
Larsen, Legay, Nyman (Eds.): 1st Workshop on
Advances in Systems of Systems (AiSoS 2013)
EPTCS 133, 2013, pp. 8–23, doi:10.4204/EPTCS.133.2

c© Goetz Botterweck
This work is licensed under the
Creative Commons Attribution License.

Variability and Evolution in Systems of Systems

Goetz Botterweck
Lero–The Irish Software Engineering Research Centre,

Limerick, Ireland
goetz.botterweck@lero.ie

In this position paper (1) we discuss two particular aspects of Systems of Systems, i.e., variability
and evolution. (2) We argue that concepts from Product Line Engineering and Software Evolution
are relevant to Systems of Systems Engineering. (3) Conversely, concepts from Systems of Systems
Engineering can be helpful in Product Line Engineering and Software Evolution. Hence, we argue
that an exchange of concepts between the disciplines would be beneficial.

1 Introduction

In this position paper we (1) discuss two particular aspects of Systems of Systems (SoS), i.e., variability
and evolution. We do this from two perspectives: (2) First, we argue that in order to address variability
and evolution in the context of Systems of Systems Engineering (SoSE), concepts from Product Line
Engineering (PLE) and Software Evolution are relevant and helpful. (3) Second, we observe that with
increasing maturity of the disciplines the “objects of engineering” in PLE and Software Evolution be-
come larger and larger. Consequently, such disciplines have to deal with SoS challenges. Hence, in this
paper, we suggest a more lively exchange of concepts between the disciplines. We are aware that this
paper mostly raises questions and does not provide a lot of answers. However, we strongly believe that
such an exchange would be interesting and beneficial for both communities.

As an running example for the further discussion consider the scenario of an airport, schematically
illustrated in Figure 1. Vertically, we distinguish subsystems like Planes, Air Traffic Control System,
Baggage Handling System, Transportation Infrastructure, etc. Please note that the vertical presentation
serves only to distinguish the subsystems and is not intended to indicate a layered model like for instance
used in networking architectures.

Each subsystem consists of elements which can be in turn systems in their own right [23]. This
hierarchical compositional structure can occur recursively over many levels. For instance, the Planes
subsystem consists of planes; a plane consists of cockpit, navigation subsystem, power subsystem etc.;
the power subsystem consists of engines, fuel supply, etc. Elements are connected to each other, either
within the subsystems (solid lines) or across subsystem boundaries (dashed lines).

In such systems we have to deal with variability and evolution. First, in many cases it is beneficial to
consider multiple elements together (e.g., when designing and implementing them) rather than address-
ing each element individually [26]. For instance, when creating and maintaining the communication
infrastructure subsystem and its elements, it is beneficial to consider types or families of network routers
rather than discussing each router individually. We then have to deal with variability and commonality
among these elements. We will discuss this aspect in detail in Section 3.

Second, we have to consider how systems and their elements evolve over time. Long-term evolu-
tion is an inherent characteristic of Systems of Systems. Even though evolution in such large systems
cannot be controlled by one particular party, we are nevertheless interested in systematic approaches to
evolution. We will discuss this aspect of evolution in Section 4.

http://dx.doi.org/10.4204/EPTCS.133.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

Goetz Botterweck 9

C
o

m
m

u
n

ic
at

io
n

 In
fr

as
tr

u
ct

u
re

In
fo

rm
at

io
n

Sy

st
em

s
M

o
b

ile
 D

ev
ic

es
V

eh
ic

le
s

Tr
an

sp
o

rt
at

io
n

In

fr
as

tr
u

ct
u

re

B
ag

ga
ge

H

an
d

lin
g

Sy
st

em

A
ir

 T
ra

ff
ic

C

o
n

tr
o

l S
ys

te
m

P
la

n
es

...

...

...

...

Level n Level n+1

...

Level n+2

...

Figure 1: An airport as an example of a system of systems; including the recursive composition out of
subsystems

We will now give a brief overview of background information (Section 2). Then, we will look at the
aspects of variability and evolution in SoS (Sections 3 and 4). The paper concludes with final thoughts
(Section 5).

10 Variability and Evolution in Systems of Systems

2 Background

In this section we will give a brief summary of relevant background concepts from the disciplines Sys-
tems of Systems Engineering, Product Line Engineering, and Software Evolutions. Readers that are
familiar with an area might skip over that particular section.

2.1 Systems of Systems Engineering

In this paper, we are discussing the relationship between Systems of Systems Engineering, Product Line
Engineering, and Software Evolution. For instance, we are interested in how the inherent properties of
SoS influence other engineering practices. Hence, let us first look at these defining properties of SoS.

Systems of Systems have been widely discussed in the literature (e.g., [23, 11, 32]). Even though no
universally accepted definition exists, some characteristics have been described, e.g., by Maier [23]:

• Operational Independence of Elements

• Managerial Independence of Elements

• Evolutionary Development

• Emergent Behavior

• Geographical Distribution of Elements

In addition, we can observe the following phenomena which raise additional challenges for engineering
practices (e.g., Systems Engineering, Software Engineering, Product Line Engineering) (based on [9,
p.173–174]):

• Multiple stakeholders (for instance, related to the different subsystems) with varying, potentially
conflicting interests

• High levels of technical complexity

• Large-scale, broad scope, long-term activity

• Change management and evolution management are relevant in many aspects and parts of the
system

• Various constituent systems with independent life-cycles and lines of responsibility

• Requirement for adaptability, flexibility and open interfaces

Similar to Systems of Systems some authors discuss the concept of a Federations of Systems (e.g., [32]),
which takes the idea even further, e.g., in terms of absence of a central authority. In this context, Kry-
giel [20] describes a hierarchical taxonomy of conventional systems, systems of systems (SoS) and fed-
erations of systems (FoS) .

2.2 Software Product Line Engineering

As a structured approach for variability management and systematic reuse, we will now look at the
discipline of Software Product Line Engineering. Software Product Line Engineering [10, 29] commonly
distinguishes two phases of engineering (Figure 2):

In Domain Engineering the product line is created (e.g., by establishing a scope and implementing
shared assets). In Domain Analysis the scope of the product line and the allowed variations among its
products are defined. To represent available variants configuration choices and to define how choosing

Goetz Botterweck 11

Domain
Analysis

Feature
Model

Feature
Configuration

Features Implementation

Product
Configuration

D
o

m
ai

n
 E

n
gi

n
e

e
ri

n
g

A
p

p
lic

at
io

n
 E

n
gi

n
e

e
ri

n
g

Requirements
for (the whole)

Product Line

Requirements
for a specific

(unique)
product

Implemented
Product Line
Components

Product

Product
Derivation

Requirements

Domain
Implementa-

tion

Mappings

Artefact

Manual
Process

(Mostly)
Automated

Process

Semi-
automated

Process

Data flow

Trace

Legend

Figure 2: Software Product Line Engineering

particular options will influence the implementation-oriented artifacts, PLE approaches usually define
some form of variability model. A popular group of approach are Feature Models (e.g., [19, 13]).1 In
Domain Implementation corresponding assets are created and mapped to the features to define how a
particular configuration decision will influence the implementation.

In Application Engineering products are derived from the platform, which the product line provides.
This process starts with the process of Product Configuration where the user is making configuration
decisions based on the feature model, reducing the set of products, until exactly one product remains,
represented as a Feature Configuration. This process can be supported by interactive tools (e.g., [3, 6]).
In Product Derivation the corresponding implementation is created by composition and/or generative
approaches. Ideally, this step can be mostly automated.

Product Line Engineering can be used on different levels of sophistication. Bosch [5] gives a taxon-
omy of product line approaches, including a discussion of their maturity. Of the discussed approaches,
Programme of Product Lines goes somewhat into the direction of a System of Systems, but does not quite
reach its complexity. Bosch speaks of very large systems with “a software architecture that is defined for
the overall system and that specifies the components that make up the system. [..] The configuration of
the components is performed [..] through product line-based product derivation”.

In general, there is little discussion in the PLE literature of products as SoS, e.g., that they are
composed of subsystems or part of a larger super-system. In particular, it is rarely considered how this
hierarchical structure of systems should be reflected in the various PLE techniques. We will discuss this
in more detail in Section 3 .

1Other techniques are decision models (e.g., [33, 16]) or the orthogonal variability model (OVM) [29]. Surveys of variability
modeling approaches can be found in [8, 14].

12 Variability and Evolution in Systems of Systems

2.3 Software Evolution

Another relevant area related to the engineering of complex software-intensive systems is Software Evo-
lution [25]. Traditionally, the literature in Software Evolution has mainly focused on analyzing evolution
“in hindsight”, after it happened. We could also call this form of evolution descriptive, since it aims
to describe how the evolution happened in the past. For instance, there are Lehman’s Laws of Software
Evolution [21, 22]:

• Continuing Change - a system must continually be adapted to its changing environment or it will
become progressively less satisfactory

• Increasing Complexity - as a system evolves its complexity increases unless active work is under-
taken to reduce it

• Self-regulation - the evolution process is self-regulating with close to normal distribution of mea-
sures of product and process attributes

• Organizational stability (invariant work rate) - the average effective global activity is invariant over
the systems life time

• Conservation of Familiarity - the content of successive releases is statistically invariant

• Continuing Growth - the functional content of the system must continually be increased to maintain
stakeholder satisfaction

• Declining Quality - the quality of the system will be (perceived as) declining unless rigorously
maintained and adapted to a changing environment

• Feedback System - evolution processes are multi-level, multi-loop, multi-agent feedback systems
and must be treated as such to be successfully improved

These “laws” have been observed and analyzed on numerous cases. Even though in the discussion of
Lehman’s laws, the term of “systems” is used, the SoS concept is really considered.

In contrast to the analysis of evolution “in the past”, other works are focusing on planned and
managed evolution. One could call this form of evolution prescriptive, since it aims to create and form a
certain reality through evolution. Some authors propose apply modeling and model-driven techniques for
this (e.g., [15]). In our earlier work we combine concepts from Product Line Engineering and Software
Evolution to support the feature-oriented evolution of product lines [28, 34].

Again, the literature on Software Evolution rarely touches the SoS aspect. In the other direction, in
Systems of Systems Engineering, however, the aspect of evolution is discussed as one of the challenges.
We will look at this in more detail in Section 4.

3 Variability in Systems of Systems

In this section we will look at the interplay between Systems of Systems and Variability. Correspond-
ingly, we will discuss relationships between concepts in Systems of Systems Engineering and Product
Line Engineering.

3.1 Structures and their modeling

First of all, when dealing with Systems of Systems Engineering, we can consider each system to be
potentially a product of a product line. For illustration purposes see the updated airport scenario in

Goetz Botterweck 13

C
o

m
m

u
n

ic
at

io
n

In

fr
as

tr
u

ct
u

re
In

fo
rm

at
io

n

Sy
st

em
s

M
o

b
ile

 D
ev

ic
es

V
eh

ic
le

s
Tr

an
sp

o
rt

at
io

n

In
fr

as
tr

u
ct

u
re

B
ag

ga
ge

H

an
d

lin
g

Sy
st

em

A
ir

 T
ra

ff
ic

C

o
n

tr
o

l S
ys

te
m

P
la

n
es

I1.1 I1.2

Cn.2

C1.1

Cn.1

C1.2

I1.3

In.2In.1

Vn.1

V1.2V1.1

Vn.2

PLV1

Product Line of
Vehicles V1

PLVn

Product Line of
Vehicles Vn

Application EngineeringDomain Engineering

PLI1

Product Line of
Inf. Sys. I1

PLIn

Product Line of
Inf. Sys. In

PLC1

PL of Comm.
Appliances C1

PLCn

PL of Comm.
Appliances Cn

Figure 3: Again the airport as a Systems of Systems; here with concepts from Product Line Engineering
and

14 Variability and Evolution in Systems of Systems

Figure 3. It has been extended to show the distinction between product lines (Domain Engineering, left-
hand side) and products (Application Engineering, right-hand side). This model is a combination of the
airport scenario (Figure 1) and the PLE framework (Figure 2). Please note that we abstract from details
by representing product lines as whole entities, not distinguishing various artifacts within the product
line. Also here the distinction between Domain Engineering and Application Engineering is left-vs.-
right, whereas in Figure 2 it was top-vs.-bottom. For simplification the diagram shows only product lines
for three subsystems. We have for instance , V 1.1 and V 1.2 as products of the PLV 1 product line of
vehicles and V n.1 and V n.2 as products of the PLV n product line.

The motivation to consider systems (in a SoS context) to be products of a product line can come from
multiple drivers. First, in many cases a supplier of systems (e.g., a manufacturer of network routers) will
have families of similar systems and product line techniques promise considerable benefits in handling
such families of products in a systematic fashion. So product lines can be seen as a technique to produce
components in a SoS approach. Second, from the perspective of user of systems (e.g., the manager of
the communication infrastructure of the airport) it can be beneficial to handle groups of systems together
rather than addressing each system individually. For instance, the manager could use feature modeling
to describe the variations of network appliances that are currently in operation in the airport.

As a first implication of the SoS context, we can observe that analogously to the co-existence and col-
laboration of multiple systems, we can expect a co-existence of multiple product lines. Also, structures
between systems have to be reflected between product lines. For instance, in order to allow a com-
munication link between the vehicle V n.2 and the communication component CI1.1 the corresponding
product lines PLV n and PLCI1 must be prepared to provide such products, e.g., by having corresponding
implementations in their asset base.

Another aspect is that the recursive hierarchical composition of Systems of Systems can be applied
to products as well. For instance, if we consider a plane as a product (which can be derived from a product
line of planes) then the particular subsystems (e.g., cockpit displays and controls, navigation subsystem,
power subsystem) can be considered products as well. We then have to consider various relationships,
e.g., the plane consisting of cockpit subsystems etc., the cockpit subsystem communicating with the
navigation subsystem, and so on. These relationships have to be reflected between product lines.

In the literature there are few approaches in this direction. For instance, Thompson and Heim-
dahl [38] discuss hierarchical product lines. A related aspect is the modularization of feature models,
e.g., the multilevel feature trees suggested by Reiser and Weber [30].

3.2 Changes and challenges

We will now consider what consequences are induced by the Systems of Systems context for Product
Line Engineering.

Product Line Engineering has certain assumptions. For instance, many PLE approaches assume that
the domain and scope of the product line is relatively stable, such that the investment in the product line
can pay off. Also, it is often implicitly assumed that there is one organization that controls how products
are built, etc. We need to consider how these assumptions change when we move to a SoS context and
what challenges arise from that.

3.2.1 Configuration.

In product configuration we can observe the following effects of a System of System context:

Goetz Botterweck 15

A

B Cinteracts with

D F

contains

G HE

fA1

fA2

cA1

cA2

mapped to

fA1 cA1

fB1

fB2

cB1

cB2

fD1

fD2

cD1

cD2

fD1 cD1

Implementation
Models

Feature
Models

P
ro

d
u

ct
Li

n
e

P
ro

d
u

ct
P

ro
d

u
ct

Li
n

e
P

ro
d

u
ct

P
ro

d
u

ct
Li

n
e

P
ro

d
u

ct

cB3

fB2 cB2 cB3

contains

contains

Su
p

er
sy

st
em

s
Su

b
sy

st
em

s

Systems of SystemsProduct Lines

Figure 4: Modeling of product lines for systems of systems

First, the hierarchical recursive structure of the SoS needs to be reflected in the configuration
process. For instance, when configuring a plane, we can consider that this will be part of an airport
(actually multiple airports when traveling), and that it contains various subsystems. If we configure that
the plane will have a certain size and wing design, then this influences how many engine we require and
under which constraints (e.g., delivered thrust, fuel consumption) they must operate. Potentially, we have
to propagate constraints. Depending on the scenario and the power to “dictate” conditions, this occur in
various directions:

• System to subsystem - For instance, when the airport configuration determines the maximal size of
planes that can operate on that airport.

• System to supersystem - For instance, when the large Airbus A380 “demands” that the airport gets
extended (in its various subsystems) in order to attract the potential business.

16 Variability and Evolution in Systems of Systems

Figure 5: Configuring two related feature models side-by-side, taken from [27]

• System to a neighboring system on a similar level - For instance, when the Airbus A380 requires
that new gates with enough passenger walkways are constructed. This can be considered as an
effect of the preceding case.

Second, the disappearance of a central control and increased importance of multiple stakeholders with
potential conflicting views needs to be reflected when configuring and deriving a product.

In the literature we find a some approaches that can be considered to help here. Czarnecki et al. [12]
present their approach for Staged Configuration. This could be applied to make first major decisions (on
supersystem level) and then later refine them (for subsystems). However, the approach does not provide
concepts for structuring large models, e.g., by modularization.

Dhungana et al. [17] present an approach that deals large variability models that are created by
multiple stakeholders, with fragmentation, the need to merge fragments, and to remove inconsistencies
(e.g., variables that have been named differently by different stakeholders).

In earlier work [27], we have presented an approach for interactive configuration of feature models,
including interaction techniques that allow to configure two related feature models side-by-side. See the
example in Figure 5 with a feature model for a car on the left and the corresponding hardware components
on the right. In a SoS context such a configuration tool could be used to configure two or more related
systems side-by-side.

The interactive tool and its reasoning engine calculate and propagate consequences of configuration
decisions. For instance, selecting the feature KeylessEntry (see bottom left) would cause the features
PowerLocks and InfraredReceiver (in the other feature model part) to be selected as well. For the SoS
discussion it should be noted that such approaches for modeling of constraints, reasoning and propa-
gation of consequences often assume that the user who is performing the configuration (1) has precise
knowledge about all involved systems and (2) the power to actually realize the chosen options. For
instance, what does it help to choose a KeylessEntry function when we cannot ensure that the hardware
will actually have an InfraredReceiver?

Goetz Botterweck 17

Dhungana et al. [18] present invar, an approach for the joint configuration of heterogeneous variabil-
ity models, e.g., to configure a feature model, a decision model, and an OVM model side-by-side. Such
techniques could be extended to support scenarios, where the “owners” of related systems use different
variability modeling approaches.

For product configuration we remaining challenges:

• Representation and handling of very large models (both in terms of scale and complexity), includ-
ing the reflection of the hierarchical, recursive compositional structure of SoS

• Dealing with incomplete information (because we might not get all information about the internals
of a neighboring system to which we interface)

• Dealing with inconsistent information (because multiple stakeholders will have conflicting views
and decisions)

3.2.2 Analysis.

There exist several approaches for the analysis of product lines (e.g., [1, 2]). Typical examples for
available analyses is the enumeration of products, the detection of inconsistencies, or the detection of
hidden dependencies (i.e., dependencies that exist but are not yet modeled explicitly).

When transitioning to an SoS context, analysis techniques face similar challenges as already dis-
cussed for configuration approaches, e.g., they have to deal with very large models, the SoS structure,
and deal with incomplete as well as inconsistent information.

3.2.3 Product Properties.

Traditionally, product line approaches were often limited to Boolean concepts and decisions (e.g., a
feature is selected or eliminated, f1 requires f2). Recently, there has been increased interest in product
attributes and Non-functional Properties (NFP). This includes the prediction of properties based on a
given feature configuration [35] , the configuration (“Give me a plane with top speed over 500 kph”) and
optimization [37, 39] (“Out of all planes that have my required features, give me the one with lowest
price”). Often we have to deal with soft constraints and preferences which are often expressed as a utility
function (“I want both low price and high top speed, but low prices is twice as important”.)

It should be noted that here the PLE community often adapts and applies techniques that have been
published earlier in other fields, e.g., in Artificial Intelligence or Constraints (e.g.,[31]).

Of particular interest in a SoS context is the article by Siegmund et al. [36], which deals with NFP in
complex systems, e.g., a camera-based surveillance system, where the properties of various parts of the
system influence each other (e.g., resolution of the camera vs. bandwidth of the network).

3.2.4 Software Architecture.

System of Systems engineering often deals with architectural frameworks (e.g., [7]) which are required
to give structure and handle complexity, e.g., by defining how systems can be related to each other.

Product Line Engineering deals with Product Line Architectures (e.g., [4, 24]), where a greater em-
phasis is on variability and variability implementation. When transitioning to an SoS context, we have to
reflect the structure of systems in the software architecture. For instance, corresponding to the hierarchi-
cal, recursive compositional structures we can have a nested hierarchy of product line architectures. The
PLA of the supersystem is then refined by multiple PLAs of its subsystems.

18 Variability and Evolution in Systems of Systems

Feature
model n+1

Implemen-
tation

model n+1

Evolution
plan

Step n-1

Implemen-
tation

model n-1

Abstract
model n-1

Evolution

Evolution history Evolution planning

Evolution

D
egree o

f A
b

stractio
n

Lo
w

H
igh

Implemen-
tation

model n

Today

Abstract
model n

Evolutions-
plan

Step n+2

Abstract
model n+2

Implemen-
tation

model n+2

Evolution

Evolution
plan

Step n

Evolution
plan

Step n+1

Abstract
model n+1

Temporary
inconsistency

Deriva-
tion

Temporary
inconsistency

Deriva-
tion

Implemen-
tation

model n+1

Implemen-
tation

model n+1

Figure 6: Planned evolution

3.2.5 Organizational structures and processes.

There are varying organizational structures and process structures for PLE approaches, e.g., we have
consider which organizational units are responsible for Domain and Application Engineering [5]. When
transitioning to an SoS context, these organizational structures have to be re-considered accordingly. For
instance, we can have one Domain Engineering team that is responsible for multiple subsystems or the
responsibility for Domain Engineering can be distributed among different teams.

4 Evolution in Systems of Systems

In this section we will look at the interplay between Systems of Systems and Evolution. Correspond-
ingly, we will discuss relationships between concepts in Systems of Systems Engineering and Software
Evolution.

The lack of strategies and techniques for a sustainable evolution of very large and complex systems
is one of the main motivators towards SoS research.

4.1 Historic evolution vs. future evolution

As discussed earlier we can consider software evolution from two perspectives, the analysis of evolution
“in the past” and the planning and management of evolution “in the future”. In a SoS context, both
aspects are relevant just as well: On the one hand, we are interested how and where evolution occurs
in a SoS, e.g., to better understand how everything is connected, how changes were propagated, or to
determine if certain “laws” hold. On the other hand, we can aim to plan and manage the evolution
happening in a SoS, e.g., with techniques to plan evolution over multiple interconnected systems and
techniques to monitor and influence changes while they happen.

Goetz Botterweck 19

For illustration purposes consider Figure 6 horizontally showing evolution over time from left to
right, vertically showing various abstraction levels including plans for evolution on the topmost layer. To
the left we can look at historic evolution that happened in the past. To the right we can see planned, future
evolution, where the red annotation indicates an induced change that temporarily causes inconsistencies
and is propagated through the abstraction layers when these inconsistencies get removed again.

4.2 Consequences of SoS characteristics for software evolution

What consequences do Systems of Systems characteristics have for Software Evolution?

First of all, any approach to software evolution in a SoS context has to reflect the hierarchical, re-
cursive structure of SoS and must be able to handle their, scale and complexity. For instance, when
planning and realizing a change in a system, this change has potentially to be propagated into all subsys-
tems.

Systems of Systems have by their very nature a long life span and to understand, create, and manage
them we have to take a long-term perspective. Organizations dealing with or operating within Systems
of Systems often have to take this long-term perspective.

There is no obvious reason, why Lehman’s laws of evolution [21, 22] should not hold for Systems
of Systems. For instance, one can expect that changes in the environment induce necessary changes in
the SoS in order to keep it relevant. Obviously, whether these laws actually hold needs to be evaluated
before more concrete statements can be made. Moreover, it would be interesting to see how the various
variables and forces in Lehman’s laws (e.g., development activity, growth rate, defect rate) react in a SoS
context and how the descriptive models have to be extended.

Due to the managerial independence of elements and the disappearance of central control an ap-
proach that aims to control evolution for the whole SoS (e.g., by demanding changes all over the place)
is infeasible in practice, since there is rarely a single entity which has enough control to implement these
changes. Instead, evolutionary objectives of multiple stakeholders have to be considered and consoli-
dated. An approach needs to tolerate potentially incomplete and inconsistent information.

Even though there is an independence of elements, we have to consider dependencies among ele-
ments, when planning and implementing changes. Also, it is impossible to introduce changes without
causing inconsistencies at least temporarily. Hence, many changes can only happen incrementally and
changes are propagated through an introduction and subsequent resolution of inconsistencies.

On a related notion, System of Systems undergo evolutionary changes, which can be seen from
two sides: First, change is inevitable and omnipresent. If systems have to evolve to adapt to changes
in their environment and to stay relevant [21], the same can be argued for systems of systems. Second,
because of the size and complexity of Systems of Systems change can only happen in an evolutionary
fashion, not as a disruptive “flick of a switch” event. As an example in our airport scenario consider the
deployment of a faster Wi-Fi network, to be used by both personnel and passengers. This causes changes
in several subsystems, e.g., new authentication mechanisms, updates to the user database, mobile devices
supporting the new standard, changes to software applications that using the network, etc.

On a process level the dependencies among elements and the evolutionary nature of changes has
to be reflected in the corresponding life-cycles and processes. The overall “life-cycle” of the System
of Systems is composed out of interconnected, interwoven smaller evolution steps of the individual
subsystems and their elements.

20 Variability and Evolution in Systems of Systems

4.3 More of the same?

Here, one could say that in order to handle evolution of Systems of Systems, we can just apply well
known techniques for Software Evolution, just more of it. However, we would argue that above a certain
level additional approaches are required.

For instance, Chen and Clothier [9] point out that the high-level engineering complexity (as discussed
further by [32, 7]) raise great challenges in evolutionary development of SoS and indicates a need for
considering different SE strategies at a level above individual projects.

Some part of SoS evolution can be covered by evolution on a component level, considering the
component and its evolution in isolation. However, that is not sufficient. The real challenges lie in the
coordinated evolution of multiple systems. Compare our earlier example of deploying a new network at
an airport. Also see the discussion of “joint evolution” in [9, p. 173].

5 Conclusions

In this paper, we focused on the aspects of variability and evolution in a Systems of Systems context.
We did so from two perspectives: First, we argue that Systems of Systems Engineering has to deal with
variability and evolution and, hence, concepts from Product Line Engineering and Software Evolution
can be helpful. Second, these disciplines, PLE and Software Evolution, more and more have to deal
with very large systems where concepts from Systems of Systems Engineering can be helpful. We
are aware that this paper mostly raises questions and does not provide a lot of answers. However, we
strongly believe that an exchange between the fields of Systems of Systems Engineering, Product Line
Engineering, and Software Evolution would be interesting and beneficial for both communities.

References

[1] D. Benavides, S. Segura, P. Trinidad & A. Ruiz-Cortés (2007): FAMA: Tooling a Framework for
the Automated Analysis of Feature Models. In: Proceeding of the First International Workshop on
Variability Modelling of Software-intensive Systems (VAMOS), doi:10.1.1.77.8501.

[2] David Benavides, Sergio Segura & Antonio Ruiz-Cortés (2010): Automated analysis of feature
models 20 years later. Information Systems 35(6), pp. 615–636, doi:10.1016/j.is.2010.01.001.

[3] Danilo Beuche (2008): Modeling and Building Software Product Lines with Pure::Variants.
In: 12th International Software Product Line Conference (SPLC 2008), Limerick, Ireland,
doi:10.1109/SPLC.2008.53.

[4] Jan Bosch (2000): Design and Use of Software Architectures: Adopting and Evolving a Product-
Line Approach. Addison-Wesley, doi:10.1.1.107.7212.

[5] Jan Bosch (2002): Maturity and Evolution in Software Product Lines: Approaches, Artefacts, and
Organization. In Garry Chastek, editor: Proceedings of the Second Software Product Line Confer-
ence, LNCS 2379, Springer, San Diego, CA, pp. 257–271, doi:10.1.1.92.3163.

[6] Goetz Botterweck & Andreas Pleuss (2012): S2T2-Configurator: Interactive Support for Con-
figuration of Large Feature Models. In: 8th European Conference on Modelling Foundations
and Applications (ECMFA 2012) Tools Track, Kgs. Lyngby, Denmark. Available at http:
//hdl.handle.net/10344/2586.

http://dx.doi.org/10.1.1.77.8501
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1109/SPLC.2008.53
http://dx.doi.org/10.1.1.107.7212
http://dx.doi.org/10.1.1.92.3163
http://hdl.handle.net/10344/2586
http://hdl.handle.net/10344/2586

Goetz Botterweck 21

[7] P.G. Carlock & R.E. Fenton (2001): System of Systems (SoS) enterprise systems engi-
neering for information-intensive organizations. Systems Engineering 4(4), pp. 242–261,
doi:10.1002/sys.1021.

[8] Lianping Chen, Muhammad Ali Babar & Nour Ali (2009): Variability management in software
product lines: a systematic review. In: Proceedings of the 13th International Software Product Line
Conference, SPLC ’09, Carnegie Mellon University, Pittsburgh, PA, USA, pp. 81–90. Available at
http://dl.acm.org/citation.cfm?id=1753235.1753247.

[9] P. Chen & J. Clothier (2003): Advancing systems engineering for systems-of-systems challenges.
Systems engineering 6(3), pp. 170–183, doi:10.1002/sys.10042.

[10] Paul Clements & Linda M. Northrop (2002): Software Product Lines: Practices and Patterns.
The SEI series in software engineering, Addison-Wesley, Boston, MA, USA. Available at http:
//resources.sei.cmu.edu/library/asset-view.cfm?assetID=30731.

[11] S.C. Cook (2001): On the acquisition of systems of systems. In: Proceedings of the 2001 INCOSE
International Symposium, Melbourne AU. ISBN: 0-9720562-0-3.

[12] K. Czarnecki, S. Helson & U.W. Eisenecker (2004): Staged configuration using feature models. In
R. Nord, editor: 3rd International Software Product Line Conference (SPLC 2004), LNCS 3154,
Springer Berlin Heidelberg, Boston, MA, USA, pp. 266–283, doi:10.1007/978-3-540-28630-1_17.

[13] Krysztof Czarnecki & Ulrich W. Eisenecker (2000): Generative Programming. Addison Wesley,
Reading, MA, USA.

[14] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid & Andrzej Wąsowski (2012):
Cool features and tough decisions: a comparison of variability modeling approaches. In: Proceed-
ings of the Sixth International Workshop on Variability Modeling of Software-Intensive Systems,
VaMoS ’12, ACM, New York, NY, USA, pp. 173–182, doi:10.1145/2110147.2110167.

[15] A. van Deursen, E. Visser & J. Warmer (2007): Model-Driven Software Evolution: A Research
Agenda. In Dalila Tamzalit, editor: Proceedings 1st International Workshop on Model-Driven
Software Evolution (MoDSE), University of Nantes, pp. 41–49. Available at http://swerl.
tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2007-006.pdf.

[16] D. Dhungana, P. Grünbacher & R. Rabiser (2011): The DOPLER Meta-Tool for Decision-Oriented
Variability Modeling: A Multiple Case Study. Automated Software Engineering 18(1), pp. 77–114,
doi:10.1007/s10515-010-0076-6.

[17] Deepak Dhungana, Thomas Neumayer, Paul Grünbacher & Rick Rabiser (2008): Supporting Evo-
lution in Model-Based Product Line Engineering. In: 12th International Software Product Line
Conference (SPLC 2008), pp. 319–328, doi:10.1109/SPLC.2008.26.

[18] Deepak Dhungana, Dominik Seichter, Goetz Botterweck, Rick Rabiser, Paul Gruenbacher, David
Benavides & Jose A. Galindo (2011): Configuration of Multi Product Lines by Bridging Heteroge-
neous Variability Modeling Approaches. In: Proceedings of the 15th International Software Product
Line Conference (SPLC 2011), Munich, Germany, doi:10.1109/SPLC.2011.22.

[19] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak & A. Spencer Peterson (1990):
Feature Oriented Domain Analysis (FODA) Feasibility Study. SEI Technical Report CMU/SEI-
90-TR-21, ADA 235785, Software Engineering Institute. Available at http://www.sei.cmu.
edu/reports/90tr021.pdf.

http://dx.doi.org/10.1002/sys.1021
http://dl.acm.org/citation.cfm?id=1753235.1753247
http://dx.doi.org/10.1002/sys.10042
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=30731
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=30731
http://dx.doi.org/10.1007/978-3-540-28630-1_17
http://dx.doi.org/10.1145/2110147.2110167
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2007-006.pdf
http://swerl.tudelft.nl/twiki/pub/Main/TechnicalReports/TUD-SERG-2007-006.pdf
http://dx.doi.org/10.1007/s10515-010-0076-6
http://dx.doi.org/10.1109/SPLC.2008.26
http://dx.doi.org/10.1109/SPLC.2011.22
http://www.sei.cmu.edu/reports/90tr021.pdf
http://www.sei.cmu.edu/reports/90tr021.pdf

22 Variability and Evolution in Systems of Systems

[20] A.J. Krygiel (1999): Behind the Wizard’s Curtain. An Integration Environment for a System of Sys-
tems. Technical Report, DTIC Document. Available at http://www.dodccrp.org/files/
Krygiel_Wizards.pdf.

[21] M. M. Lehman (1996): Laws of Software Evolution Revisited. In Carlo Montangero,
editor: EWSPT, Lecture Notes in Computer Science 1149, Springer, pp. 108–124,
doi:10.1007/BFb0017737.

[22] M. M. Lehman & Juan F. Ramil (2001): Rules and Tools for Software Evolution Planning and
Management. Ann. Software Eng. 11(1), pp. 15–44, doi:10.1023/A:1012535017876.

[23] M.W. Maier (1998): Architecting principles for systems-of-systems. Systems Engineering 1(4), pp.
267–284, doi:10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D.

[24] Mari Matinlassi (2004): Comparison of Software Product Line Architecture Design Methods:
COPA, FAST, FORM, KobrA and QADA. In: ICSE, pp. 127–136. Available at http://csdl.
computer.org/comp/proceedings/icse/2004/2163/00/21630127abs.htm.

[25] Tom Mens & Serge Demeyer, editors (2008): Software Evolution. Springer, doi:10.1007/978-3-
540-76440-3.

[26] D. Parnas (1976): On the Design and Development of Program Families. IEEE Transactions on
Software Engineering SE-2(1), pp. 1–9, doi:10.1109/TSE.1976.233797.

[27] Andreas Pleuss & Goetz Botterweck (2012): Visualization of variability and configuration op-
tions. International Journal on Software Tools for Technology Transfer (STTT), pp. 1–14,
doi:10.1007/s10009-012-0252-z.

[28] Andreas Pleuss, Goetz Botterweck, Deepak Dhungana, Andreas Polzer & Stefan Kowalewski
(2012): Model-driven Support for Product Line Evolution on Feature Level. Journal of Sys-
tems and Software (JSS) - Special Issue on Automated Software Evolution 85(10), pp. 2261–2274,
doi:10.1016/j.jss.2011.08.008.

[29] Klaus Pohl, Günter Böckle & Frank van der Linden (2005): Software Product Line Engineering :
Foundations, Principles, and Techniques. Springer, New York, NY. Available at http://www.
springer.com/computer/swe/book/978-3-540-24372-4.

[30] M.-O. Reiser & M. Weber (2006): Managing Highly Complex Product Families with Multi-Level
Feature Trees. In: Requirements Engineering, 14th IEEE International Conference, pp. 149 –158,
doi:10.1109/RE.2006.39.

[31] Daniel Sabin & Rainer Weigel (1998): Product Configuration Frameworks - A Survey. IEEE Intel-
ligent Systems and Applications 13(4), pp. 42–49, doi:10.1109/5254.708432.

[32] A.P. Sage & C.D. Cuppan (2001): On the systems engineering and management of systems of sys-
tems and federations of systems. Information Knowledge Systems Management 2(4), pp. 325–345.
Available at http://iospress.metapress.com/content/wx6b5wft80k8p9a2/.

[33] K. Schmid & M. Schank (2000): PuLSE-BEAT - A Decision Support Tool for Scoping Product
Lines. In: Third International Workshop on Software Architectures for Product Families, pp. 64–
74, doi:10.1007/978-3-540-44542-5_8.

[34] Mathias Schubanz, Andreas Pleuss, Goetz Botterweck & Claus Lewerentz (2012): Modeling ratio-
nale over time to support product line evolution planning. In: Proceedings of the Sixth International
Workshop on Variability Modeling of Software-Intensive Systems, VaMoS ’12, ACM, New York,
NY, USA, pp. 193–199, doi:10.1145/2110147.2110169.

http://www.dodccrp.org/files/Krygiel_Wizards.pdf
http://www.dodccrp.org/files/Krygiel_Wizards.pdf
http://dx.doi.org/10.1007/BFb0017737
http://dx.doi.org/10.1023/A:1012535017876
http://dx.doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
http://csdl.computer.org/comp/proceedings/icse/2004/2163/00/21630127abs.htm
http://csdl.computer.org/comp/proceedings/icse/2004/2163/00/21630127abs.htm
http://dx.doi.org/10.1007/978-3-540-76440-3
http://dx.doi.org/10.1007/978-3-540-76440-3
http://dx.doi.org/10.1109/TSE.1976.233797
http://dx.doi.org/10.1007/s10009-012-0252-z
http://dx.doi.org/10.1016/j.jss.2011.08.008
http://www.springer.com/computer/swe/book/978-3-540-24372-4
http://www.springer.com/computer/swe/book/978-3-540-24372-4
http://dx.doi.org/10.1109/RE.2006.39
http://dx.doi.org/10.1109/5254.708432
http://iospress.metapress.com/content/wx6b5wft80k8p9a2/
http://dx.doi.org/10.1007/978-3-540-44542-5_8
http://dx.doi.org/10.1145/2110147.2110169

Goetz Botterweck 23

[35] Norbert Siegmund, Sergiy S. Kolesnikov, Christian Kästner, Sven Apel, Don Batory, Marko Rosen-
müller & Gunter Saake (2012): Predicting Performance via Automated Feature-Interaction Detec-
tion. In: Proceedings of International Conference on Software Engineering (ICSE), IEEE, pp. 167–
177, doi:10.1109/ICSE.2012.6227196. Available at http://wwwiti.cs.uni-magdeburg.
de/iti_db/publikationen/ps/auto/SKK+12.pdf.

[36] Norbert Siegmund, Maik Mory, Janet Feigenspan, Gunter Saake, Mykhaylo Nykolaychuk & Marco
Schumann (2012): Interoperability of Non-functional Requirements in Complex Systems. In:
ICSE2012: International Workshop on Software Engineering for Embedded Systems, IEEE, pp. 2–
8, doi:10.1109/SEES.2012.6225487. Available at http://wwwiti.cs.uni-magdeburg.
de/iti_db/publikationen/ps/auto/SMF+12.pdf.

[37] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner, Sven Apel &
Gunter Saake (2011): SPL Conqueror: Toward Optimization of Non-functional Properties in Soft-
ware Product Lines. Software Quality Journal to appear, doi:10.1007/s11219-011-9152-9.

[38] Jeffrey M. Thompson & Mats Per Erik Heimdahl (2003): Structuring product family re-
quirements for n-dimensional and hierarchical product lines. Requir. Eng. 8(1), pp. 42–54,
doi:10.1007/s00766-003-0166-0.

[39] Jules White, Brian Dougherty & Douglas C. Schmidt (2009): Selecting highly optimal architectural
feature sets with Filtered Cartesian Flattening. Journal of Systems and Software 82(8), pp. 1268–
1284, doi:10.1016/j.jss.2009.02.011.

http://dx.doi.org/10.1109/ICSE.2012.6227196
http://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/SKK+12.pdf
http://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/SKK+12.pdf
http://dx.doi.org/10.1109/SEES.2012.6225487
http://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/SMF+12.pdf
http://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/SMF+12.pdf
http://dx.doi.org/10.1007/s11219-011-9152-9
http://dx.doi.org/10.1007/s00766-003-0166-0
http://dx.doi.org/10.1016/j.jss.2009.02.011

	1 Introduction
	2 Background
	2.1 Systems of Systems Engineering
	2.2 Software Product Line Engineering
	2.3 Software Evolution

	3 Variability in Systems of Systems
	3.1 Structures and their modeling
	3.2 Changes and challenges
	3.2.1 Configuration.
	3.2.2 Analysis.
	3.2.3 Product Properties.
	3.2.4 Software Architecture.
	3.2.5 Organizational structures and processes.

	4 Evolution in Systems of Systems
	4.1 Historic evolution vs. future evolution
	4.2 Consequences of SoS characteristics for software evolution
	4.3 More of the same?

	5 Conclusions

