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Over the last decade we have witnessed an increasing use of data processing in embedded systems.
Where in the past the data processing was limited (if presentat all) to the handling of a small num-
ber of “on-off control signals”, more recently much more complex sensory data is being captured,
processed and used to improve system performance and dependability. The advent of systems-of-
systems aggravates the use of more and more data, for instance, by bringing together data from
several independent sources, allowing, in principle, for even better performing systems. However,
this ever stronger data-orientation brings along several challenges in system design, both technically
and organisationally, and also forces manufacturers to think beyond their traditional field of exper-
tise. In this short paper, I will address these new design challenges, through a number of examples.
The paper finishes with concrete challenges for supporting tools and techniques for system design in
this new context.

1 Introduction

Over the last decade we have witnessed an increasing use of data measurements and data processing in
embedded systems. Where in the past the data processing was limited, if present at all, to the handling
of a small number of “on-off control signals”, more recentlymuch more complex sensory data is being
captured, processed and used to improve system performanceand dependability. In a recent roadmap
discussion, it was stated that “a 10 km car drive these days, produces and uses more data than NASA
used to put Armstrong on the moon”. Of course, this has been made possible by the dramatic increase
of capacity and reduction of price of processing and memory elements (driven by Moore’s law), in
combination with a similar evolution in sensor equipment. Why do car manufacturers put so much ICT
in their cars? Well, to make them perform better, make them more reliable, safer, more efficient, more
comfortable, and less polluting. Without embedded ICT in cars, it would be (almost) impossible to fulfil
EU exhaust-regulations.

Modern cars are an example of complex high-tech systems in which the embedded ICT component
plays a key role. Other sectors, next to automotive, where this is similar are, for instance, healthcare,
energy, professional printing, manufacturing, distribution and logistics, situational awareness, avionics,
and defence. In all these sectors, OEM’s (original equipment manufacturers) are facing dramatic changes
in the way their products are being developed: where in the past “steel, oil and rubber” were the main
ingredients, more and more, ICT is determining the functionality, performance and competitiveness of
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their products. Although manufacturers do typically not openly publish these numbers, claims that 40-
50% of the development costs of a new car are related to ICT arenot uncommon. Almost invisibly,
over the years, many traditional high-tech companies have become ICT companies; the only difference
with classical ICT companies, like Microsoft, Oracle or SAP, is that the user interfacing is different.
The uprise of so-called systems-of-systems does make the role of ICT even more important. On top
of that, other challenges in systems-of-systems (see below), make the design of correctly functioning
systems-of-systems even more a challenge.

In what follows, I well briefly touch upon different system classes in Section 2, followed by a number
of examples in Section 3, illustrating the increasing role of data. In Section 4, I will then discuss a number
of challenges that follow from this regarding design of these systems. These, in turn, set challenges for
the tools and techniques that are needed to support these design processes.

2 System types

One could argue that the examples from the automotive domaingiven above areembedded systems,
rather thansystems-of-systems. An embedded system is typically seen as “a computer system (hardware
and software) designed to interact with the physical world;it is embedded as part of a complete system,
including sensors and actuators”. With the term embedded systems, most people think of “systems
you buy in a box”. The examples given above are primarily of that type. However, infrastructural
systems, like systems for surveillance or traffic control, even though they are much more geographically
spread, share a lot of the characteristics with embedded systems. With such systems, however, we are
entering the realm of systems-of-systems. Before coming tothese, however, is is important to briefly
address the notion ofcyber-physical systems, as coined in various NSF workshops [4, 14]. Where in
these workshops the aspects of control and communications were very much stressed as distinguishing
features (as opposed to embedded systems), I do think that this new term is largely a matter of taste. In the
EU Artemis program (seehttp://www.artemis-ia.eu/)1 the term normally employed is embedded
systems, however, the systems being addressed do heavily use communication and do employ (or require)
a large variety of control, hence, Artemis is addressing cyber-physical systems as well.

But what do systems-of-systems then really add? What does make them different? At this point,
it is instructive to go back to the original description put forward by Maier, already 15 years ago [10]:
a system-of-systems is an assemblage of components which may individually be regarded as systems
themselves, with two additional properties:

• operational independence: disassembled components must be able to do useful work indepen-
dently, and

• managerial independence: disassembled components do workindependently.

Importantly, component systems can have different ownership and can underlie different legislation.
The question you might ask then: is this more complex than ordinary embedded systems? The answer

is a clear yes, for various reasons. Indeed, a system-of-system is an assemblage of systems, integrated
out of independent componentsas they are, take it or leave it. That is, when integrating the subsystems,
in no reasonable way, adaptations to the component-systemscan be made. Furthermore, it might require
run-time adaptation of components, as the different components comprising the overall system might be
updated or changed (within reasonable bounds, of course), thus requiring adaptations form the surround-
ing subsystems. Here, in essence, an online integration andtest capability, normally only part of the

1All URL’s in this paper have been validated on July 17, 2013.

http://www.artemis-ia.eu/


42 Challenges for modelling and analysis in embedded systems and systems-of-systems design

off-line design process, is required. And knowing how difficult and time-consuming normal integration
and test already is, this clearly puts an extra challenge. Next to that, intuitively, the black-box character
of the components being assembled is very high. This makes putting them together in such a way that
guarantees can be given with respect to extra-functional properties like dependability or performance is
extremely difficult. Not to mention security issues. Ways ofworking involving service-level agreements
(SLA’s) like done in some networking or cloud computing solutions appear to be appropriate here. But
do note that many systems-of-systems, unlike most internetapplications, are employed for applications
with real-time characteristics, making this even more challenging.

3 Examples

3.1 The internet

Probably the best known system-of-systems is the internet,in which many independent internet service
providers (ISPs) are cooperatively providing a world-widenetwork coverage, on the basis of jointly
agreed interfaces and protocols. The internet as we know it today has been developed since the beginning
of the 1980’s, without any notion of systems-of-systems being around.Within the domain of one ISP,
that ISP has freedom to choose its own implementation to a certain extend, for instance for routing,
as long as it adheres to the externally agreed-upon service levels and interfaces. Note, however, that
the internet, at that level (network layer) is a best effort network, that is, a system that does not fulfil
real-time requirements. Lessons can be learned from the internet context, but surely, more is needed for
systems-of-systems. For more background on the internet, refer to [8].

3.2 Cooperative adaptive cruise control

We now consider a cooperative adaptive cruise control (CACC) system, as, for instance, worked upon in
the Dutch Connect & Drive project [12] (see alsohttp://www.youtube.com/watch?v=OoRuE7OqFEs).
In a car equipped with a CACC system, the car its cruise control is not only fed with the usual controls
from within the car (set-point and some car-internal sensorreadings), but also reacts and adapts on signals
from the outside world, e.g., by making use of radar or infrared communication to measure the distance
to preceding cars. What we did specifically in the mentioned project, however, was also exchanging
information using WLAN (specifically, IEEE 802.11p) between cars in near proximity. In doing so, cars
can easily exchange information (digitally) about their position (on the basis of GPS readings), speed and
acceleration. By forwarding information of cars “in front”to cars “behind”, in essence cars look further
ahead than is possible on the basis of just radar of infrared communication. Next to that, cars could also
communicate with road-side stations, or even subscribe to traffic services providing detailed information
about traffic situations ahead. In any case, the informationreceived should be trustworthy, and also not
be outdated, otherwise it becomes a safety risk to base speedadaptation on it. Next to that, not under
all circumstances will all this information channels be active (due to failures or other reasons beyond
control of any single car). Hence, robustness, that is, the ability to deal with unplanned or undesirable
future circumstances, is a key requirement.

Note that the cars are each privately owned and will be of different brands. GPS is provided publicly,
as are road-side electronic information systems. Traffic services are typically privately (commercially)
provided, using mobile telephony channels (3G or UMTS) by one or multiple providers. The overall
system provides, as new emerging service, a much better, smoother traffic flow. The CACC system as
a whole is made up of differently owned components, and different legislation might be involved. The
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question does arise, actually, who is at the steering wheel?In case of accidents due to the receipt of
incorrect information through one of the data channels, liability questions will arise!

3.3 Integrated fleet control and optimisation

Staying in the automotive area, one can also think of fully integrated fleet management systems, in at
least two ways, as follows.

First of all, in modern cars, embedded systems are present for engine and exhaust control. In hybrid
cars this can be combined with real-time route planner information systems, to plan electrical engine
usage such that full advantage is taken from the traffic conditions and the changing heights levels in the
route. To save as much energy as possible, the engine controlsystem strives to use as much electrical
energy when driving up hill, so that the battery is (almost) empty when arriving at the top, so that a
maximum amount of energy can be regained when going down using the electrical drive train as energy-
generating brake.

Secondly, when all cars in a fleet report digitally, e.g., via3G public telephony, their routing and all
kinds of other sensory information to a central location, e.g., the headquarters of a transport company,
real-time information is available about the whereabout and status of the complete fleet, thus making
adaptive trip planning possible. Furthermore, data miningtechniques on all the gathered information
can be used to improve predictive maintenance strategies, or to detect outliers, e.g., in energy usage in
particular cars, or about certain driver styles. This centrally gathered and processed information, can thus
be used to improve the overall fuel and maintenance efficiency of the fleet.

Note that all of the above really changes the character of thecars, the car manufacturer and the
transport company. Yes, it is still about steel, oil, rubberand cargo, but largely also about embedded
ICT, data mining and information processing. From the perspective of the car manufacturer, the focus
shifts from selling cars to services to sold cars. This is notnew to the high-tech industry: there are more
companies that focus more on the services they provide on topof their products, than on the actual sales
of the products; the mobile telephony sector, but also the printing and copying sector are examples. And
even a company like Rolls Royce does so for some of its aircraft engines; already in the 1960’s they
introduced their “power-by-the-hour” concept [16].

3.4 Situational awareness

A final example considers so-called situational awareness,as worked upon in the ESI project Poseidon
[9]. In this project, executed in cooperation with Thales, the aim was to develop an integrated coastal
guard system, in which multiple sources of information are combined to provide the national coast guard
with an integrated view on the coastal safety. This integrated view can be of use for (ship) collision
avoidance purposes, for search-and-rescue operations, for maritime pollution response and for long-
range detection and tracking of possibly unknown objects. The information to be integrated stems from
many sources, both public and private, such as real-time measurements (radio, radar, sonar, satellite),
public or private databases of vessel whereabouts (so-called AIS databases; see web-sites such aswww.

fleetmon.com or www.vesselfinder.com) or vessel history. The data available will not always be
the same: not all sources do provide information at all times, or about all vessels, the data formats are
not a priori known and might change over time, and the data itself might be of varying quality and trust-
worthiness. Also, there might be attempts to seriously tamper the system, in that some parties might
deliberately inject incorrect information into the databases or sent incorrect information via communi-
cation channels. Overall, the goals is to built a robust and adaptable system, without a priori known
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configuration, that can be used to provide means for outlier detection. Clearly, each of the individual
systems that is integrated does provide an independent functionality, but in total, in cooperation, a better
and more reliable functionality can be attained.

4 Implications for model-driven design

What should become clear from the above considerations and examples is that future systems-of-systems
will be very large, heterogeneous, will have partly unknownsubsystems (from the viewpoint of other sub-
systems), will possibly vary their structure and cooperations over time, will certainly contain complex
data dependencies, and the subsystems will have to be able tocommunicate with a changing set of part-
ners. Still, systems-of-systems will in many cases underlie stringent requirements regarding performance
and dependability.

We advocate a model-driven approach to support the design ofsystems-of-systems. However, to deal
with true systems-of-systems design, such a model-based approach has to be able to deal with largeness
(scalability), heterogeneity (in model class), under-specification (black-box behaviour), time-varying
models (in terms of model structure and model parameters), data dependencies and a large variability in
data inputs. On top of that, in such an approach, due to the dynamic behaviour of systems-of-systems,
notions of “online design and integration” (for new components coming in or being exchanged with
older ones, while operation continues) have to be adequately modelled. This is a very challenging set
of requirements, especially when seen in light of current-day modelling and analysis tools and tech-
niques, that typically do not scale well, that require model-homogeneity and time-invariance, no data
dependencies and static structures, to name a few.

We do not provide a new recipe, a new model type or class here, but instead list (non-exhaustively) a
number of important conditions that need to be fulfilled in order for a model-based design method to be
of true value in a systems-of-systems design context:

• We do not expect “a single model class” to be possible, nor to be useful. Much more, like systems-
of-systems themselves, we believe thatcooperating models, through well-defined interfaces, are
the best way to support design processes. A nice example at stake has been put forward in the Eu-
ropean Destecs project (seewww.detecs.org) in which discrete-event models are combined with
continuous (control) models. Approaches along these linesalso cater for model inhomogeneity,
thus allowing different design themes (disciplines) to employ their methods of choice.

• The importance of data dependencies in systems-of-systemsmake that fully analytical model solu-
tions are beyond expectation. Instead, approaches that allow for simulation(or some hybrid form
of simulation and other techniques) appear most fruitful. Moreover, the rationalist’s idea that one
can design a complex system through pure thought (proof) alone, as is widespread in computer
science, does not apply here2. Instead, an approach stronger based on empiricism appearsmuch
more appropriate.

• Uncertaintyin the models, for instance about other parameters, other model components, etc., can
be dealt with in several ways, such as probabilistically, stochastically, or using non-deterministic
models. Very good progress has been made with probabilisticand stochastic models in recent
years. Note that non-determinism is not compatible with simulation techniques. Uncertainty and
sensitivity analysis can be employed to investigate the impact of parameter uncertainties.

2Did it ever apply?
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• To deal with situations in which complete subsystems have unknown structure and behaviour,
approaches based onmodel-miningandtest-based modellingappear useful to come up with overall
behavioural models.

• Compositional modelling and analysisare very strong techniques, however, these need to be en-
hanced towards extra-functional system characteristics,like performance and dependability. The
“good-old” flow-equivalent server centre analysis [2] developed in the realm of computer perfor-
mance analysis in the 1970’s serves as a good example.

• For all modelling and analysis techniques to be developed, it has to be made sure that these can be
used through state-of-the-art design tools as they are being used inindustrial practice. It is naive
to think that (industrial) system design engineers will acquire and adapt to academically developed
tools and techniques, unless they are embedded in the (typically) company-prescribed design flow.

Finally, the field of systems-of-systems design appears to be an excellent opportunity for computer sci-
entists to team up with true system designers and system design approaches from, e.g., the aeronautics or
automotive field. We should not shy away from these as being imprecise or too much engineering style;
these methods have put men on the moon! Knowledge of classical studies on design from these fields,
like [1, 6, 11, 13, 15], might actually help to unleash the great potential of the powerful techniques and
tools that have been developed over the last decades.
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