
Larsen, Legay, Nyman (Eds.): 1st Workshop on
Advances in Systems of Systems (AiSoS 2013)
EPTCS 133, 2013, pp. 35–39, doi:10.4204/EPTCS.133.4

c© Hermann Kopetz
This work is licensed under the
Creative Commons Attribution License.

System-of-Systems Complexity

Hermann Kopetz
Institut für Technische Informatik
Vienna University of Technology

Vienna, Austria

H.Kopetz@gmail.com

The global availability of communication services makes itpossible to interconnect independently
developed systems, called constituent systems, to providenew synergistic services and more efficient
economic processes. The characteristics of these new Systems-of-Systems are qualitatively different
from the classic monolithic systems. In the first part of thispresentation we elaborate on these
differences, particularly with respect to the autonomy of the constituent systems, to dependability,
continuous evolution, and emergence. In the second part we look at a SoS from the point of view
of cognitive complexity. Cognitive complexity is seen as a relation between a model of an SoS and
the observer. In order to understand the behavior of a large SoS we have to generate models of
adequate simplicity, i.e, of a cognitive complexity that can be handled by the limited capabilities of
the human mind. We will discuss the importance of properly specifying and placing the relied-upon
message interfaces between the constituent systems that form an open SoS and discuss simplification
strategies that help to reduce the cognitive complexity.

1 Characteristics of a System-of-Systems

In an increasing networked society many new super-systems are developed by the interconnection of
existing legacy systems. This new type of systems, calledSystem-of-Systems, is fundamentally different
from the classic monolithic system, as depicted in Table 1.

Characteristic Monolithic SoS
Scope of System Fixed (known) Not known

Structure Hierarchical Networked
Requirements and Spec. Fixed Changing

Control Central Autonomous
Evolution Version control Uncoordinated

Testing Test phases Continuous
Implementation technology Given and fixed Unknown

Faults (Physical, Design) Exceptional Normal
Emergence Insignificant Important

System development Process model ???

Table 1: Monolithic Systems versus System of Systems (adapted from [4])

Whereas a monolithic system is in thesphere of control, i.e., thegovernance, of a single organization,
the constituent systems (CSs) of an SoS belong to different organization with different organizational ob-
jectives. From the point of view of a SoS, its CSs are thus autonomous and cannot beforced tocontribute
to the overall goal of the SoS, they can only beinfluenced tocontribute by providing proper incentives

http://dx.doi.org/10.4204/EPTCS.133.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


36 System-of-Systems Complexity

and reward structures. Since the CSs belong to different organization adhering to different architectural
styles, the information that is exchanged across an interface will normally be based on different syntax
and semantics, thus leading toproperty mismatchesat the interfaces. These property mismatches, both
at the syntactic and semantic level, must be resolved in order that a meaningful communication among
the different CSs can be established.

Whereas the internal structure of a CS can be mapped into a hierarchy, the structure of an SoS is
more likely to be a mesh, implying that a hierarchical decomposition of an SoS is in general not possible.
In order to control the cognitive complexity of SoS models, an aspect-oriented approachis followed.
Only those aspects of the CSs that are relevant for the purpose of the integration into the SoS are visible
at the relied upon messages interfaces (RUMI) between CSs, thus reducing the amount of information
that needs to be dealt with at an interface in order to understand the behavior of the SoS. The deliberate
placement of the RUMIs and the precise specification of theirsyntax, semantics and temporal properties
are of utmost importance in the design of an SoS.

Every successful system that is embedded in the real world must continuously evolve in order to
remain relevant for its users. Anopen systemthat does not adapt to the ever-changing requirements of our
highly dynamic world will soon become obsolescent. From thepoint of evolution, monolithic systems
and SoSs are fundamentally different. Whereas the version control in a monolithic system ensures that
all changes are consistent before a new version of a monolithic system is released, the evolutions of the
different CSs forming an SoS generally cannot not be coordinated in this way. A CS is changed whenever
there is aneed to changerequired by the owning organization, hardly considering orcoordinating all the
possible consequences of the changes on the overall SoS behavior. This puts many of the well-established
system engineering principles and design methods up for discussion. A static authoritative specification
of an SoS does not exist. The same system that is correct todaymay not be correct tomorrow, since the
world has changed.

The interactions of the CSs of an SoS can lead to the appearance of unique properties at the SoS
level that cannot be attributed to any of the properties of the CSs. These new properties are called
emergent properties. Emergent properties are novel, irreducible, and holistic—they disappear when the
system is partitioned into its subsystem. Consider the example of deadlockin a distributed computer
systems. Emergent properties can beunforeseenor expected, they can bebeneficialor detrimental.
At its first appearance, emergent properties are often unforeseen. At the moment, the general issues
revolving around the concept of emergence are not well understood and it is a challenge to detect and
avoid detrimental emergence properties in a new SoS.

The objective of SoS design is the establishment of a framework that supports unforeseen changes—
this is major paradigm shift in our industry. Understandingthe proper handling of the evolution of an
SoS is thus a most relevant theme for practitioners and researchers.

2 Cognitive Complexity

According to the Merriam Webster Dictionary [1]complexmeanshard to separate, analyze or solve;
having many parts or aspects that are usually interrelated. We can classify complexity as follows:

• Complexity as a Property of a scenario

◦ Structural Complexitythat is concerned with the topology of the parts and the linksamong
the parts.

◦ Dynamic Complexitythat is concerned with the behavior of the parts and their dynamic in-
teractions, such as causality, feedback or delayed response.



Hermann Kopetz 37

• Complexity as a Relation

◦ Cognitive Complexity:Relation between a scenario and an observer.

◦ Socio Political Complexity:Relation between a scenario and society.

In this presentation we focus on Cognitive Complexity (the antonym of simplicity) of a SoS, which
is a relation between a scenario and an observer who tries to understand the scenario. We understand the
world around us by conceptual modeling, i.e., by the generation of a hierarchy of models of reality that
are agreeing with the cognitive capabilities of the human mind. Understanding means that the concepts
and dependencies used to represent a model are adequately linked with concepts already familiar to the
observer. The closer these links, the better the understanding. We consider the elapsed time needed
to understand a model by an observer of the intended group of observers as a feasible measure for the
cognitive complexity of a model. A conceptual model is an abstraction that is formed for the purpose
of understanding a chosen aspect of the scenario, such as: structure, behavior, timeliness, dependability,
etc.. If the purpose of a model is not crystal clear, it is not possible to construct a simple model of a
scenario because it cannot be decided what is relevant and what is irrelevant (and can be neglected) when
constructing an abstract model for the specified purpose. Take the example of celestial mechanics: If the
purpose of the model is the understanding of the movement of the heavenly bodies, we abstract from the
whole diversity of the world and reduce it to a mass point. In the context of a SoS, understanding the
behavior is of utmost importance. The complexity of a model of behavior of a SoS depends on the static
and dynamic properties of the constituent systems, the organization of the SoS (i.e., the static structure
and dynamic interaction of the CSs) and the experience of theobserver in dealing with such an SoS. In
order to ease the understanding it may be necessary to construct a hierarchy of behavioral models, where
at the lower level a model is a refinement of a higher-level model. Each model must take account of the
limits of human cognition at most five plus minus two chunks ofinformation can be represented in short
term memory [5] and humans are not capable to handle relations with more than four variables [2].

3 Relied-Upon Message Interfaces (RUMI)

As a rule the CSs of a SoS interact by the exchange of messages only. The internal architecture of an SoS
is determined by the placement and specification of the Relied Upon Message Interfaces (RUMIs) among
the CSs. A RUMI should be a stable interface that establishesthe boundaries between two interacting
CSs by specifying the messages that are exchanged between these CSs. RUMIs must be fully specified
w.r.t. their syntax, semantics and temporal behavior. Whereas the syntactic specification deals with the
structure of the interface and establishes the form of the syntactic units, the data items at the interface, the
semantics specification assigns meaning to these interfacedata items. The semantic specification consists
of an interface model that explains the data items by using concepts that are familiar to the user of the
interface. Since the two CSs that meet at a RUMI are normally designed by different organizations that
use different architectural styles, there will be two different semantic specifications of the same RUMI,
depending from which side the RUMI is viewed. The temporal specification of a RUMI must outline the
temporal properties of the message exchanges.

4 Simplification Strategies

The major challenge of information system design is the building of a software/hardware/people artifact
that provides the intended service under given constraintsand where relevant properties of this artifact



38 System-of-Systems Complexity

(e.g., the behavior) can be modeled at different levels of abstraction by models of adequate simplicity.
The following design principles, developed for the controlof the cognitive complexity of monolithic
systems, are also relevant for Systems-of-Systems [3, p. 46]:

• Principle of Abstraction:The behavior of a large system can be explained by a hierarchyof mod-
els, where each model considers the limited cognitive capability of the human mind, as explained
in Section 3.

• Principle Separation of Concern:This principle helps to build simple systems by disentangling
functions that are separable in order that they can be grouped in self-contained architectural units,

• Principle of Causality: The analytical-rational problem solving subsystem of humans excels in
reasoning along causal chains. The deterministic behaviorof basic mechanisms makes it possible
that a causal chain between a cause and the consequent effectcan be established without a doubt.
Probabilistic dependencies between cause and effect are more difficult to grasp.

• Principle of Segmentation:This principle suggests that hard-to-understand behaviorshould be
decomposed, wherever possible, into a serial behavioral structure such that a sequential step-by-
step analysis of the behavior becomes possible.

• Principle of Observability:Non-visible communication channels among architectural units pose a
severe impediment for the understanding of system behavior. This can be avoided by supporting
a multicast topology in the basic message passing primitive. It is then possible to observe the
external behavior of any component without a probe effect.

• Principle of a Consistent Global Time:This principle suggests that a sparse global time base
should be introduced in all CSs of an SoS such that system-wide consistent temporal relations
(e.g., simultaneity) and physical temporal distances among events can be established on the basis
of global time-stamps.

In addition, the following specific design principles should help to reduce the cognitive complexity
of System of Systems:

• Principle of Classification of Expected Changes:In the context of evolution of an SoS we distin-
guish between minor and major changes: minor changes are confined to the internals of a CS and
have no effect on a RUMI. Major changes have an effect on one ormore RUMIs. In a large SoS is
advantageous to categorize RUMIs (and consequently changes) w.r.t. their impact on the overall
SoS architecture on an even finer scale.

• Principle of Outside Flexible, Inside Stable Interfaces:The interfaces between a cyber-system
and its external environment are subject to the evolution ofthe external world. This evolution
is out of control of the cyber-system. Internal relied upon message interfaces (RUMI) can only
be controlled, if both sides of the interface are in the sphere of control of the system designer.
It is therefore good practice to provide a gateway componentbetween an internal RUMI and an
interface to the external world.

• Principle of Intrinsic vs. Extrinsic Complexity:Extrinsic complexity is concerned with the service
of a CS at a given relied upon message interface (RUMI). Intrinsic complexity is concerned with
the design of the internals a CS. From the SoS point of view, a low extrinsic complexity of the
RUMIs of the CSs should be strived for. In many cases, a low extrinsic complexity is achieved at
the price of a high intrinsic complexity.



Hermann Kopetz 39

• Principle of Specifying Goals, not Processes:It is much simpler to specify a goal statea problem
solution than to specify a process that leads from the current state to the goal state [6]. In many
SoSs, a top layerthe federation layerinterfaces with the problem owner and partitions the users
goal into sub-goals. Selected CSs are activated to find solutions to the sub-goals specified in the
respective RUMIs. A CS should be autonomous in finding a solution to a sub-goal that is specified
in its RUMI. This process can be recursive.

• Principle of Autonomic Fault Mitigation:Considerations about fault containment and the control
of error propagation have a decisive influence on the placement of the RUMIs. A CS should form
an encapsulated fault-containment unit (FCU). Error detection mechanisms must be provided in
the SoS to detect failures of a CS within a short error detection latency. A CS should be capable to
recover from a transient fault within a defined error recovery time. This requires the provision of
appropriate recovery points as part of the design.

• Principle of Isomorphic Decomposition: An SoS can modeled from different viewpoints, such as
behavior, fault containment, evolution, maintenance, etc. Each viewpoint can be explained by a
hierarchy of models. Ideally, the analysis of a SoS according to these different viewpoints should
result in the same decomposition, which is then called an isomorphic decomposition [7]. The
design of an isomorphic structure is an art that requires experience and foresight.

5 Conclusion

Systems of systems are substantially different from monolithic systems—many of the established design
methods need to be revisited. Since the substantial cognitive effort required to understand a system-of-
system from the different perspectives is the main cause forthe massive engineering effort in design and
operation, it is a worthwhile goal to structure a System of System such that the cognitive complexity for
understanding the designed artifact is reduced.

References

[1] Merriam Webster Dictionary (2013): Available athttp://www.merriam-webster.com.

[2] Graeme S Halford, Rosemary Baker, Julie E McCredden & John D Bain (2005):How many variables can
humans process?Psychological Science16(1), pp. 70–76, doi:10.1111/j.0956-7976.2005.00782.x.

[3] Hermann Kopetz (2011): Real-time systems: design principles for distributed embedded applica-
tions. Springer. Available athttp://www.springer.com/computer/communication+networks/book/
978-1-4419-8236-0.

[4] Mark W. Maier (1998):Architecting principles for systems-of-systems. Systems Engineering1(4), pp. 267–
284, doi:10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D.

[5] George A. Miller (1956):The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for
Processing Information, doi:10.1037/h0043158.

[6] Allen Newell & Herbert A. Simon (1972):Human Problem Solving. Longman Higher Education.

[7] William C. Wimsatt (1975): Complexity and Organization. In: Topics in the Philosophy of Biol-
ogy, Boston Studies in the Philosophy of Science27, Springer Netherlands, pp. 174–193, doi:10.1007/

978-94-010-1829-6_8.

http://www.merriam-webster.com
http://dx.doi.org/10.1111/j.0956-7976.2005.00782.x
http://www.springer.com/computer/communication+networks/book/978-1-4419-8236-0
http://www.springer.com/computer/communication+networks/book/978-1-4419-8236-0
http://dx.doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
http://dx.doi.org/10.1037/h0043158
http://dx.doi.org/10.1007/978-94-010-1829-6_8
http://dx.doi.org/10.1007/978-94-010-1829-6_8

	1 Characteristics of a System-of-Systems
	2 Cognitive Complexity
	3 Relied-Upon Message Interfaces (RUMI)
	4 Simplification Strategies
	5 Conclusion

