
Larsen, Legay, Nyman (Eds.): 1st Workshop on
Advances in Systems of Systems (AiSoS 2013)
EPTCS 133, 2013, pp. 47–66, doi:10.4204/EPTCS.133.6

c© A. Arnold, B. Boyer, A. Legay
This work is licensed under the
Creative Commons Attribution License.

Contracts and Behavioral Patterns for SoS: The EU IP
DANSE approach

Alexandre ARNOLD
EADS Innovation Works

Toulouse, France
Alexandre.Arnold@eads.net

Benoı̂t BOYER, Axel LEGAY
INRIA - Rennes Bretagne Atlantique

Rennes, France
First.Last@inria.fr

This paper presents some of the results of the first year of DANSE, one of the first EU IP projects
dedicated to SoS. Concretely, we offer a tool chain that allows to specify SoS and SoS requirements
at high level, and analyse them using powerful toolsets coming from the formal verification area.
At the high level, we use UPDM, the system model provided by the british army as well as a new
type of contract based on behavioral patterns. At low level, we rely on a powerful simulation toolset
combined with recent advances from the area of statistical model checking. The approach has been
applied to a case study developed at EADS Innovation Works.

1 Introduction

While SysML [41], the Systems Modeling Language derived from UML [36], has been widely adopted
for Systems Engineering applications, the specificities of Systems of Systems (SoS) fostered the creation
of further customizations. The Unified Profile for DoDAF and MoDAF (UPDM) [37], based on the
US and UK military architectural framework, is one of them and is used on a regular basis in SoS
Engineering.

Specific extensions of SysML/UPDM are considered in DANSE [13], one of the first European project
aiming at developing a methodological and technical framework for SoS Engineering with associated
tool support. This framework shall support the SoS architect from the modeling activities to the analysis
phase (abstraction, simulation, formal verification), especially by providing concrete solutions to address
common SoS issues: constant evolution of a large-scale SoS and its stakeholders’ needs, unexpected
emergent behaviors, limited awareness of the global situation...

In the frame of DANSE, we extend the language of SysML/UPDM to add formalized requirements
for an SoS. Formalizing the SoS goals makes it possible to verify them automatically (with an adjustable
probability) using a statistical model checker such as Plasma-Lab [24, 28] in combination with a simula-
tion platform such as DESYRE. The challenge is to propose a high-level formal language that is directly
usable by an SoS architect, while being still automatically translatable to the expressive low-level specifi-
cation of the model checker, in a similar way to editors like IBM Rhapsody that could make an executable
specification (FMI) out of a high-level formalism (SysML/UPDM behavioral diagram).

For our purpose, the low-level specification is the Bounded Linear Temporal Logic (B-LTL), an
extension of the Linear Temporal Logic in which each temporal operator is bound by a temporal constant.
This logic is expressive enough to cover a large set of properties and to write static as well as behavioral
SoS goals. But this logic is defined using the standard temporal operators, which are quite low-level:
defining complex properties often requires to interlock several layers of nested operators. Writing or
understanding such formulas is difficult, thus error-prone, and does not fit at all with our target of a clear
and simple specification language.

http://dx.doi.org/10.4204/EPTCS.133.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

48 Contracts and Behavioral Patterns for SoS

So we propose in this paper the very first contract language for SysML/UPDM, defined using a
strong B-LTL based semantics, but close to hand written English requirements for SoS on the surface.
This language of goal formalisation, which is developed in the scope of the DANSE project, is called the
Goal and Contract Specification Language (GCSL).

GCSL makes use of the Object Constraint Language (OCL), a formal language by the Object Man-
agement Group (OMG) [34] used to describe static properties on UML models, thus also on SysML/UPDM
ones. OCL can be used for a number of different purposes, but especially as a model-based query lan-
guage and for writing expressions, which perfectly suits our needs here. GCSL also reuses the Contract
Specification Language (CSL) [43], developed in the previous SPEEDS European project [44], which
comes with convenient temporal patterns. The three key elements required for the formalization of
behavioral goals and the way we address them in our approach are (1) being able to refer to model el-
ements: use of the same names as in the SysML/UPDM model, (2) being able to write static properties
about them: use of OCL and (3) being able to integrate these expressions inside behavioral patterns: use
of CSL patterns.

After a short description of the SoS modeling in Section 2, this paper presents in Section 3 the GCSL
based on the semantics of UPML modeling, thus we show how to translate the properties into B-LTL
formulas (Section 4) into order to check them using the statistical model checking framework for SoS
(Section 5). Finally, Section 6 illustrates the approach applied to the case study of DANSE.

2 System of Systems Modeling

Overview of SysML/UPDM

SysML [41] is a general-purpose modeling language defined as an extension of a subset of the Unified
Modeling Language (UML) [36] using UML’s profile mechanism. SysML is used for Systems Engi-
neering applications, whereas UML is more targeted towards object-oriented Software Engineering. A
large set of diagrams is provided with SysML to model a system’s requirements, structure (e.g. block
definition diagram, internal block diagram), behavior (e.g. state machine, activity diagram), etc.

Using the same UML’s profile mechanism, another language built on top of UML/SysML has de facto
become a standard for SoS architects: UPDM. This profile is the result of the unification effort of the US
Department of Defense and the UK Ministry of Defense architecture frameworks and associated meta-
models. It adds a layer of new meta-objects that are typically (but not exclusively) used in the context of
military SoS, as well as a significant amount of predefined views (e.g. system views, operational views,
capability views) which help splitting the whole modeling activity in smaller tasks.

The executable part of a UPDM modeling can be compiled into a program based on the Func-
tional MockUp Interface (FMI) [40] that defines a standardized interface used in simulations of com-
plex systems. In DANSE, the SoS is compiled into FMI program and executed by the simulation engine
DESYRE [2]. This whole FMI program can be considered as a state transition system, e.g. the formal
semantics on which we will use to propose our language. The states denote the global states of the SoS,
e.g. the result of collecting the internal states of each constituent in the SoS. The transitions denote
the actions and events that occur in the SoS and eventually modify the internal state of some system
constituents and thus, the global state of the system.
Definition 1 (State Transition Systems). Let X be a set of variables that are mapped to the values of
D, the set of all possible values. We define S a set of states. Each state s is characterized by a mapping
µs : X→D such that the valuation of any variable y∈ X in the state s is µs(y). We thus define a transition
system as a 4-tuple < S,s0,R,{µs | s ∈ S}> such that

A. Arnold, B. Boyer, A. Legay 49

• s0 ∈ S contains the initial states of the system

• R⊆ S×S is the transition relation. We use the more convenient notation s→ s′ to denote (s,s′)∈R.

All valid execution (or run) of a transition system is a sequence of states led by the R from any initial
state. A run of length n will denoted as π = s0;s1;s2; . . . ;sn where s0 ∈ I and si→ si+1 holds for 0≤ i < n.
Each transition system has a global clock, which is denoted by the variable t. We note ti = µsi(t), the
observed time value of t when the executed system reaches the state si. For any execution path the system
is in state si when ti ≤ t < ti+1 and the evolution of the time is monotonically increasing, e.g. ti < ti+1.

In the first year of the DANSE project we limit ourselves to systems of systems who environment’s
behaviors are fully known in advance (hence representable via state transition systems), like it is the case
for most of adaptive systems studied in the litterature [48, 20, 8, 19]. The reason is that this corresponds
to the current possibilities of the UPDM. In future work, we will study more complex aspects such as
unknown environment, hence more complex dynamicity features. For this, we will first have to consider
extension of the UPDM model.

Stochastic aspects of the model

Stochastic modeling is a way to describe behaviors that are not deterministic by nature, or to abstract
a behavior that is simply too complex to be modeled explicitly (as white box). So it is typically very
useful in a SoS context. Behavioural modeling in SoS examples such as an Emergency Response to a
city fire typically shows numerous attributes/parameters that would not be deterministic, such as the time
between two fires or the duration of an action performed by a human.

A first proposal of how to put stochastic data in the SysML/UPDM model has been integrated into
the DANSE project. It is based on a set of attribute stereotypes that can be applied to any block attribute.
This idea is close to the suggestion of the non-normative distribution extensions made in appendix of
the SysML 1.3 specification, but adds the possibility to regenerate a distribution-based random value
whenever needed (and not only at initialization). This addition is important because even the same
person does never perform the same task in the exact same amount of time, so that the duration of the
task shall be recalculated every time.

Adding stochastic data to the SoS model implies of course that each simulation is likely to generate
a different trace than the previous ones, and as a consequence that one run will not be enough to verify
whether the SoS meets its requirements or not. This is why being able to automate this verification
process in a mathematical way (provided the requirements are formalised) is a great support for the SoS
architect when assessing a candidate architecture.

Since the SoS we consider exhibit some stochastic behaviors, each run has an associated probability
of being executed. This probability is given by an unkonwn distribution due to the high complexity of
the model: a system is designed by the paralell composition of components that may have a stochastic
behavior.

3 A Contract Language for UPDM/SysML Requirements

Before defining the new contract language, we introduce the notion of contract for the SoS formalized as
a stochastic state transition systems.

Definition 2 (Contracts for State Transition Systems). A contract is defined as a pair (A,P) where A and
P are respectively called the Assumption and the Promise. Considering a state transition system, A and P

50 Contracts and Behavioral Patterns for SoS

are properties about the execution of the system. Thus, a contract for the system specifies what the system
shall ensure the promise when the system shall satisfy the assumption. The notation Sys |= (A,P) means
that the contract (A,P) is satisfied by the system Sys. Relying on the state transition system semantics,
the satisfaction of a contract is

Sys |= (A,P) iff ∀π, π |= A⇒ π |= P

where π is a valid run of Sys and π |= A (or P) means the run π satisfies the assumption A (the promise
P resp.).

For stochastic systems, it is generally more meaningful to quantify how a system satisfies a contract:
this valuation is given by the probability that the system satisfies the contract. Intuitively, if the distribu-
tion to execute each run of a given stochastic system is known, the probability that this system satisfies
the contract is the sum of the probabilities of all the runs that satisfy the contract (see Section 5).

Definition 3 (Contracts for Stochactic State Transition Systems). Let be a stochastic system Sys, a con-
tract (A,G) and a threshold value k ∈ [0..1]. For the system Sys, we now consider the contract P∼k(A,G),
where ∼∈ {<,≤,=,≥,>} and 0≤ k ≤ 1. The contract is satisfied if and only if the relation holds, e.g.
if the probability p of Sys |= (A,G) satisfies the relation p∼ k.

In this work, for efficiency reasons, we decided to estimate the probability p using statistical model
checking rather than computing it with a numerical approach such as Prism [39]. Another reason to use
SMC is that it relies on monitoring traces, hence it allows to verify properties that cannot be expressed
in classical logics. In this paper, this aspect will not be explored, but it is a main topic of DANSE. SMC
consists in verifying the property (here contract) against several simulations of the system. Then, an
algorithm from the statistic area is used to estimate the probability to satisfy the property. The contract
to monitor is translated into a B-LTL formula (see Section 4) that characterizes a set of simulation traces.
Thus, the simulation monitoring consists of observing each simulation to decide if the B-LTL formulas
holds or not.

We now introduce the language to express the assumptions and promises dedicated to the System
of Systems. The GCSL syntax for patterns is a combination of the Object Constraint Language (OCL)
and the contract patterns of the CSL à la ”SPEEDS” [44]. The SPEEDS contract specification patterns
are introduced in the SPEEDS Deliverable D.2.5.4 ”Contract Specification Language (CSL)” [43] and
used to give a high-level specification of real-time components. They have been introduced to enable the
user to reason about event triggering that are equivalently replaced in DANSE by property satisfaction.
The properties handled by these patterns are about the state of a SoS. We use OCL to specify these
state properties. This language allows to build some behavioral properties to express some temporal
relations about facts or events of the system denoted by the state properties. It is sufficiently powerful to
describe precisely a state of a SoS. Here, we will only consider a subset of the OCL language, but it is
not unrealistic to consider a larger subset of OCL to describe the requirements. We restrict the language
here to express some properties that can be verified using the SMC techniques applied to SoS’s.

We briefly recall the notion of Collection that we will use in the rest of the paper.

Collections in OCL: in OCL, it is the usual way to define some properties about set of elements in
a system. Considering a SoS as a state transition system, the root identifier SoS denotes σ the state
currently reached by the SoS. The collections allow to handle some set of instances of components in the
current state σ . A collection built over the state σ can be viewed as a projection of σ : it is defined by
selecting some component instances or attribute values in the state σ .

A. Arnold, B. Boyer, A. Legay 51

For example, the expression SoS.itsFireStations denotes collection of all the instances of type
FireStation at state σ . OCL defines some operators that can be applied to any collection: SoS.
itsFireStations→ size() counts the number of instances of type FireStation. The most impor-
tant feature of the collection is the predicates we can define using quantification:

• SoS.coll→ forAll(x|φ(x)) denotes that for all element x, which belongs to the collection
SoS.coll, the property φ(x) holds.

• SoS.coll→ exists(x|φ(x)) denotes for that there exists one element x, which belongs to the
collection SoS.coll, the property φ(x) holds.

State properties in OCL

Originaly introduced to supplement UML, the Object Constraint Language (OCL) [35] is particularly
adapted to describe the internal state of a component. The Object Constraint Language is a rather simple-
to-write, yet formal text language that provides constraint and object query expressions based on any
meta-model, so for instance the SysML/UPDM ones. It has a concise notation for accessing, collecting,
filtering and evaluating model elements. More generally, it allows to write invariants on a model, that
we use in our approach to write the static properties that we insert in the behavioral contracts. As we
will see in the following paragraphs, we also pushed the concept further by sometimes embedding a CSL
pattern inside an OCL-like expression, when we want to state that the pattern shall hold for some or all
elements in a set. We recall some OCL notations used in the rest of the paper, but the reader can find
the whole specification in [35]. Components store internal values into attributes that are denoted by the
standard dot-syntax. For example, the number of people in the district 1 at σ , the state reached by the
SoS, is district1.population. More particular to OCL, it is also possible to define a collection of
attributes using the same syntax: the expression SoS.itsDistricts.population→ sum() denotes the
number of total people. For the sake of clarity in the rest of the paper, we only focus on the Collection
type without considering all its refinements (Set, Ordered Sets, . . .), and the subset of Boolean and
arithmetic expressions over the attributes of the SoS’ component instances.

The behavioral patterns

The semantics of the patterns is based on the satisfiability of any predicate on the whole set of execution
paths that defines the pattern, which the definition of the following patterns are based upon. Consider
the state property Ψ and a time value sequence t0, t1, . . . , tn that defines the state sequence σ0,σ1, . . . ,σn

such that ti is the time value where the system reaches σi. In other words, the system is in state σi when
ti ≤ time < ti+1.

Figure 1: Satisfaction of Ψ during an execution path.

Figure 1 illustrates the satisfaction of a state property Ψ, e.g. the green state σ0, σ1 and σi are the only
states of the sequence that satisfy Ψ. It means that Ψ holds when time ∈ [t0, t2)∪ [ti, ti+1). We observe
that Ψ holds continuously for σ0, σ1, hence the number of occurrences where Ψ holds is 2 during the

52 Contracts and Behavioral Patterns for SoS

time interval [t0, tn). If we finally consider any the time ticks a, b and c, Ψ holds during [a,b] but does
not during [a,b] nor [b,c] and the occurrence number of Ψ is 1 in [a,b], [a,c] or [b,c].

We define some selected patterns, but the more exhaustive list can be found in Appendix B. These
patterns proved very useful for SoS applications. We assume that Ψ and Ψi are state properties and a,b,c
are time constants such that the time intervals defined in the patterns are valid.

whenever Ψ1 occurs Ψ2 does not occur during following [a,b]

This pattern specifies that Ψ2 is never satisfied during the relative interval [a,b] after Ψ1, i.e. ¬Ψ2
holds during [a,b]. By relative we means that when Ψ occurs at t, the relative interval corresponds
to [a+ t,b+ t].

Whenever Ψ1 occurs Ψ2 occurs within [a,b]

The constraint Ψ2 must be satisfied at least once during [a,b] after Ψ1.

Ψ during [a,b] implies Ψ1 during [a,c] then Ψ2 during [c,b]

Whenever Ψ holds during [a,b] there exists a split at c of [a,b] such that Ψ1 holds during [a,c] then
Ψ2 holds during [c,b].

The CSL patterns are originally designed to specify the behavior of any component instance by to-
tally abstracting its environment without quantification. It is not possible to specify a contract about the
interaction between two anonymous components. By anonymous, we mean that no particular instance
is explicitly referenced by the component identifier. Let us consider a SoS with a set of components
District and two District properties Psi1 and Ψ2 in OCL. The patterns allow to express the behav-
ioral property for some explicit component, e.g. Whenever [Ψ1(district1)] occurs [Ψ2(district1)]
occurs within [a,b], it is not possible to generalize the behavioral property to any District of the
system, e.g. a property like ”For all district, Whenever [Ψ1(district)] occurs [Ψ2(district)]
occurs within [a,b]”.

To overcome this important limitation, we extend the proposed grammar (see Appendix B) by over-
lapping the patterns with the OCL collection predicates, e.g. forAll(x|...) and exists(y|...).
Then, the generalized behavioral property presented below is now:

SoS.itsDistricts→ forAll(district |
Whenever [Ψ1(district)] occurs [Ψ2(district)] occurs within [a,b])

The root collection SoS.itsDistricts is defined on the initial state σ0 of the SoS. In SoS, the
initial state is describe by the Internal Block Diagram that is defining the initial state of each component.

A. Arnold, B. Boyer, A. Legay 53

Using these OCL predicates for quantify the patterns keep the language not so different in comparison
with the original OCL, except we restrict the nesting capability. The OCL syntax allows to nest the
quantification without any limit. If there is no theoretical reasons to have limit, we impose a limit of 2
nested quantifications in our language. From the verification point of view, a behavioral formula with
more nested quantifications is not practically check-able. Moreover, we never need more to express
the requirements of CEA incubator in DANSE. So we assume in the next, that the patterns have are of
the form SoS.coll1→ forAll(x|SoS.coll2→ forAll(y| . . .Pattern(x,y) . . .), where Pattern is any
behavioral pattern.

Another important limitation of this combination OCL + patterns is the inability of express property
about cumulative values during an execution path: to solve this problem we introduce the path operators
mean(), sum(), prod() to denote the value of a numerical expression: for example, mean(district1.
population) denotes the average value of the attribute district1.population) computed with the
values obtained of the different state of the path.

Examples of Requirements

Table 1 illustrates the kind of properties that we will express with our language. We use syntactic coloring
to distinguish the different parts of the language used in the property: the words in red are identifiers
from the model, the blue part is from OCL and bold black keywords are temporal operators. These
requirements show the capabilities of our language using different requirements of this use case. Whereas
the requirement 1 is purely structural, the requirements 2 and 3 are relative to the execution of the SoS:
the first one is written using strictly OCL, the second one shows the cumulative operators we introduced
and the third one is defined with a behavioral pattern. The presented requirements are contracts without
assumption or, more precisely, they are contracts with an assumption that is implicitly ”true”.

”Any district cannot have more than 1 fire station, except if all districts have at least 1”
SoS.itsDistricts→exists(district | district.containedFireStations→size() > 1) implies

SoS.itsDistricts→forAll(district | district.containedFireStations→size() ≥ 1)
”The mean city area under fire shall be less than 0.01%”
mean(SoS.itsDistricts.fireArea→sum()) ≤ 0.0001
”The fire fighting cars hosted by a fire station shall be used all simultaneously at least once

in 6 months”
SoS.itsFireStations→forAll(fireStation |

Whenever [fireStation.hostedFireFightingCars→exists(ffCar | ffCar.isAtFireStation)] occurs,
[fireStation.hostedFireFightingCars→forall(ffCar | ffCar.isAtFireStation = false)]

occurs within [6 months])

Table 1: Examples of Requirements formulated in the CAE incubator

The proposed language ,composed by 11 SPEEDS patterns, is sufficient expressive to formalize the
behavior from 15 requirements identified in CAE incubator. This list of patterns can be easily extended
for the future needs, but the experiments conducted in SPEEDS and DANSE show it covered all the
requirements to be expressed.

54 Contracts and Behavioral Patterns for SoS

4 Translating Contracts into Bounded-LTL Formulas

Bounded Linear Temporal Logic

As said previously, the Bounded Linear Temporal Logic (B-LTL) is an extension of the Linear Temporal
Logic (LTL) [11] in which each temporal operator is bound by a temporal constant. This Logic is such
expressive that it covers precisely a large set of properties. It is particularly adapted to Statistical Model
Checking (SMC) [47, 42]. The SMC principle is to monitor some simulations in order to check a B-
LTL property and use the results from the statistics area (sequential hypothesis testing or Monte Carlo
simulation) in order to decide whether the system satisfies the B-LTL property or not with some degree
of confidence. Since the conducted simulations are finite, the infinite path semantics of LTL has no sense,
whereas checking B-LTL formulas does.

The formulas are built using the standard logic connectors ∧, ∨, =⇒ , ¬ and the common temporal
modalities G, F , X , U over some atomic propositions. Each temporal modality is indiced by a bound
defining the length of the run on which the formula must hold. The validation of a B-LTL formula against
an execution path has a meaning only if the length of this path is enough to reach all bounds constituting
the formula.

The atomic propositions used in the B-LTL formulas are build using some state predicates or run
predicates. These predicates only require to be decidable for a given input, e.g. a state or a run section,
and we assume this decision to be performed by an external procedure. Considering π = s0s1 . . .sn a finite
run of a transition system and Φ a B-LTL property, π |= Φ means that the run π satisfies the property Φ.
The suffix sisi+1 . . .sn of π is noted π i. Assuming k > 0, a run π = s0s1 . . .sn, a state predicate P and a
run predicate Q, the satisfiability of the B-LTL formulas Φ, Φ1 and Φ2 is defined in Table 2.

π |= F≤kΦ ≡ ∃i, t0 ≤ ti ≤ t0 + k and π i |= Φ

π |= G≤kΦ ≡ ∀i, t0 ≤ ti ≤ t0 + k and π i |= Φ

π |= X≤kΦ ≡ ∀i, i = max{ j | t0 ≤ t j ≤ t0 + k} and π i |= Φ

π |= Φ1 U≤kΦ2 ≡ ∃i, t0 ≤ ti ≤ t0 + k and π i |= Φ2 and ∀ j,0≤ j ≤ j, π j |= Φ1
π |= Φ1 W≤kΦ2 ≡ π |= (Φ1 U≤kΦ2)∨G≤kΦ2
π |= Φ1 =⇒ Φ2 ≡ π |= ¬Φ1∨Φ2
π |= Φ1∨Φ2 ≡ π |= Φ1 or π |= Φ2
π |= Φ1∧Φ2 ≡ π |= Φ1 and π |= Φ2
π |= ¬Φ ≡ π 6|= Φ

π |= P ≡ P(s) holds checked by an external procedure
π |= Q ≡ Q(π) holds
π |= true
π 6|= f alse

Table 2: Semantics of B-LTL

Example 1 (Example of B-LTL formula). Let us consider the formula G≤5(A =⇒ X≤1F≤2B) where A
and B are state propositions and an execution path π such that A and B hold as illustrated below:

A. Arnold, B. Boyer, A. Legay 55

Overview of the translation procedure

As illustrated in the third example of requirements of Table 1 the language is layered as some behavioral
properties defined using the patterns combined with some state properties written in OCL These behav-
ioral properties can themselves be wrapped into an OCL collection expression to quantify the behavioral
properties over some constituents of the SoS. The translation of a contract will be made by translating
from its assumption and its promise only the OCL quantification and the pattern layers. The translated
property will be checked against some simulations. The state properties expressed in OCL have to be
checked against some states and for them, no treatment is done during the translation. The state properties
are kept in the translated formula and there will be dynamically checked. We assume that the satisfiability
of the state properties is solved by an external procedure based on an existing OCL-checker [38].

Proposition 1. Let us consider a contract (A,P) of a given SoS and assume any simulation is bounded
by k a maximum time of execution. If there exist two B-LTL formulas A′ and P′ such that A′ (or P) and A
(P′ resp.) are equivalent for any k-bounded simulations, then the B-LTL formula A′ =⇒ P′ is equivalent
to the contract (A,P) for any k-bounded simulations.

The proof is a trivial consequence of Definition 2 written using B-LTL. Moreover, extending the
translation to a stochastic contract is natural. The pair (A,P) of any stochastic contract is similarly
treated.

OCL quantification translation

OCL expressions occur at two levels within a pattern: as atomic propositions to define a state condition
and as quantifications. The first case will be directly treated by an external OCL-checker against a state
of the SoS or translated into a more generic semantics provided by the SMC-checker. But some atomic
propositions can also contain some quantification about component collections and in this case they can
also be processed as explained below. The second case is the most interesting case. The B-LTL logic has
no quantification support; it could be extended but this needs to rewrite the B-LTL checker. Moreover,
adding quantifications to the logic increases significantly the complexity of the satisfiablity decision.

Moreover, the instances of each component type are statically specified in the Internal Block Diagram
(IBD) by the SoS architect. In the CAE incubator, the IDB is named idbFireEmergency and gives the
list of all system constituents instantiated in the SoS: 10 districts, 1 fire headquarter, 3 fire stations
and 7 fire fighting cars shared by the fire stations, etc. Since the number of constituents is known and
finite in the SoS, any universal quantification (or an existential quantification) over a collection can
be interpreted as a conjunction (a disjunction resp.). Using the CAE incubator and assuming a valid
property φ for the fire stations, the property SoS.itsFireStations→ forAll(x| φ(x)) is equivalent
to φ(fireStation1)∧φ(fireStation2)∧φ(fireStation3).

In cases where φ contains also a quantification, φ must also be unfold. The generalization of the
process is recursively defined as:

un f old
(
coll→ forAll(x|φ(x)

)
=

∧
x∈coll

un f old
(
φ(x)

)
un f old

(
coll→ exists(x|φ(x)

)
=

∨
x∈coll

un f old
(
φ(x)

)
un f old

(
expr) = expr, otherwise

where coll is an OCL collection and expr any other valid expression of the contract language.

56 Contracts and Behavioral Patterns for SoS

Pattern translation

For the purpose of translation to B-LTL, we assume that the constant k, is an additional parameter given
by the user: it corresponds to the execution time for which we expect the property hold. Whenever an
unbound pattern to write a property like ”Always . . . ” is meaning full for the specification, statistical
model checking still checks the B-LTL property against a simulation that is finite: k is used to replace
the implicit unbound value of the property. Moreover, to be successfully translated, the pattern must be
consistent: in particular the intervals must have correct bounds and intervals must be all visited before
the end of the simulation (and so the constant k) is reached.

Proposition 2. Assuming Ψ, Ψ1 and Ψ2 denote some state propositions nested in a pattern P, e.g. OCL
propositions, and a constant k > 0 then, for any run of length k, there exists a B-LTL formula equivalent
to P. Table 3 summarizes the valid B-LTL translations.

Consistency
Pattern B-LTL translation Condition

BASIC B-LTL PATTERNS WITH ABSOLUTE INTERVALS

1 always Ψ G≤kΨ -
2 whenever Ψ1 occurs Ψ2 holds G≤k(Ψ1 =⇒ Ψ2) -
3 Ψ1 implies Ψ2 during following

[a,b]
X≤aG≤a−b(Ψ1 =⇒ Ψ2) a≤ b

4 Ψ1 during [a,b] raises Ψ2 (X≤aG≤a−bΨ1) =⇒ X≤bΨ2 a≤ b≤ k
5 Ψ during [a,b] implies Ψ1 during

[a,c] then Ψ2 during [c,b]
X≤aG≤b−a

(
X≤aG≤c−a(Ψ1)∧X≤cG≤b−c(Ψ2)

)
a≤ c≤ b

EXTENDED B-LTL PATTERNS WITH ABSOLUTE INTERVALS

6 Ψ1 occurs n times during [a,b]
raises Ψ2

occ(Ψ1,a,b)≥ n =⇒ X≤bF≤k−bΨ2 a≤ b≤ k

7 Ψ occurs at most n times dur-
ing [a,b]

occ(Ψ,a,b)≤ n a≤ b

BASIC B-LTL PATTERNS WITH SLIDING INTERVALS

8 whenever Ψ1 occurs Ψ2 holds
during following [a,b]

G≤k−b(Ψ1 =⇒ X≤aG≤b−aΨ2) a≤ b≤ k

9 whenever Ψ occurs Ψ1 implies Ψ2
during following [a,b]

G≤k−b(Ψ =⇒ X≤aG≤b−a(Ψ1 =⇒ Ψ2)) a≤ b≤ k

10 whenever Ψ1 occurs Ψ2 does not
occur during following [a,b]

G≤k−b(Ψ1 =⇒ X≤aG≤b−a¬Ψ2) a≤ b≤ k

11 whenever Ψ1 occurs Ψ2 occurs
within [a,b]

G≤k−b(Ψ1 =⇒ X≤aF≤b−aΨ2) a≤ b≤ k

Table 3: Pattern mapping

Unbound time patterns The patterns 1 and 2 require that the expressed properties must hold while
the system is running, e.g. they have a meaning for infinite execution paths too. But, the verification will
be done against simulation path that are necessarily finite, for practical reasons (termination). Thus, the
infinite bound is replaced by the user constant k provided for the verification.

A. Arnold, B. Boyer, A. Legay 57

Extended B-LTL patterns The patterns 6 and 7 require to count the number of occurrences in [a,b].
Counting is not possible by strictly using B-LTL. We assume that there exist a dedicated procedure
occ(Ψ,a,b) that counts the number of times where Ψ is satisfied and compare it to the value n. We use
similarly some external treatment to evaluate the operators sum(), mean(), . . . that compute a accumu-
lated value of an expression during a time interval.

Sliding intervals the interval [a,b] to consider is located after time t at which the first part of the pattern
”Whenever Ψ occurs” is satisfied: this sliding interval in pattern 8 is encoded as the property Ψ2 holds
during the duration b−a after a units of time after we observe Ψ1 is true.

Illustration of the full translation

We illustrate the translation for the third requirement in Table 1.

SoS.itsFireStations→forAll(fireStation |
Whenever [fireStation.hostedFireFightingCars→exists(isAtFireStation)] occurs,

[fireStation.hostedFireFightingCars→forall(isAtFireStation = false)]
occurs within [6 months])

Assuming that we have the time bound k ≥ 6months the pattern is translated to the B-LTL formula
following the rule 12 in Table 3:

φ =


G≤k−6months(Ψ1(fireStation1) =⇒ X≤0F≤6monthsΨ2(fireStation1))∧
G≤k−6months(Ψ1(fireStation2) =⇒ X≤0F≤6monthsΨ2(fireStation2))∧
G≤k−6months(Ψ1(fireStation3) =⇒ X≤0F≤6monthsΨ2(fireStation3))

where Ψ1(fireStationi) and Ψ2(fireStationi) correspond to the OCL expressions in brackets,
e.g. fireStation.hostedFireFightingCars→ exists(isAtFireStation) and fireStation.
hostedFireFightingCars→ forall(isAtFireStation= false). We notice that the modality X≤0
could be cleaned in φ , but we leave it for the sake of clarity.

As for the OCL quantification at the root of the requirement, we unfold the OCL quantifications
that occur in Ψ1 and Ψ2. The next table gives the result of this unfolding in Ψ1(fireStationi) and
Ψ2(fireStationi) for each fireStation. Finally, replacing all occurences of Ψ1(fireStationi)
and Ψ2(fireStationi) in φ gives the complete translation in B-LTL.

Component Ψ1 Ψ2
fireStation1 fireFightingCar1.isAtFireStation ∨ ¬ fireFightingCar1.isAtFireStation ∧

fireFightingCar2.isAtFireStation ∨ ¬ fireFightingCar2.isAtFireStation ∧
fireFightingCar3.isAtFireStation ¬ fireFightingCar3.isAtFireStation

fireStation2 fireFightingCar4.isAtFireStation ∨ ¬ fireFightingCar4.isAtFireStation ∧
fireFightingCar5.isAtFireStation ¬ fireFightingCar5.isAtFireStation

fireStation3 fireFightingCar6.isAtFireStation ∨ ¬ fireFightingCar6.isAtFireStation ∧
fireFightingCar7.isAtFireStation ¬ fireFightingCar7.isAtFireStation

58 Contracts and Behavioral Patterns for SoS

5 Statistical Model Checking of SoS Contracts

The interest of SMC [47, 42] is to propose an alternative to the approach of the classical model check-
ing [5, 11]. By using results from the statistic area (including sequential hypothesis testing or Monte
Carlo simulation) in order to decide whether the system satisfies the property or not with some degree of
confidence, SMC avoids an exhaustive exploration of the state-space of the model that generally does not
scale up. It has already successfully experimented in biology area [10, 29, 39], software engineering [9]
as well as industrial area[6] More recently, in DANSE [13], we adapt the SMC techniques to treat large
heterogeneous systems like Systems of Systems. Among them, one finds systems integrating multiple
heterogeneous distributed applications communicating over a shared network. We proposed to extend
UPDM specification - the SoS specification - with some requirements that the SoS must satisfy. These
requirements, are specified with the contract language we specially designed for the SoS’s. These goals
are viewed as behavioral objectives that support the SoS architect in assessing different strategies and
finding the best ones. As shown in Figure 2, these contracts are compiled into B-LTL formulas that
are verified against the SoS (whose constituent systems are compiled into FMI executables) using the
Statistical Model Checker Plasma-Lab [24] combined with the efficient simulation engine DESYRE de-
veloped by Ales [2]. The SMC tool-chain gives an estimation of the satisfiability of the contract by the
SoS. The different results help the SoS architect to make good decisions about how to optimize the SoS
strategies.

Figure 2: The SMC process in DANSE

The main algorithm we used in DANSE is the Monte Carlo algorithm. This algorithm estimates the
probability that a system Sys satisfies a B-LTL property P by checking P against a set of N random
executions of SyS. The estimation p̂ is given by

p̂ =
∑

N
1 f (exi)

N
where f (exi) = 1 if exi |= P, 0 otherwise

Using the formal semantics of B-LTL, each execution trace is monitored in order to check if P is
satisfied or not. The accuracy of the estimation increases with a bigger number of monitored simulations.

Plasma-Lab[24] implements a set of tools from the statistical area to perform the SMC. It provides
some engines for simulating biologic models, models written in the Prism language [39], but it has

A. Arnold, B. Boyer, A. Legay 59

Figure 3: CAE incubator - architecture example and behavior of a fireman

also the capabilities to drive an external engine to perform the simulations like MathLab, SciLab, or
DESYRE.

6 Illustration using the CAE incubator

In the frame of the DANSE project, the Concept Alignment Example (CAE) is a fictive SoS example
inspired by real-world Emergency Response data to a city fire. It has been built as a playground to
demonstrate new methods and models for the analysis and visualization of SoS designs. All structural
modeling has been performed using UPDM views, and behaviors have been added on a subset of the
constituents that we called ”CAE incubator”, using simple SysML constructs (modeled in state machines)
extended by a few stereotypes (e.g. for storing stochastic information).

Behavioral modeling in the CAE incubator is focused on following constituent systems: Fire HQ,
Fire Station, Fire Fighting Car and District. The city districts have been added as constituent systems
because they play an important role in the SoS: their behavior describes how the fires arise, expand and
spread to neighbor districts. In the frame of the CAE, all behaviors are abstracted in state machines using
IBM Rhapsody, but it would be possible to use any other language and tool as long as it is compliant
with the FMI export format.

The following figure shows the overall architecture of the CAE incubator as well as the behavior of
one of the constituent types: a fire fighting car.

We attached to the CAE incubator the following requirement, written accordingly to our proposed
formalism:

”The mean city area under fire shall be less than 0.01%”
mean(SoS.itsDistricts.fireArea→sum()) ≤ 0.01 %

As described in the paper, we were able to translate this requirement to the low-level B-LTL specifi-

60 Contracts and Behavioral Patterns for SoS

cation for the statistical model checker Plasma-Lab and use it in conjunction with the simulation platform
DESYRE to assess the probability that this goal is met in the specified time range (the simulation time
for each run was 4 months). By choosing the Monte Carlo option, Plasma-Lab was able to give us the
following estimation as a result on a given number of runs:

Prob(mean city area under fire≤ 0.01%)≈ 92.3%

In addition to the computation of the estimated probability that this goal is met on a given number
of runs, Plasma-Lab can also compute how many runs are necessary to prove that a given probability
threshold is passed by choosing the Chernov option.

Conclusion

This papers presents the results of the very first contract-based language for UPDM/SysML model of
SoS we developed in the DANSE project. The SoS model used in the project remains rather simple, but
powerful enough to capture behaviors and requirements of a CAE case study developed in collaboration
with EADS. Also, we are the first to study the relation between a modeling language used in industry
(UPDM) and a verification approach developed by academic.

As a future work, we plan to offer more dynamicity, which we will do by exploiting and extending the
work done on adaptative systems [48, 20, 8, 19]. This will also requires to adapt the UPDM framework.

Another interesting future work will be to add more quantitative information directly in the patterns
assumption and guarantee. This will permit us to reason on complex problematic such as energy con-
sumption.

All these future extensions will be discussed and designed jointly with the business units as the
DANSE partners.

References
[1] The Open Group Architecture Forum. Available at http://www.opengroup.org/togaf/.
[2] ALES: ALES S.r.l. - Advanced Laboratory on Embedded Systems. Available at http://www.ales.eu.com/

site/.
[3] Alexandre ARNOLD, Benoı̂t BOYER & Axel LEGAY (2013): Contracts and Behavioral Patterns for SoS:

The EU IP DANSE approach.
[4] Modelica Association: Modelica. Available at https://www.modelica.org/.
[5] Christel Baier & Joost-Pieter Katoen (2008): Principles of Model Checking (Representation and Mind Se-

ries). The MIT Press. Available at http://mitpress.mit.edu/books/principles-model-checking.
[6] Ananda Basu, Saddek Bensalem, Marius Bozga, Benoît Delahaye & Axel Legay (2012): Statistical

abstraction and model-checking of large heterogeneous systems. Int. J. Softw. Tools Technol. Transf. 14(1),
pp. 53–72, doi:10.1007/s10009-011-0201-2.

[7] Manfred Broy, Christian Leuxner & Tony Hoare, editors (2011): Software and Systems Safety - Specifica-
tion and Verification. NATO Science for Peace and Security Series - D: Information and Communication
Security 30, IOS Press.

[8] Cheng & all (2009): Software Engineering for Self-Adaptive Systems: A Research Roadmap. In: Software
Engineering for Self-Adaptive Systems, LNCS 5525, doi:10.1007/978-3-642-02161-9.

[9] Edmund Clarke, Alexandre Donzé & Axel Legay (2010): On simulation-based probabilistic model checking
of mixed-analog circuits. Form. Methods Syst. Des. 36(2), pp. 97–113, doi:10.1007/s10703-009-0076-y.

http://www.opengroup.org/togaf/
http://www.ales.eu.com/site/
http://www.ales.eu.com/site/
https://www.modelica.org/
http://mitpress.mit.edu/books/principles-model-checking
http://dx.doi.org/10.1007/s10009-011-0201-2
http://dx.doi.org/10.1007/978-3-642-02161-9
http://dx.doi.org/10.1007/s10703-009-0076-y

A. Arnold, B. Boyer, A. Legay 61

[10] Edmund M. Clarke, James R. Faeder, Christopher J. Langmead, Leonard A. Harris, Sumit Kumar Jha &
Axel Legay (2008): Statistical Model Checking in BioLab: Applications to the Automated Analysis of T-Cell
Receptor Signaling Pathway. In Monika Heiner & AdelindeM. Uhrmacher, editors: Computational Methods
in Systems Biology, Lecture Notes in Computer Science 5307, Springer Berlin Heidelberg, pp. 231–250,
doi:10.1007/978-3-540-88562-7 18.

[11] Edmund M. Clarke, Jr., Orna Grumberg & Doron A. Peled (1999): Model checking. The MIT Press, Cam-
bridge, MA, USA. Available at http://mitpress.mit.edu/books/model-checking.

[12] M. D’Angelo, A. Ferrari, O. Ogaard, C. Pinello & A. Ulisse (2012): A Simulator based on QEMU and
SystemC for Robustness Testing of a Networked Linux-based Fire Detection and Alarm System. In: Online
proceedings of ERTS2 2012 - Embedded Real Time Systems and Software. Available at http://www.
erts2012.org/Site/0P2RUC89/4B-3.pdf.

[13] DANSE (2013): Designing for Adaptability and evolutioN in SoS Engineering. Available at https://www.
danse-ip.eu/home/.

[14] DARPA: DARPA META Program. Available at http://cps-vo.org/group/avm/meta/.
[15] UK Ministry of Defence: MODAF – Ministry of Defence Architecture Framework. Available at http:

//www.modaf.org.uk.
[16] USA Department of Defence: DoDAF – Department of Defence Architecture Framework. Available at

http://dodcio.defense.gov/dodaf20.aspx.
[17] A. Ferrari, M. Carloni, A. Mignogna, F. Menichelli, D. Ginsberg, E. Scholte & D. Nguyen (2012): Scalable

virtual prototyping of distributed embedded control in a modern elevator system. In: Industrial Embedded
Systems (SIES), 2012 7th IEEE International Symposium on, pp. 267–270, doi:10.1109/SIES.2012.6356593.

[18] A. Ferrari, L. Mangeruca, O. Ferrante & M. Mignogna (2012): DesyreML: a SysML profile for heterogeneous
embedded systems. In: Online proceedings of ERTS2 2012 - Embedded Real Time Systems and Software.
Available at http://www.erts2012.org/Site/0P2RUC89/5B-1.pdf.

[19] Jasmin Fisher, Thomas A. Henzinger, Dejan Nickovic, Nir Piterman, Anmol V. Singh & Moshe Y. Vardi
(2011): Dynamic Reactive Modules. In: CONCUR, LNCS 6901, doi:10.1007/978-3-642-23217-6 27.

[20] Carlo Ghezzi (2011): Engineering Evolving and Self-Adaptive Systems: An Overview. In Broy et al. [7], pp.
88–102, doi:10.3233/978-1-60750-711-6-88.

[21] IBM: IBM Rational Rhapsody Designer for Systems Engineering. Available at http://www-142.ibm.com/
software/products/it/it/ratirhapdesiforsystengi/.

[22] Accellera Systems Initiative: Accelera Systems Initiative. Available at http://www.accellera.org/.
[23] INRIA: INRIA website. Available at http://www.inria.fr/.
[24] INRIA (2012): Plasma-Lab: a Statistical Model Checker. Available at http://project.inria.fr/

plasma-lab/.
[25] IP-XACT: IP-XACT Technical Committee. Available at http://www.accellera.org/activities/

committees/ip-xact/.
[26] ITEA2: ITEA2 – Information Technology for European Advancement. Available at http://www.itea2.

org/.
[27] ITEA2: Modelisar. Available at http://www.itea2.org/project/index/view/?project=217.
[28] Cyrille Jégourel, Axel Legay & Sean Sedwards (2012): A Platform for High Performance Statistical Model

Checking - PLASMA. In: TACAS, pp. 498–503, doi:10.1007/978-3-642-28756-5 37.
[29] Sumit K. Jha, Edmund M. Clarke, Christopher J. Langmead, Axel Legay, André Platzer & Paolo Zuliani

(2009): A Bayesian Approach to Model Checking Biological Systems. In: Proceedings of the 7th International
Conference on Computational Methods in Systems Biology, CMSB ’09, Springer-Verlag, Berlin, Heidelberg,
pp. 218–234, doi:10.1007/978-3-642-03845-7 15.

[30] Axel Legay & Benoı̂t Delahaye (2010): Statistical Model Checking : An Overview. CoRR abs/1005.1327.
Available at http://arxiv.org/abs/1005.1327.

http://dx.doi.org/10.1007/978-3-540-88562-7_18
http://mitpress.mit.edu/books/model-checking
http://www.erts2012.org/Site/0P2RUC89/4B-3.pdf
http://www.erts2012.org/Site/0P2RUC89/4B-3.pdf
https://www.danse-ip.eu/home/
https://www.danse-ip.eu/home/
http://cps-vo.org/group/avm/meta/
http://www.modaf.org.uk
http://www.modaf.org.uk
http://dodcio.defense.gov/dodaf20.aspx
http://dx.doi.org/10.1109/SIES.2012.6356593
http://www.erts2012.org/Site/0P2RUC89/5B-1.pdf
http://dx.doi.org/10.1007/978-3-642-23217-6_27
http://dx.doi.org/10.3233/978-1-60750-711-6-88
http://www-142.ibm.com/software/products/it/it/ratirhapdesiforsystengi/
http://www-142.ibm.com/software/products/it/it/ratirhapdesiforsystengi/
http://www.accellera.org/
http://www.inria.fr/
http://project.inria.fr/plasma-lab/
http://project.inria.fr/plasma-lab/
http://www.accellera.org/activities/committees/ip-xact/
http://www.accellera.org/activities/committees/ip-xact/
http://www.itea2.org/
http://www.itea2.org/
http://www.itea2.org/project/index/view/?project=217
http://dx.doi.org/10.1007/978-3-642-28756-5_37
http://dx.doi.org/10.1007/978-3-642-03845-7_15
http://arxiv.org/abs/1005.1327

62 Contracts and Behavioral Patterns for SoS

[31] Mark W. Maier (1998): Architecting principles for systems-of-systems. Systems Engineering 1(4), pp. 267–
284, doi:10.1002/(SICI)1520-6858(1998)1:4¡267::AID-SYS3¿3.0.CO;2-D.

[32] Mathworks: The Mathworks. Available at http://www.mathworks.it/.
[33] MBAT: MBAT – combined Model-Based Analysis and Testing of embedded systems. Available at https:

//www.mbat-artemis.eu/.
[34] OMG: Object Managment Group. Available at http://www.omg.org/.
[35] OMG (2010): OCL v2.2 - Object Constraint Language. Available at http://www.omg.org/spec/OCL/2.

2/.
[36] OMG (2011): UML v2.1.2. Available at http://www.omg.org/spec/UML/2.1.2/.
[37] OMG (2012): UPDM – Unified Profile for DoDAF and MODAF. Available at http://www.omg.org/

spec/UPDM/.
[38] Atos Origin (2011): MDT OCL/Ocl Checker. Available at http://wiki.eclipse.org/MDT_OCL/Ocl_

Checker.
[39] Kwiatkowska M. Parker D., Norman G. (2012): The probabilistic model checker PRISM. Available at http:

//www.prismmodelchecker.org.
[40] Modelica Association Project (2012): FMI v2.0 beta 4. Available at https://www.fmi-standard.org/.
[41] SysML Open Source Specification Project: SysML v. 1.3 Specification. Available at http://www.sysml.

org.
[42] Koushik Sen, Mahesh Viswanathan & Gul Agha (2005): On Statistical Model Checking of Stochastic Sys-

tems. In Kousha Etessami & Sriram K. Rajamani, editors: CAV, pp. 266–280, doi:10.1007/11513988 26.
[43] SPEEDS (2008): D 2.5.4: Contract Specification Language. Available at http://speeds.eu.com/

downloads/D_2_5_4_RE_Contract_Specification_Language.pdf.
[44] SPEEDS (2010): SPEculative and Exploratory Design in Systems Engineering. Available at http://www.

speeds.eu.com/.
[45] SPRINT: SPRINT – Software PlatfoRm for Integration of eNgineering and Things. Available at http:

//www.sprint-iot.eu/.
[46] S Xiaoxia & Z Qiuhai (2003): MPII-18-3 The Introduction on High Level Architecture (HLA) and Run-Time

Infrastructure (RTI). In: SICE-ANNUAL CONFERENCE-, 1, SICE; 1999, pp. 1136–1139.
[47] Samir Younes, Edmund M. Clarke, Geoffrey J. Gordon & Jeff G. Schneider (2005): Verification and Plan-

ning for Stochastic Processes with Asynchronous Events. Technical Report, Carnegie Mellon University,
doi:10.1.1.68.4454.

[48] Ji Zhang & Betty H. C. Cheng (2006): Model-based development of dynamically adaptive software. In:
ICSE, ACM, doi:10.1145/1134285.1134337.

http://dx.doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
http://www.mathworks.it/
https://www.mbat-artemis.eu/
https://www.mbat-artemis.eu/
http://www.omg.org/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/UML/2.1.2/
http://www.omg.org/spec/UPDM/
http://www.omg.org/spec/UPDM/
http://wiki.eclipse.org/MDT_OCL/Ocl_Checker
http://wiki.eclipse.org/MDT_OCL/Ocl_Checker
http://www.prismmodelchecker.org
http://www.prismmodelchecker.org
https://www.fmi-standard.org/
http://www.sysml.org
http://www.sysml.org
http://dx.doi.org/10.1007/11513988_26
http://speeds.eu.com/downloads/D_2_5_4_RE_Contract_Specification_Language.pdf
http://speeds.eu.com/downloads/D_2_5_4_RE_Contract_Specification_Language.pdf
http://www.speeds.eu.com/
http://www.speeds.eu.com/
http://www.sprint-iot.eu/
http://www.sprint-iot.eu/
http://dx.doi.org/10.1.1.68.4454
http://dx.doi.org/10.1145/1134285.1134337

A. Arnold, B. Boyer, A. Legay 63

A Grammar

〈contract〉 ::= 〈viewpoint-id〉+ ‘contract’ 〈identifier〉 {‘Assumption:’ 〈property〉} ? ‘Goal:’ 〈property〉
‘Confidence:’ 〈threshold〉

〈viewpoint-id〉 ::= ‘dynamicity’ | ‘behavior’ | ‘structure’ | ‘safety’ | ‘liveness’ | . . .

〈threshold〉 ::= Float‘%’ | 〈probability〉

〈probability〉 ::= x, x ∈ (0;1]

〈property〉 ::= 〈OCL-coll〉 ‘->forAll(’〈variable〉 ‘|’ 〈pattern〉‘)’
| 〈OCL-coll〉 ‘->exists(’〈variable〉 ‘|’ 〈pattern〉‘)’
| 〈OCL-prop〉
| 〈pattern〉

〈pattern〉 ::= ‘whenever’ ‘[’〈prop〉‘]’ ‘occurs’ ‘[’〈prop〉‘]’ ‘holds’ ‘during’ ‘following’ ‘[’〈int〉‘]’
| ‘whenever’ ‘[’〈prop〉‘]’ ‘occurs’ ‘[’〈prop〉‘]’ ‘implies’ ‘[’〈prop〉‘]’ ‘during’ ‘following’

‘[’〈int〉‘]’
| ‘whenever’ ‘[’〈prop〉‘]’ ‘occurs’ ‘[’〈prop〉‘]’ ‘does’ ‘not’ ‘occur’ ‘during’ ‘following’

‘[’〈int〉‘]’
| ‘whenever’ ‘[’〈prop〉‘]’ ‘occurs’ ‘[’〈prop〉‘]’ ‘occurs’ ‘within’ ‘[’〈int〉‘]’
| ‘[’〈prop〉‘]’ ‘during’ ‘[’〈int〉‘]’ raises ‘[’〈prop〉‘]’
| ‘[’〈prop〉‘]’ ‘occurs’ ‘[’N‘]’ times during ‘[’〈int〉‘]’ ‘raises’ ‘[’〈prop〉‘]’
| ‘[’〈prop〉‘]’ ‘occurs’ ‘at’ ‘most’ ‘[’N‘]’ ‘times’ ‘during’ ‘[’〈int〉‘]’
| ‘[’〈prop〉‘]’ ‘during’ ‘[’〈int〉‘]’ ‘implies’ ‘[’〈prop〉‘]’ ‘during’ ‘[’〈int〉‘]’ ‘then’

‘[’〈prop〉‘]’ ‘during’ ‘[’〈int〉‘]’

〈prop〉 ::= 〈OCL-prop〉 | 〈arith-rel〉

〈arith-rel〉 ::= 〈expr〉 (‘<’ | ‘<=’ | ‘=’ | ‘>=’ | ‘>’) 〈expr〉

〈arith-expr〉 ::= 〈expr〉 〈operator〉 〈expr〉 | ‘(’〈expr〉‘)’
| 〈OCL-expr〉
| ‘mean(’ 〈OCL-expr〉 ‘)’ | ‘sum(’ 〈OCL-expr〉 ‘)’
| ‘prod(’ 〈OCL-expr〉 ‘)’ | ‘at(’ 〈OCL-expr〉‘,’ 〈time〉 ‘)’

〈operator〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’

〈int〉 ::= {‘[’ | ‘(’} 〈time〉 {‘-’ 〈time〉}? {‘]’ | ‘)’}

64 Contracts and Behavioral Patterns for SoS

〈time〉 ::= N 〈time-unit〉 | +∞

〈time-unit〉 ::= ‘ms’ | ‘s’ | ‘min’ | ‘hour’ | ‘day’ | . . .

The non-terminal 〈time-unit〉 can be any multiple of the application basic time unit (i.e. day, hour,
min, sec, ms, ...). The latest revision of the OCL specification can be found at [35] and more particularly
the grammar of the language. We just give an overview of the relevant subset used in this language:
〈OCL-proposition〉 stands for the simple Boolean expressions over collections or primitive types (int,
real, boolean, . . .) of OCL. We also identified 〈OCL-expr〉, the OCL subset of non-Boolean expression,
e.g. Component Collections (without treatments, e.g. the functions map(...), iter(...)), numeri-
cal values, model-related values, . . . Some relevant details about OCL collections are in the chapters 7.7
(Collection operations) and 11.6 (Collection-related types) of the OCL specification [35].

B Patterns

We give the list of all the SPPEDS patterns we reuse and we give give their semantics based on the
statifiability given in Section 3.

a. whenever Ψ1 occurs Ψ2 holds during following [a,b]

The interval [a,b] is located relatively after the satisfaction of Ψ1 . The interval, in which Ψ2 must
be satisfied, starts a units of time after the observed occurrence of Ψ1.

b. Ψ1 implies Ψ2 holds forever

From the very moment when Ψ1 is satisfied Ψ2 must hold during all the rest of the execution path.

c. always Ψ

Ψ must hold during all the execution path.

d. whenever Ψ1 occurs Ψ2 holds

e. whenever Ψ occurs Ψ1 implies Ψ2 during following [a,b]

A. Arnold, B. Boyer, A. Legay 65

As for the previous pattern, the interval [a,b] is relative. At each time value between a and b.
where Ψ1 holds, Ψ2 must also hold. Replacing Ψ is replaced by true allows to create a new sim-
pler pattern:
Ψ1 implies Ψ2 during following [a,b]

f. whenever Ψ1 occurs Ψ2 does not occur during following [a,b]

This pattern specifies that Ψ2 is never satisfied during the relative interval [a,b], i.e. ¬Ψ2 holds
during [a,b].

g. whenever Ψ1 occurs Ψ2 occurs within [a,b]

The constraint Ψ2 must be satisfied at less one time during [a,b] after Ψ1.

h. Ψ1 occurs n times during [a,b] raises Ψ2

When Ψ2 is satisfied at less n times during [a,b], Ψ2 starts to hold at b.

i. Ψ occurs at most n times during [a,b]

As previously mentioned, an occurrence of Ψ is counted when Ψ becomes satisfied. If Ψ holds
for a state in [a,b], to observe Ψ holds for the following one (also in [a,b]) does not increase the
occurrence number of Ψ.

j. Ψ1 during [a,b] raises Ψ2

66 Contracts and Behavioral Patterns for SoS

If Ψ1 holds during [a,b] then Ψ2 must hold at b.

k. Ψ during [a,b] implies Ψ1 during [a,c] then Ψ2 during [c,b]

Whenever Ψ holds during [a,b] there exists a split at c of [a,b] such that Ψ1 holds during [a,c] then
Ψ2 holds during [c,b].

	1 Introduction
	2 System of Systems Modeling
	3 A Contract Language for UPDM/SysML Requirements
	4 Translating Contracts into Bounded-LTL Formulas
	5 Statistical Model Checking of SoS Contracts
	6 Illustration using the CAE incubator
	A Grammar
	B Patterns

