_{2} \leq x_{1} \leq y_{2} \tag{9}\\
& y_{2} \leq x_{2} \leq x_{1} \leq y_{1} \tag{10}
\end{align*}
$$

In any infinite word w that avoids X_{2}, if $w(i)=a, w(i+m-1)=b$ and $w(i+2(m-1))=a$ and similarly if $w(i)=c, w(i+m-1)=d$ and $w(i+2(m-1))=c$. So let $\bar{a}=b, \bar{b}=a, \bar{c}=d$, and $\bar{d}=c$. Furthermore, given a one-sided infinite word v, let v_{i} denote the prefix of v of length i. Now, let
$v=\left(a^{x_{2}+1} b^{x_{2}+1}\right)^{\mathbb{N}}$ and $u=\left(c^{y_{2}+1} d^{y_{2}+1}\right)^{\mathbb{N}}$. Define the infinite word $w=\left(v_{p} u_{q} \overline{v_{p} u_{q}}\right)^{\mathbb{Z}}$ where $p, q>0$ and $p+q=m-1$. The word w avoids X_{2} as long as $q>x_{2}$ and $p>y_{2}$. This is because in $w, m-1$ spaces after every a is a b and $m-1$ spaces after every b is an a and similarly for c and d. Furthermore, as long as $q>x_{2}$ and $p>y_{2}$, if $w(i)=b$, then $w(i-(m-1))=a$ and if $w(i)=d$, then $w(i-(m-1))=c$. Since $p+q=x_{1}+x_{2}+2=y_{1}+y_{2}+2=m-1, w$ avoids X_{2} in Cases (6), (7), (8), and (10).

Let us now define the infinite word $w^{\prime}=\left(a^{p} c^{q} b^{p} d^{q}\right)^{\mathbb{Z}}$ for some $p, q>0$ such that $p+q=m-1$. We claim that w^{\prime} avoids X_{2} as long as $p \leq x_{2}+1$ and $q \leq y_{2}+1$. If $w^{\prime}(i)=a$, then $w^{\prime}(i+m-1)=b$, if $w^{\prime}(i)=b$, then $w^{\prime}(i+m-1)=a$, and similarly for c and d. Furthermore, as long as $p \leq x_{2}+1, w^{\prime}$ avoids $a \diamond^{x_{1}} b \diamond^{x_{2}} b$ and as long as $q \leq y_{2}+1, w^{\prime}$ avoids $c \diamond^{y_{1}} d \diamond^{y_{2}} d$. Since $p+q=x_{1}+x_{2}+2=y_{1}+y_{2}+2=m-1$, w^{\prime} avoids X_{2} in Cases (3), (4), (5), and (9).

We have thus found infinite words that avoid X_{2} for all eight cases and so X_{2} is avoidable.
Proposition 16. Let $X_{1}=\left(X_{0} \backslash\left\{a_{i} \diamond^{m-2} a_{i+p}\right\}\right) \cup\{x\}$ where $k \geq i+p \geq i+2, x \uparrow a_{i} \diamond^{m-2} a_{i+p}$, and x has at least one defined interior position. Then X_{1} is avoidable.

Proof. Suppose an infinite word w avoids X_{1} and contains only the letters a_{i}, a_{i+1}, and a_{i+p}. If $w(j)=a_{i}$, then $w(j+m-1)=a_{i+p}$ since w must avoid $a_{i} \diamond^{m-2} a_{i}$ and $a_{i} \diamond^{m-2} a_{i+1}$. If $w(j)=a_{i+1}$, then $w(j+m-$ $1)=a_{i}$ since w must avoid $a_{i+1} \diamond^{m-2} a_{i+1}$ and $a_{i+1} \diamond^{m-2} a_{i+p}$. Finally, if $w(j)=a_{i+p}$, then $w(j+m-1)=$ a_{i} or $w(j+m-1)=a_{i+1}$ since w must avoid $a_{i+p} \diamond^{m-2} a_{i+p}$. Therefore, the conditions on a_{i}, a_{i+1}, and a_{i+p} are identical to the conditions on the letters a, b, and c when we considered the avoidability over $\{a, b, c\}$ of $\left\{a \diamond^{m-2} a, b \diamond^{m-2} b, c \diamond^{m-2} c, a \diamond^{m-2} b, b \diamond^{m-2} c, x\right\}$, where $x \uparrow a \diamond^{m-2} c$ and x contains only a 's and c 's. Thus, the proof that we can generate such an avoiding word is identical to the proof of Proposition 5 ,

To prove our main result, we show that X_{0} becomes avoidable once we fill in more than $m-1$ holes if m is even and m holes if m is odd.

Theorem 4. For $m \geq 4$, if Conjecture 1 is true, then the maximum number of holes we can fill into an m-uniform unavoidable set of size $k+\binom{k}{2}$ over A_{k} is $m-1$ if m is even and m if m is odd. In other words, $H_{m, k+\binom{k}{2}}^{k}=\left(k+\binom{k}{2}(m-2)-(m-1)\right.$ if m is even, and $H_{m, k+\binom{k}{2}}^{k}=\left(k+\binom{k}{2}\right)(m-2)-m$ if m is odd.

Proof. When we fill in holes in T_{0}, say we fill in a hole in $a_{i} \diamond^{m-2} a_{i}$, the letter we fill in must be a_{i} or else the infinite word $a_{i}^{\mathbb{Z}}$ avoids X_{0} (see Proposition 2). Additionally, filling in holes in more than two words in T_{0} makes X_{0} avoidable. This is because by Proposition 4 if we fill in holes in three words in T_{0}, there exists an infinite word w that avoids X_{0} and that contains three distinct letters. Since w does not contain any of the letters that make up the other elements of X_{0}, w avoids all of the elements of X_{0} and thus X_{0} is avoidable. Thus we can fill holes into at most two of the words in T_{0}.

Using Proposition 11 we prove that if Conjecture 1 is true, then filling in holes in two T_{0}^{\prime} words that have an endpoint in common makes X_{0} avoidable. To prove this, it is enough to consider the 3-letter alphabet $\{a, b, c\}$. Let $Z_{2}=\left(X_{0} \backslash\left\{a \diamond^{m-2} b, b \diamond^{m-2} c\right\}\right) \cup\{x, y\}$ where $x \uparrow a \diamond^{m-2} b, y \uparrow b \diamond^{m-2} c$, and x and y each have at least one defined interior position. We show that if Conjecture 1 is true, then Z_{2} is avoidable. Indeed, we know that if the defined interior letter in either x or y is different from the endpoints of its respective word, then Z_{2} is avoidable. Thus,

$$
\begin{aligned}
& X_{2}=\left(X_{0} \backslash\left\{a \diamond^{m-2} b, b \diamond^{m-2} c\right\}\right) \cup\left\{a \diamond^{x_{1}} b \diamond^{x_{2}} b, b \diamond^{y_{1}} b \diamond^{y_{2}} c\right\}, \\
& X_{2}^{\prime}=\left(X_{0} \backslash\left\{a \diamond^{m-2} b, b \diamond^{m-2} c\right\}\right) \cup\left\{a \diamond^{x_{2}} a \diamond^{x_{1}} b, b \diamond^{y_{1}} b \diamond^{y_{2}} c\right\}, \\
& Y_{2}=\left(X_{0} \backslash\left\{a \diamond^{m-2} b, b \diamond^{m-2} c\right\}\right) \cup\left\{a \diamond^{y_{1}} b \diamond^{y_{2}} b, b \diamond^{x_{1}} c \diamond^{x_{2}} c\right\} \text {, } \\
& Y_{2}^{\prime}=\left(X_{0} \backslash\left\{a \diamond^{m-2} b, b \diamond^{m-2} c\right\}\right) \cup\left\{a \diamond^{y_{2}} a \diamond^{y_{1}} b, b \diamond^{x_{1}} c \diamond^{x_{2}} c\right\}
\end{aligned}
$$

represent the only remaining cases to consider. If Conjecture 1 is true, then X_{2} is avoidable for all $x_{1}, x_{2}, y_{1}, y_{2}>0$. However if X_{2} is avoidable for all $x_{1}, x_{2}, y_{1}, y_{2}>0$, this implies X_{2}^{\prime} is avoidable for all $x_{1}, x_{2}, y_{1}, y_{2}>0$, which then implies Y_{2}^{\prime} is avoidable for all $x_{1}, x_{2}, y_{1}, y_{2}>0$, which implies Y_{2} is avoidable for all $x_{1}, x_{2}, y_{1}, y_{2}>0$.

Using Proposition 15, filling in holes in two T_{0}^{\prime} words whose endpoints are all distinct also makes X_{0} avoidable. Thus we can fill in holes in at most one word in T_{0}^{\prime}. Furthermore, we know that the letter we fill in must be the same as one of the endpoints. From Proposition 16 the word we fill in must be of the form $a_{i} \diamond^{m-2} a_{i+1}$ and from Proposition 12, we cannot fill in more than two holes in any word in T_{0}^{\prime}.

Thus if we want to preserve the unavoidability of X_{0}, we can fill in holes in at most two of the T_{0} words and one of the T_{0}^{\prime} words. Therefore, filling in holes in X_{0} is equivalent to filling in holes in subsets of X_{0} of size three, where each subset contains two words from T_{0} and one word from T_{0}^{\prime}. So given a word u in T_{0}^{\prime}, either none of the two T_{0} words share endpoints with u, both of the two T_{0} words share endpoints with u, or one of the two T_{0} words shares an endpoint with u. Without loss of generality, these subsets are of three possible forms:

$$
\begin{aligned}
Q & =\left\{a_{i} \diamond^{m-2} a_{i}, a_{j} \diamond^{m-2} a_{j}, a_{i} \diamond^{m-2} a_{l+1}\right\}, \\
R & =\left\{a_{i} \diamond^{m-2} a_{i}, a_{i+1} \diamond^{m-2} a_{i+1}, a_{i} \diamond^{m-2} a_{i+1}\right\}, \\
S & =\left\{a_{i} \diamond^{m-2} a_{i}, a_{j} \diamond^{m-2} a_{j}, a_{i} \diamond^{m-2} a_{i+1}\right\} .
\end{aligned}
$$

We first consider Q. Let $Z=\left(X_{0} \backslash Q\right) \cup\left\{y, z, a_{l} \diamond^{x_{1}} d \diamond^{x_{2}} a_{l+1}\right\}$ where $y \uparrow a_{i} \diamond^{m-2} a_{i}, z \uparrow a_{j} \diamond^{m-2} a_{j}$, and $d \in\left\{a_{l}, a_{l+1}\right\}$. We now show that if $h(y)+h(z)=m-2$ then Z is avoidable. So suppose $h(y)+h(z)=$ $m-2$. If $h(y)=0$, then $\left(a_{j}^{m-2} a_{l} a_{j}^{m-2} a_{l+1}\right)^{\mathbb{Z}}$ avoids Z, and similarly, if $h(z)=0$, then $\left(a_{i}^{m-2} a_{l} a_{i}^{m-2} a_{l+1}\right)^{\mathbb{Z}}$ avoids Z. Thus, suppose $h(y), h(z) \geq 1$. Let $h(y)=n-2$ and $h(z)=m-n$. If the $m-n$ holes in z are not consecutive, then the $(m-1)$-periodic word $\left(a_{j}^{n-1} a_{i}^{m-n}\right)^{\mathbb{Z}}$ avoids Z, while if the $m-n$ holes in z are consecutive, then the $(m-1)$-periodic word $\left(a_{j}^{n-2} a_{i} a_{j} a_{i}^{m-n-1}\right)^{\mathbb{Z}}$ avoids Z. Filling in a second hole in $a_{l} \diamond^{m-2} a_{l+1}$ for a total of m holes filled is just a strengthening of Z and thus is also avoidable. Thus, filling in more than $m-1$ holes in Q makes X_{0} avoidable.

We now consider S. Let $Y=\left(X_{0} \backslash S\right) \cup\{x, y, z\}$ where $x \uparrow a_{i} \diamond^{m-2} a_{i}, y \uparrow a_{j} \diamond^{m-2} a_{j}$, and $z \uparrow a_{i} \diamond^{m-2} a_{i+1}$. We show that filling in more than $m-1$ holes in S makes Y avoidable (and thus X_{0} avoidable). As discussed above, we can assume that x contains only the letter a_{i} and y contains only the letter a_{j}. If $h(y)=0$, then filling in any of the holes in S is equivalent to filling in holes in R, which we do below. Thus, we assume $h(y) \geq 1$.

Let $Y^{\prime}=\left\{x, y, a_{i} \diamond^{x_{1}} a_{i} \diamond^{\diamond_{2}} a_{i+1}, a_{i+1} \diamond^{m-2} a_{i+1}, a_{j} \diamond^{m-2} a_{i}, a_{j} \diamond^{m-2} a_{i+1}\right\}$. We now show that if $h(x)+$ $h(y)=m-2$, then Y^{\prime} is avoidable. If $h(x)=0$, then $\left(a_{j}^{m-2} a_{i} a_{j}^{m-2} a_{i+1}\right)^{\mathbb{Z}}$ avoids Y^{\prime}. Thus, assume $h(x) \geq 1$. Let $h(x)=m-n$ and $h(y)=n-2$. First, suppose the $m-n$ holes in x do not appear in a contiguous block. Then the $(m-1)$-periodic word $w=\left(a_{i}{ }^{n-1} a_{j}^{m-n}\right)^{\mathbb{Z}}$ avoids Y^{\prime}. Since w is $(m-1)$-periodic, it does not meet $a_{j} \diamond^{m-2} a_{i}$. Since w does not contain any a_{i+1} 's it avoids $a_{i+1} \diamond^{m-2} a_{i+1}, a_{j} \diamond^{m-2} a_{i+1}$, and $a_{i} \diamond^{x_{1}} a_{i} \diamond^{\diamond_{2}} a_{i+1}$. Let u be an m-length factor of w such that $u(0)=a_{j}$. We know that u contains $n-1$ consecutive occurrences of a_{i}. Since $h(y)=n-2$, there is at least one instance where u has an a_{i} in a position where y has an a_{j}. Thus, w does not meet y. Similarly, let v be an m-length factor of w such that $v(0)=a_{i}$. This means v contains a contiguous block of $m-n a_{j}$'s. However, $v \forall x$ since the holes in x do not form a contiguous block. Now, suppose the $m-n$ holes in x appear in a contiguous block. Then the $(m-1)$-periodic word $w^{\prime}=\left(a_{i}^{n-2} a_{j} a_{i} a_{j}{ }^{m-n-1}\right)^{\mathbb{Z}}$ avoids Y^{\prime}. It avoids $a_{j} \diamond^{m-2} a_{i}, a_{j} \diamond^{m-2} a_{i+1}$, $a_{i} \diamond^{x_{1}} a_{i} \diamond^{\diamond_{2}} a_{i+1}, a_{i+1} \diamond^{m-2} a_{i+1}$, and y for the same reasons that w does. However, since the $m-n$ holes in x appear in a contiguous block, and there are $m-n a_{j}$'s in w^{\prime} that are not situated in a contiguous block, w^{\prime} avoids x. Thus we have shown that filling in $m-2$ holes in T_{0} and filling in a hole with a_{i}
in $a_{i} \diamond^{m-2} a_{i+1}$ makes Y^{\prime} avoidable. If we fill in a second hole with a_{i} in $a_{i} \diamond^{m-2} a_{i+1}$, for a total of m holes filled, this is just a strengthening of the previous case and thus is also avoidable. Furthermore, by Theorem [3 substituting a_{i+1} 's for the a_{i} 's would yield the same avoidability.

We finally consider R. Suppose an infinite word w avoids $X=\left(X_{0} \backslash R\right) \cup\{x, y, z\}$ where $x \uparrow a_{i} \diamond^{m-2} a_{i}$, $y \uparrow a_{i+1} \diamond^{m-2} a_{i+1}$, and $z \uparrow a_{i} \diamond^{m-2} a_{i+1}$. Since we want to show that we can fill in $m-1$ holes, suppose at least two of x, y, z have some defined interior positions. We prove that w must be over the binary alphabet $\left\{a_{i}, a_{i+1}\right\}$ by considering two cases. First, suppose $a_{i}=a_{1}$ (the proof is similar if $a_{i+1}=a_{k}$). If $w(m-1)=a_{k}$, then no letter works for $w(0)$ since w must avoid $a_{j} \diamond^{m-2} a_{k}$ for all $j \in\{1, \ldots, k\}$; thus, w does not contain any a_{k} 's. Similarly if $w(m-1)=a_{k-1}$, then no letter works for $w(0)$ since w must avoid $a_{j} \diamond^{m-2} a_{k-1}$, for all $j \in\{1, \ldots, k-1\}$, and w does not contain any a_{k} 's; thus, w cannot contain any a_{k-1} 's. We can continue eliminating potential letters from w until we are left with only a_{1} and a_{2}. If $w(m-1)=a_{2}$, then $w(0) \in\left\{a_{1}, a_{2}\right\}$ depending on which of x, y, z have defined interior positions. Similarly, if $w(m-1)=a_{1}$, then $w(0) \in\left\{a_{1}, a_{2}\right\}$. Thus, w is over $\left\{a_{1}, a_{2}\right\}$. Now, suppose $a_{i} \neq a_{1}$ and $a_{i+1} \neq a_{k}$. If $w(m-1)=a_{k}$, then as above we can show that w cannot contain any of a_{i+2}, \ldots, a_{k}, and if $w(0)=a_{1}$, that w cannot contain any of a_{1}, \ldots, a_{i-1}. If $w(0)=a_{i}$, then $w(m-1) \in\left\{a_{i}, a_{i+1}\right\}$ depending on which of x, y, z have defined interior positions. Similarly, if $w(0)=a_{i+1}$, then $w(m-1) \in\left\{a_{i}, a_{i+1}\right\}$.

We have shown that any infinite word that avoids X must be over the alphabet $\left\{a_{i}, a_{i+1}\right\}$. Thus, by Theorem 1 the maximum number of holes we can fill in X while maintaining the unavoidability property is $m-1$ if m is even and m if m is odd.

5 Conclusion

In this paper, we have considered m-uniform unavoidable sets of partial words over an arbitrary alphabet $A_{k}=\left\{a_{1}, \ldots, a_{k}\right\}$. We have formulated a conjecture, Conjecture 1, that states that the sets defined by Eq. (1) are avoidable when $y_{1} \leq x_{2} \leq x_{1} \leq y_{2}$ and a, b, c are distinct letters. If Conjecture 1 is true, for $m \geq 4$, we have exhibited a formula that calculates the maximum number of holes we can fill in any m-uniform unavoidable set of partial words over A_{k}, while maintaining the unavoidability property.

We believe that Conjecture 1 is true and have tested it for all m-uniform sets defined by Eq. (1) up to $m=100$ that satisfy $y_{1} \leq x_{2} \leq x_{1} \leq y_{2}$. We have found that these sets are all avoidable. In fact, all of the sets we tested have an avoiding word with period less than $2 m$. Of the 41,650 such sets, only 4 were found to require avoiding words that did not match any of our patterns. Furthermore, only 77 of the roughly 42 million sets for $m \leq 1000$ are not covered by our patterns. However, we are doubtful that a small number of similar patterns could be shown to cover the remaining cases.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant Nos. DMS0754154 and DMS-1060775. The Department of Defense is gratefully acknowledged. We thank Andrew Lohr as well as the referees of preliminary versions of this paper for their very valuable comments and suggestions. A research assignment from the University of North Carolina at Greensboro for the second author is also gratefully acknowledged. Some of this assignment was spent at the IRIF: Institut de Recherche en Informatique Fondamentale of Université Paris-Diderot-Paris 7, France.

References

[1] J. Bell (2005): Unavoidable and almost unavoidable sets of words. International Journal of Algebra and Computation, 15(4), pp. 717-724, doi 10.1142/S0218196705002463.
[2] B. Blakeley, F. Blanchet-Sadri, J. Gunter \& N. Rampersad (2010): On the complexity of deciding avoidability of sets of partial words. Theoretical Computer Science, 411, pp. 4263-4271, doi 10.1016/j.tcs.2010.09.006
[3] F. Blanchet-Sadri (2008): Algorithmic Combinatorics on Partial Words. Chapman \& Hall/CRC Press, Boca Raton, FL, doi 10.1201/9781420060935.
[4] F. Blanchet-Sadri, B. Blakeley, J. Gunter, S. Simmons \& E. Weissenstein (2010): Classifying All Avoidable Sets of Partial Words of Size Two. In C. Martín-Vide, editor: Scientific Applications of Language Methods, Mathematics, Computing, Language, and Life: Frontiers in Mathematical Linguistics and Language Theory, chapter 2, pp. 59-101. Imperial College Press, London, doi 10.1142/9781848165458_0002.
[5] F. Blanchet-Sadri, N. C. Brownstein, A. Kalcic, J. Palumbo \& T. Weyand (2009): Unavoidable sets of partial words. Theory of Computing Systems, 45(2), pp. 381-406, doi 10.1007/s00224-008-9106-1
[6] F. Blanchet-Sadri, B. Chen \& A. Chakarov (2012): Number of holes in unavoidable sets of partial words I. Journal of Discrete Algorithms, 14, pp. 55-64, doi•10.1016/j.jda.2011.12.001.
[7] F. Blanchet-Sadri, S. Ji \& E. Reiland (2012): Number of holes in unavoidable sets of partial words II. Journal of Discrete Algorithms, 14, pp. 65-73, doi 10.1016/j.jda.2011.12.002
[8] F. Blanchet-Sadri, R. M. Jungers \& J. Palumbo (2009): Testing avoidability on sets of partial words is hard. Theoretical Computer Science, 410, pp. 968-972, doi 10.1016/j.tcs.2008.11.011.
[9] J. M. Champarnaud, G. Hansel \& D. Perrin (2004): Unavoidable sets of constant length. International Journal of Algebra and Computation, 14, pp. 241-251, doi 10.1142/S0218196704001700.
[10] C. Choffrut \& K. Culik II (1984): On extendibility of unavoidable sets. Discrete Applied Mathematics, 9, pp. 125-137, doi 10.1016/0166-218X(84)90014-3.
[11] C. Choffrut \& J. Karhumäki (1997): Combinatorics of Words. In G. Rozenberg and A. Salomaa, editors: Handbook of Formal Languages, volume 1, chapter 6, pp. 329-438. Springer-Verlag, Berlin, doi:10.1007/978-3-642-59136-5_6
[12] M. Crochemore, M. Le Rest \& P. Wender (1983): An optimal test on finite unavoidable sets of words. Information Processing Letters, 16, pp. 179-180, doi 10.1016/0020-0190(83)90119-9
[13] A. Evdokimov \& S. Kitaev (2004): Crucial words and the complexity of some extremal problems for sets of prohibited words. Journal of Combinatorial Theory, Series A, 105, pp. 273-289, doi:10.1016/j.jcta.2003.12.003
[14] P. M. Higgins (2011): The length of short words in unavoidable sets. International Journal of Algebra and Computation, 21(6), pp. 951-960, doi 10.1142/S0218196711006522.
[15] P. M. Higgins \& C. J. Saker (2006): Unavoidable sets. Theoretical Computer Science, 359, pp. 231-238, doi $10.1016 / \mathrm{j} . \mathrm{tcs} .2006 .03 .024$
[16] M. Lothaire (2002): Algebraic Combinatorics on Words. Cambridge University Press, Cambridge, doi $10.1017 / \mathrm{CBO} 9781107326019$
[17] L. Rosaz (1995): Unavoidable languages, cuts and innocent sets of words. RAIRO-Theoretical Informatics and Applications, 29, pp. 339-382, doi 10.1051/ita/1995290503391.
[18] L. Rosaz (1998): Inventories of unavoidable languages and the word-extension conjecture. Theoretical Computer Science, 201, pp. 151-170, doi 10.1016/S0304-3975(97)00031-5.
[19] C. J. Saker \& P. M. Higgins (2002): Unavoidable sets of words of uniform length. Information and Computation, 173, pp. 222-226, doi 10.1006/inco.2001.3123

[^0]: E. Csuhaj-Varjú, P. Dömösi, Gy. Vaszil (Eds.): 15th International Conference on Automata and Formal Languages (AFL 2017)
 EPTCS 252, 2017, pp. 2640 doi 10.4204/EPTCS.252.7

