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Rigorous development processes aim to be effective in developing critical systems, especially if fail-
ures can have catastrophic consequences for humans and the environment. Such processes generally
rely on formal methods, which can guarantee, thanks to their mathematical foundation, model pre-
ciseness, and properties assurance. However, they are rarely adopted in practice.

In this paper, we report our experience in using the Abstract State Machine formal method and
the ASMETA framework in developing a prototype of the control software of the MVM (Mechan-
ical Ventilator Milano), a mechanical lung ventilator that has been designed, successfully certified,
and deployed during the COVID-19 pandemic. Due to time constraints and lack of skills, no for-
mal method was applied for the MVM project. However, we here want to assess the feasibility of
developing (part of) the ventilator by using a formal method-based approach.

Our development process starts from a high-level formal specification of the system to describe
the MVM main operation modes. Then, through a sequence of refined models, all the other re-
quirements are captured, up to a level in which a C++ implementation of a prototype of the MVM
controller is automatically generated from the model, and tested. Along the process, at each re-
finement level, different model validation and verification activities are performed, and each refined
model is proved to be a correct refinement of the previous level. By means of the MVM case study,
we evaluate the effectiveness and usability of our formal approach.

1 Introduction

To prevent catastrophic consequences for humans and the environment due to system failure or unsafe
operation, safety-critical software requires development methods and processes that could lead to prov-
ably correct system operation [24,25]. From long time the use of models and formal analysis techniques
is highly demanded already at design-time to improve software quality and guarantee safety, reliability,
and other desired qualities. However, the usage of formal methods in industrial projects is still lim-
ited [3, 20, 21] and practitioners are still skeptical in using formal methods since they are considered
time-consuming approaches that do not fit into an agile continuous integration development process.

Besides the well-known lack of training, among the barriers to the adoption of formal methods, we
can remark (i) the complexity of formal notations, (ii) the poor scalability, (iii) the lack of easy-to-use
tools supporting modeling, validation, and verification activities at the design phase, and (iv) the gap be-
tween models and code. Formal approaches allowing model refinement would help the designer in facing
the complexity of system requirements, and techniques of automatic code generation from models would
allow for producing correct-by-construction code/artifacts of the system in a seamless manner from the
requirements to the final implementation. We believe that some characteristics of formal methods would

http://dx.doi.org/10.4204/EPTCS.349.2
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also favor their use in the assurance process: models should possibly be executable for high-level de-
sign validation and endowed with properties verification mechanisms; operational approaches are more
adequate than denotational ones to support (automatic) code generation from models and model-based
testing.

In principle, different methods and tools can be used to guarantee software safety and reliability;
however, the integrated use of different tools around the same formal method is much more convenient
than having different tools working on input models with their own languages.

Among the plethora of existing formal methods, the Abstract State Machines (ASMs) [17, 18] are
a system engineering method that can guide the development of software systems seamlessly from re-
quirements capture to their implementation. This is shown by the adoption of ASMs in a series of cases
studies, as in [6, 8, 10, 13], to name a few. Although ASMs have a rigorous mathematical foundation
– as transition systems that extend the Finite State Machines (FSMs) [17]–, ASMs can be understood
as pseudo-code or virtual machines working over abstract data structures. Besides their pseudo-code
format, (1) ASM models can be specified at any desired level of abstraction and are executable models;
(2) model refinement is an embedded concept in the ASM formal approach; it allows facing the complex-
ity of system specification by starting with a high-level description of the system and then proceeding
step-by-step by adding further details till a desired level of specification has been reached; each refined
model must be proved to be a correct refinement of the previous one, and checking of such relation can
be performed automatically [4]; (3) the concept of ASM module, i.e., an ASM without the main firing
rule, facilitates model scalability and separation of concerns, so tackling the complexity of big systems
specification;

(4) ASM-based modeling and analysis are supported by a set of tools that can be used in an integrated
manner within the ASMETA (ASM mETAmodeling) [5, 11, 12] framework. ASMETA provides tools
for specifying the executable behavior of a system, for checking properties of interest, specifying and
executing validation scenarios, generating prototype code, etc.

During the COVID-19 pandemic, our research team was involved in the design, development, and
certification of a mechanical lung ventilator called MVM (Mechanical Ventilator Milano)1 [2]. The
project started from an idea of the physicist Cristiano Galbiati, who was soon joined by dozens of physi-
cists, engineers, physicians, and computer scientists from 12 countries around the world, including the
authors of this paper. The team was able to realize a ventilator that is reliable, easily reproducible on a
large scale, available in a short amount of time, and at a limited cost [22]. The MVM has obtained the
FDA (Food and Drug Administration) Emergency Use Authorization (EUA) followed by similar autho-
rizations issued by Health Canada and the CE marking as well. During the development of the software,
no formal method has been applied mainly because of time constraints and a lack of developers’ skills
with any formal method. However, we wanted to assess the feasibility (and possibly also the limits) of
developing (part of) the ventilator by using a formal method-based approach. Because we were involved
in all the software development process and its certification (we wrote the requirements and were in-
volved also in the coding and testing for the MVM), we have all the knowledge and expertise necessary
to perform this experiment. In this paper, we report the practical experience of using ASMs/ASMETA
in modeling, analyzing, and encoding the control software of the MVM.

The paper is structured as follows. Sect. 2 presents the background regarding the ASMETA frame-
work and Sect. 3 introduces the MVM case study. In Sect. 4 we present the modeling, verification, and
validation activities performed for the case study. The automatic generation of C++ code and unit tests
from the ASMETA specification is described in Sect. 5, while the deployment process on Arduino is

1https://mvm.care/

https://mvm.care/
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Figure 1: The ASM development process powered by the ASMETA framework

described in Sect. 6. Sect. 7 discusses the pros and cons of the ASMETA approach and the aspects that
could prevent or favor its use in practice and concludes the paper.

2 Abstract State Machines and ASMETA development process

The formal design of the MVM we propose here is based on the ASMs formal method [17,18], which is
an extension of FSMs where unstructured control states are replaced by states with arbitrarily complex
data. The development process from formal requirement specification to code generation has been sup-
ported by the ASMETA framework [5], a set of tools around the ASMs, which we used for modeling the
ventilator and performing validation and verification activities, together with automatic source code and
tests generation.

ASM states are mathematical structures, i.e., domains of objects with functions and predicates (i.e.,
boolean functions) defined on them. The transition from one state si to the next state si+1 is obtained by
firing the set of all ASM transition rules invoked by a unique main rule, which is the starting point of a
computation step. Transition rules express the modification of dynamic controlled functions interpreta-
tion from one state to the next one. Indeed, functions are classified as static (never change during any
run of the machine) or dynamic (may change as a consequence of agent actions or updates). Dynamic
functions are distinguished between monitored (only read by the machine and modified by the environ-
ment) and controlled (read in the current state and updated by the machine in the next state). Derived
functions are not part of the state since they are defined in terms of other (dynamic) functions.

The update rule, as assignment of the form f (t1, . . . , tn) := v, is the basic unit of rules construction,
being f an n-ary function, ti terms, and v the new value of f (t1, . . . , tn) in the next state. By a limited but
powerful set of rule constructors, function updates can be combined to express other forms of machine
actions as, for example, guarded actions (if-then) and simultaneous parallel actions (par).

The ASM method can facilitate the entire life cycle of software development, i.e., from modeling to
code generation. Fig. 1 shows the development process based on ASMs and supported by the ASMETA
framework2 [11] which provides a set of tools to help the developer in the following activities: modeling,
validation, verification, and, when required, code generation.

In the modeling phase, the user specifies the system models by using the AsmetaL language, and the
editor AsmetaXt provides some useful editing support. ASM models can be read as pseudo-code over
abstract data types. Moreover, the ASM visualizer AsmetaVis can be used to transform the textual

2https://asmeta.github.io/

https://asmeta.github.io/
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model into graphs using the ASM graphical notation proposed in [4]. The refinement correctness can be
automatically proved using the tool ASMRefProver [9].

The validation process is supported by the model simulator AsmetaS, the animator AsmetaA, the
scenarios executor AsmetaV – all supporting models exposing time features [14] –, and the model re-
viewer AsmetaMA. The simulator AsmetaS allows performing two types of simulation: interactive
simulation (the user inserts the value of monitored functions) and random simulation (the tool randomly
chooses the value of monitored functions among those available). A tabular presentation of a simula-
tion is possible by means of the animator AsmetaA that shows the models’ execution through the use
of tables. AsmetaV executes scenarios written in Avalla language. Each scenario contains the ex-
pected system behavior and the tool checks whether the machine runs correctly. The model reviewer
AsmetaMA performs the static analysis. It determines whether a model has sufficient quality attributes,
e.g., minimality (the specification does not contain elements defined or declared in the model but never
used), completeness (it requires that every behavior of the system is explicitly modeled), and consistency
(it guarantees that locations are never simultaneously updated to different values).

Property verification is performed with the AsmetaSMV tool. It verifies if the properties derived
from the requirements are satisfied by the models. When a property is verified, it guarantees that the
model complies with the intended behavior. AsmetaSMV exploits the NuSMV and NuXmv model
checkers. Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) properties can be proved
by using the classical NuSMV model checker in the case of limited domains. NuXmv (an extension of
NuSMV) is able to deal also with unlimited domains in the case of LTL properties and allows for proving
properties based on time values.

In case the code is available, the ASMETA framework provides the ATGT tool that generates ab-
stract unit tests starting from the ASM specification by exploiting the counterexample generation of a
model checker (NuXMV or NuSMV). If not, a tool that automatically generates C++ code from ASMs
is available (Asm2C++) [16].

3 MVM Case study

MVM [2] is an electro-mechanical ventilator equivalent to the old and reliable Manley Ventilator [26].
It is intended to provide ventilation support for patients that are in intensive therapy and that require
mechanical ventilation. MVM works in pressure-mode, i.e., the respiratory time cycle of the patient is
controlled by the pressure, and, therefore, this ventilator requires a source of compressed oxygen and
medical air that are readily available in intensive care units. More precisely, MVM has two operative
modes: Pressure Controlled Ventilation (PCV) and Pressure Support Ventilation (PSV). In the PCV
mode, the respiratory cycle is kept constant and the pressure level changes between the target inspiratory
pressure and the positive end-expiratory pressure. New inspiration is initiated either after a breathing
cycle is over, or when the patient spontaneously initiates a breath. In the former case, the breathing
cycle is controlled by two parameters: the respiratory rate (RR) and the ratio between the inspiratory
and expiratory times (I/R). In the latter case, a spontaneous breath is triggered when the MVM detects
a sudden pressure drop within the trigger window during expiration. The PSV mode is not suitable for
patients that are not able to start breathing on their own because the respiratory cycle is controlled by
the patient, and MVM partially takes over the work of breathing. A new respiratory cycle is initiated
with the inspiratory phase, detected by the ventilator when a sudden pressure drop occurs. When the
patient’s inspiratory flow drops below a set fraction of the peak flow, MVM stops the pressure support,
thus allowing exhalation. If a new inspiratory phase is not detected within a certain amount of time
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(apnea lag), MVM will automatically switch to the PCV mode because it is assumed that the patient is
not able to breathe alone.

The ventilator allows the air to enter/exit through two valves, i.e., an input valve and an output
valve. When the ventilator is not running, the valves are set to safe mode: input valve closed and output
valve opened. When the inspiration starts, the input valve is opened and the output valve is closed,
while during the expiration the input valve is closed and the output valve is opened. Both in PCV and
PSV mode inspiratory pause, expiratory pause, and recruitment manoeuvrer are allowed by user request.
Inspiratory/Expiratory pause consists in closing the input and output valves of the ventilator respectively
after the inspiration and expiration phase. The inspiratory pause allows measuring the pressure reached
inside the alveoli at the end of the inspiratory cycle, while the expiratory pause allows measuring the
residual pressure to check possible obstruction in the exhalation channel. Recruitment manoeuvrer is an
emergency procedure required after intubation and it consists in prolonged lung inflation as necessary
to reactivate the alveoli immediately; during this manoeuvrer, the input valve is opened and the output
valve is closed.

Before starting the ventilation the MVM controller passed through three phases. The start-up in
which the controller is initialized with default parameters, self-test which ensures that the hardware is
fully functional, and ventilation off in which the controller is ready for ventilation when requested.

To give an idea of the complexity of the entire MVM, its detailed behavior is described in the re-
quirements documents which count altogether about 1000 requirements, each being a brief sentence.
One document describes the behavior of the overall system, while 15 requirements documents describe
the detailed behavior of software components. The controller itself has its own requirement document
which consists of 31 pages and 157 requirements.

4 Modeling and V&V

In this section, we present the modeling of the MVM controller and the validation and verification ac-
tivities we have performed. We proceeded through three refinement steps. (1) The first model (MVM-
Controller00) describes the transition between the main operation phases: startup, self-test, ventilation
off, PCV, and PSV modes. (2) The second model (MVMController01) introduces the modeling of in-
spiration and expiration in both PCV and PSV, (3) while the third model (MVMController02) adds the
expiratory/inspiratory pauses, the recruitment manoeuvrer, and the apnea. (4) The last refinement step
(MVMController03) introduces (in both PCV and PSV) the transition between expiration and inspira-
tion in case of pressure drop, and the transition between inspiration and expiration in case the pressure
exceeds a threshold. The time features have been modeled using the TimeLibrary [14].

We have proved the refinement correctness by using the SMT-based tool AsmRefProver which
proves the stuttering refinement as defined in [9].

In order to have an idea of the complexity of the ventilator models, Table 1 shows the models’
dimensions in terms of the number of functions and rules.

4.1 First model: MVMController00

The first model introduces the operation phases of the MVM controller. At the end of startup and self-
test, the ventilator goes in the ventilation off state. Afterward, on the basis of the user request, it can go
to one of the two operation modes: PCV or PSV. Code 1 shows the main rule of the controller in the
first model. It specifies the transitions among the MVM states by setting the value of the state variable
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declarations # Functions # Rules

mon. con. der. static decl. rules

TimeLibrary 1 2 2 0 2 2
MVMController00 5 1 0 0 8 27
MVMController01 6 5 0 5 19 98
MVMController02 9 6 0 9 27 160
MVMController03 11 6 0 10 27 170

Table 1: Models dimension (including the TimeLibrary)
mon. = monitored, con. = controlled, der. = derived, decl. = macro rule
declarations, rules = number of rules (inluding nested)

main rule r Main =
par
if state = STARTUP then r startup[] endif
if state = SELFTEST then r selftest[] endif
if state = VENTILATIONOFF then r ventilationoff[] endif
if state = PCV STATE then r runPCV[] endif
if state = PSV STATE then r runPSV[] endif
endpar

Code 1: MVMController00 main rule

Figure 2: MVM state diagram

(initialized at the STARTUP value). Depending on the state value, the corresponding rule is executed.
The semantic visualization of the model, and in particular of the main rule, is shown in Fig. 2. It

represents the MVM operation in terms of a control state machine: the value of the variable state is used
as state mode to determine machine states.

4.2 Second model: MVMController01

The second model refines the inspiration and expiration phases in PCV and PSV mode. Code 2 shows
the refinement of the rule r runPCV, which here calls rules for the inspiration r runPCVInsp (line 6) and
the expiration r runPCVExp (line 24) rules.

In PCV mode, the transition between inspiration and expiration is determined by the duration of
each phase decided by the physician (when timers timerInspirationDurPCV, in case of inspiration, and
timerExpirationDurPCV, in case of expiration, expire). When the inspiration time is passed (line 11),
the controller goes to the PCV expiration phase (line 14). If the physician has required (by setting the
value of the monitored function respirationMode) to move to PSV mode the machine changes the state
from PCV to PSV and executes the rule r PSVStartExp (line 15). If a stop request (by the monitored
function stopRequested) is received during the inspiration phase, it is stored (in stopVentilation) and
will be executed in the expiration phase (line 8). When in expiration, if no stop request is received, the
ventilator moves to PCV inspiration when expiration duration expires (line 27).

In PSV mode (see Code 3), the transition from inspiration to expiration happens when the airflow
drops a defined threshold (flowDropPSV holds, line 12) after a minimum inspiration time (timerMin-
InspTimePSV expires), or when the maximum inspiration time set by the doctor is expired. The opposite
transition occurs after a minimum expiration time (timerMinExpTimePSV expires, line 19). The transition
to ventilation off is allowed only from the expiration phase regardless of the stop command is received.
Moreover, the physician can change from PSV to PCV and without interrupting the ventilation when in
expiration phase (line 21).

Depending on the ventilator state, the input (iValve) and output (oValve) valves are in the following
position: input valve is closed and output valve is open when the ventilator is not running or in the
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1 rule r runPCV =
2 par
3 if phase = INSPIRATION then r runPCVInsp[] endif
4 if phase = EXPIRATION then r runPCVExp[] endif
5 endpar
6 rule r runPCVInsp =
7 par
8 if not stopVentilation then
9 if stopRequested then stopVentilation := true endif

10 endif
11 if expired(timerInspirationDurPCV) then
12 par
13 if respirationMode = PCV then
14 r PCVStartExp[] endif
15 if respirationMode = PSV then
16 par
17 state := PSV STATE
18 r PSVStartExp[]
19 endpar
20 endif
21 endpar
22 endif
23 endpar
24 rule r runPCVExp =
25 if stopVentilation then r stopVent[]
26 else if stopRequested then r stopVent[]
27 else if expired(timerExpirationDurPCV) then
28 r PCVStartInsp[]
29 endif endif endif
30 rule r PCVStartInsp =
31 par
32 phase := EXPIRATION
33 iValve := CLOSED
34 oValve := OPEN
35 r reset timer[timerInspirationDurPCV]
36 endpar

Code 2: MVMController01 PCV

rule r runPSV =
par

if phase = INSPIRATION then r runPSVInsp[] endif
if phase = EXPIRATION then r runPSVExp[] endif

endpar
rule r runPSVInsp =

par
if not stopVentilation then

if stopRequested then stopVentilation := true endif
endif
if (expired(timerMinInspTimePSV) and flowDropPSV)

or expired(timerMaxInspTimePSV) then
r PSVStartExp[]

endif
endpar

rule r runPSVExp =
if stopVentilation then r stopVent[]
else if stopRequested then r stopVent[]
else if expired(timerMinExpTimePSV) then

par
if respirationMode = PCV then

par
state := PCV STATE
r PCVStartInsp[]

endpar
endif
if respirationMode = PSV then r PSVStartInsp[] endif

endpar endif endif endif
rule r PSVStartInsp =

par
phase := EXPIRATION
iValve := CLOSED
oValve := OPEN
r reset timer[timerMinExpTimePSV]
r reset timer[timerMaxInspTimePSV]

endpar

Code 3: MVMController01 PSV

expiration phase, input valve is open and output valve is closed when it is in inspiration phase.

Model validation. While modeling the ventilator, we have performed validation activities: animation
(simulation traces), model review, and validation. An example of animation is reported in Fig. 3, where
the ventilator, after performing startup and self-test, is in the ventilation off state. As expected, the input
valve is closed and the output valve is opened. When the start PCV command is sent to the ventilator,
the PCV mode starts from the inspiration phase, and the valves are moved to the expected position: the
input valve is opened and the output valve is closed. After the inspiration duration, the ventilator is in
the expiration phase, the input valve is closed while the output valve is opened.

For the validation phase, we have written scenarios to check, whenever it is needed, that the desired
behavior is captured by the model. Code 4 reports a scenario where at each step of the machine we
check the ventilator state (check state) and the position of the input (check iValve) and output (check
oValve) valves, given the inputs received (set).

Model verification. Using the model checker, we have verified the following safety properties:
• Valves are never both open or closed at the same time:



20 Developing a Prototype of a Mechanical Ventilator Controller from Reqs to Code with ASMETA

Figure 3: PCV animation example

check state = STARTUP;
set startupEnded := true;
step
check state = SELFTEST;
set selfTestPassed := true;
step
check state = VENTILATIONOFF;
set startVentilation := true;
set respirationMode := PCV;
step

check state = PCV STATE;
check oValve = CLOSED;
check phase = INSPIRATION;
check iValve = OPEN;
step
check state = PCV STATE;
check oValve = CLOSED;
check phase = INSPIRATION;
check iValve = OPEN;
step

check state = PCV STATE;
check oValve = OPEN;
check phase = EXPIRATION;
check iValve = CLOSED;
step
check state = PCV STATE;
check oValve = OPEN;
check phase = EXPIRATION;
check iValve = CLOSED;
check stopVentilation = false;

Code 4: PCV scenario example

LTLSPEC not f(iValve=oValve)

• When ventilation is off, the output valve is open and the input valve is closed

LTLSPEC g(state=VENTILATIONOFF implies (iValve=CLOSED and oValve=OPEN))

These two properties are crucial for the safety of the ventilator. The former guarantees that the patient
can not choke, while the latter assures that the system is fail-safe since, when the ventilator is off, the
relief valve allows the patient to breathe.

4.3 Third model: MVMController02

At the end of the inspiration phase, the physician can perform an inspiratory pause or recruitment ma-
neuver, and the expiratory pause is allowed after the expiration phase. This has been modeled as shown
in Code 5 for PCV mode and Code 6 for PSV mode, which respectively extend the behavior of the
MVMController01 as shown in Code 2 and Code 3.

After inspiration, if an inspiratory pause is required (monitored function cmdInPause holds, Code 5
line 11 and Code 6 line 10) the valves are both closed for the entire pause duration. If inspiratory pause
is not required, the doctor can select the recruitment maneuver (by setting cmdRm, Code 5 line 14 and
Code 6 line 11) and the lungs are filled with oxygen and medical air.

An expiratory pause can be performed upon the doctor’s request after the expiration phase (monitored
function cmdExPause holds, Code 5 line 29, and Code 6 line 25).

In the expiratory and inspiratory pause states, the input and output valves are both closed, while in
the recruitment maneuver the output valve is closed and the input valve is opened to allow the air flowing
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1 rule r runPCV =
2 par ...
3 if phase = INPAUSE then r runInPause[] endif
4 if phase = RM then r runRm[] endif
5 if phase = EXPAUSE then r runExPause[] endif
6 endpar
7 rule r runPCVInsp = ...
8 if expired(timerInspirationDurPCV) then
9 par

10 if respirationMode = PCV then
11 if cmdInPause then
12 r InPause[]
13 else
14 if cmdRm then r rm[]
15 else r PCVStartExp[]
16 endif
17 endif endif
18 if respirationMode = PSV then
19 par
20 state := PSV STATE
21 r PSVStartExp[]
22 r resetApneaBackup[]
23 endpar
24 endif
25 endpar
26 endif ...
27 rule r runPCVExp = ...
28 if expired(timerExpirationDurPCV) then
29 if cmdExPause then
30 r exPause[]
31 else
32 r PCVStartInsp[]
33 endif
34 endif ...

Code 5: MVMController02 PCV

rule r runPSV =
par ...

if phase = INPAUSE then r runInPause[] endif
if phase = RM then r runRm[] endif
if phase = EXPAUSE then r runExPause[] endif

endpar
rule r runPSVInsp = ...

if (expired(timerMinInspTimePSV) and flowDropPSV)
or expired(timerMaxInspTimePSV) then

if cmdInPause then r InPause[]
else if cmdRm then r rm[]
else r PSVStartExp[] endif endif
endif ...

rule r runPSVExp =...
if expired(timerApneaLag) then r runApnea[]
else if expired(timerMinExpTimePSV) then

par
if respirationMode = PCV then

par
state := PCV STATE
r PCVStartInsp[]

endpar
endif
if respirationMode = PSV then

if cmdExPause then r ExPause[] endif
endif

endpar
endif endif ...

rule r runApnea =
par

state := PCV STATE
r PCVStartInsp[]
apneaBackupMode := true

endpar

Code 6: MVMController02 PSV

in the alveoli. Moreover, as shown in Code 6, when PSV is running and the ventilator does not detect a
new breath within apnea lag (timer timerApneaLag expires, line 15), the ventilator automatically changes
to PCV mode starting from the inspiration phase (line 32).

Model validation and verification. Model validation activities have been performed also at this level.
Considering the properties verified in the previous refinement step, the property that states “valves are
never closed at the same time” does not hold anymore. Indeed, when the ventilator is in pause the valves
are both closed as guaranteed by this property:

LTLSPEC g(((phase=INPAUSE or phase=EXPAUSE) and (state = PCV STATE or state = PSV STATE)) implies
(iValve=CLOSED and oValve=CLOSED))

To ensure that the valves are never both closed outside inspiratory and expiratory pause, we have verified
the following property, in which valves are both closed if the ventilator is not in inspiration, expiration,
recruitment maneuver, ventilation off, startup, or selftest.

LTLSPEC g((iValve=CLOSED and oValve=CLOSED) implies ((not ((phase=INSPIRATION or
phase=EXPIRATION or phase=RM) and (state = PCV STATE or state = PSV STATE)))) or
(not (state = VENTILATIONOFF or state = STARTUP or state = SELFTEST)))
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1 rule r runPCVInsp =
2 ...
3 if expired(timerInspirationDurPCV) then
4 ...
5 else if pawGTMaxPinsp then
6 r PCVStartExp[]
7 endif endif
8 rule r runPCVExp =
9 ...

10 if expired(timerExpirationDurPCV) then
11 ...
12 else if expired(timerTriggerWindowDelay) and dropPAW ITS then
13 r PCVStartInsp[]
14 endif endif ...

Code 7: MVMController03 PCV

rule r runPSVInsp =
...

if (expired(timerMinInspTimePSV) and flowDropPSV) or
expired(timerMaxInspTimePSV) then
...

else if pawGTMaxPinsp then
r PCVStartExp[]

endif endif
rule r runPSVExp =
...

if expired(timerTriggerWindowDelay) and dropPAW ITS then
r PSVStartInsp[]

else if expired(timerApneaLag) then
...

Code 8: MVMController03 PSV

4.4 Fourth model: MVMController03

In the last model, we have introduced the transition from inspiration to expiration and vice versa de-
pending on the pressure changes due to spontaneous breathing. The new behavior has been modeled by
extending the rules r runPCVInsp and r runPCVExp as shown in Code 7, and rules r runPSVInsp and
r runPSVExp as shown in Code 8.

When the ventilator is in expiration (Code 7 line 8 and Code 8 line 9) and it detects after an instant of
time (a trigger window here modeled as the expiration of the timer timerTriggerWindowDelay) a sudden
drop in pressure below the inhale trigger sensitivity threshold (monitored function dropPAW ITS holds,
Code 7 line 13 and Code 8 line 11), the ventilator directly moves to the inspiration phase.

The transition from inspiration to expiration is automatically performed when the pressure goes be-
yond the maximum threshold set by the doctor (monitored function pawGTMaxPinsp holds, Code 7
line 5 and Code 8 line 6). At this third refinement level, we have performed the validation and verifica-
tion activities as done for the previous levels.

5 C++ automatic code generation and unit testing

After having modeled the mechanical ventilator controller with AsmetaL and verified the specifica-
tion, we have automatically generated the C++ code using the Asm2C++ tool starting from the last
model, MVMController03.asm. The tool generates two different files, MVMController03.h and MVM-
Controller03.cpp, which contain the translation of the ASM model as a C++ class. During the C++ code
generation, each ASM rule is translated into a class method. An example of the content of the MVMCon-
troller03.cpp file is reported in Code 9, which contains the C++ translation of the two rules previously
shown in Code 8.

Besides the source code implementing the ASM in C++, we have automatically generated the unit
tests in C++ for that code. The automatic test generation is performed by the ATGT tool, which can exploit
both the counterexamples given by the model checker and random traces generated by the ASMETA
simulator. ATGT produces abstract tests as sequences of ASM states. These tests are then concretized
using the Catch2 framework3 and used for performing unit testing on the C++ code (see Code 10).
Each test contains the declaration of the object under test (the mvmcontroller03 in our case). Then, the

3https://github.com/catchorg/Catch2

https://github.com/catchorg/Catch2
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1 [...]
2 void MVMController03::r runPCVInsp(){
3 if (!stopVentilation[0]){ ... }
4 if (expired(timerInspirationDurPCV)){
5 if ((respirationMode == PCV)){
6 if (cmdInPause){
7 r InPause();
8 } else if (cmdRm){
9 r rm();

10 } else {
11 r PCVStartExp();
12 }
13 }
14 } else if (pawGTMaxPinsp)
15 r PCVStartExp();
16 }

void MVMController03::r runPCVExp(){
if (stopVentilation[0]){

r stopVent();
} else if (stopRequested){

r stopVent();
} else if (expired(timerExpirationDurPCV)){

if (cmdExPause){
r exPause();

}else{
r PCVStartInsp();

}
} else if (expired(timerTriggerWindowDelay) & dropPAW ITS){

r PCVStartInsp();
}

}
[...]

Code 9: Example of the MVMController03.cpp file

[...]
TEST CASE( ”my test 0”, ”my test 0”){

// instance of the SUT
MVMController03 mvmcontroller03;

// init controlled with monitored term
mvmcontroller03.initControlledWithMonitored();

// check controlled variables
REQUIRE(mvmcontroller03.state[0] == STARTUP);

// set monitored variables
mvmcontroller03.startupEnded = true;
mvmcontroller03.mCurrTimeSecs=1;

// call main rule
mvmcontroller03.r Main();
mvmcontroller03.fireUpdateSet();

// check controlled variables
REQUIRE(mvmcontroller03.state[0] == SELFTEST);

// set monitored variables
mvmcontroller03.mCurrTimeSecs=2;

// call main rule
mvmcontroller03.r Main();
mvmcontroller03.fireUpdateSet();

[...] }

Code 10: Example of a Catch2 test case

following steps are repeated: (I) the monitored functions are set (such as startupEnded in Code 10),
(II) the possible controlled functions, which need to be initialized to the same value of the monitored
ones, are set using the initControlledWithMonitored() method, (III) the main rule r Main() is executed,
(IV) the update set is fired using the fireUpdateSet() method, (V) the values of controlled functions are
checked against the expected ones (for instance, state in Code 10). For the MVM controller, the testing
process requires the simulation of the time as well: the time is represented as a monitored function
whose value is incremented by one second at each step. As shown in Code 10, mCurrTimeSecs takes
value initially 1 and is then incremented by 1 at each step.

In this case study, we have used the random test generation based on the use of the simulator. The
user can configure the test generation process by choosing the number of tests to be generated and the
number of steps each. We have generated 50 tests of 50 steps each and we have verified the compliance
of the C++ code with the MVMController03.asm model. We have measured the code coverage and found
that with the automatically generated tests we have covered 100% of code in terms of instructions of the
MVMController03.cpp and MVMController03.h classes generated from the model. We have investigated
why we have been able to completely cover the generated code and found that the tests, although they
are randomly generated, cover every possible ASM transition, and the tool Asm2C++ does not generate
dead code.
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Figure 4: Arduino code generation process

{
”arduinoVersion”: ”UNO”,
”stepTime”: 0,
”bindings”: [
{

”mode”: ”DIGITALOUT”,
”function”: ”iValve”,
”pin”: ”D8”

},

{
”mode”: ”DIGITALOUT”,
”function”: ”oValve”,
”pin”: ”D7”

},{
”mode”: ”DIGITALIN”,
”function”: ”startupEnded”,
”pin”: ”A5”

},

{
”mode”: ”DIGITALIN”,
”function”: ”selfTestPassed”,
”pin”: ”A4”

},

[...]

}

Code 11: Example of the a2c configuration file

6 Code deployment on Arduino

Exploiting the Asm2C++ tool, ASMETA allows the deployment of the C++ code as an Arduino sketch
too [15]. The entire process is depicted in Fig. 4. After the generation of the .h and .cpp files as
explained in Sect. 5, Asm2C++ automatically generates an .a2c file. This configuration file is used
for binding each ASM function to an Arduino physical pin. It must be completed by the user who has
to insert the correspondence between Arduino physical pins and functions defined in the ASM model.
For example, in Code 11, input and output valves (iValve and oValve) are mapped on digital output pins,
while the monitored functions are used to set if the current phase is finished or not (e.g. startupEnded
and selfTestPassed) are read using digital input pins.

Having completed the .a2c file with the correct mappings, Asm2C++ generates two additional files:
the hw.cpp and the .ino. The former (see Code 12) implements the hardware-specific methods, i.e.
those related to the reading of inputs (getInputs() method in Code 12) and writing of outputs (setOutputs()
method in Code 12) through physical pins. The latter (see Code 13), contains the execution policy to
run the ASM on Arduino and performs cyclically the following operations: (i) getInputs() reads the
inputs through digital and analog pins, (ii) r Main(), represents the main rule of the ASM and executes
all the rules, (iii) setOutputs(), sends the output values through the physical Arduino pins to the output
components, (iv) fireUpdateSet(), updates the values of controlled functions to be used in the next state.

When modeling time we have exploited the TimeLibrary for time management. However, Arduino
has very limited support for time and timers. We decided to use the millis instruction to implement
temporized operations. millis returns the number of milliseconds passed since the Arduino board
began running the current program and we have translated all the operations over the timers in terms of
this function. We have chosen the hardware to be used in our Arduino-based implementation of the
simplified MVM as follows (see Fig. 5):

• Arduino Uno, that executes the state machine;
• 3 LEDs used to communicate the status of input and output valves and the apnea alarm; one 1602

LCD display, which shows the current state;
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#include ”MVMController03.h”

void MVMController03::getInputs(){
startupEnded = (digitalRead(A5) == HIGH);
selfTestPassed = (digitalRead(A4) == HIGH);
[...]

}
void MVMController03::setOutputs(){

if (iValve[0] != iValve[1]){
if(iValve == OPEN)

digitalWrite(8, LOW);

else
digitalWrite(8, HIGH);

}
if (oValve[0] != oValve[1]){

if(oValve == OPEN)
digitalWrite(7, LOW);

else
digitalWrite(7, HIGH);

}
[...]

}

Code 12: Extract of the hw.cpp file containing hardware-specific functions

#include”MVMController03.h”

void setup(){
pinMode(8, OUTPUT);
// ... set all the other outputs
pinMode(A2, INPUT);
// ... set all the other inputs

}

MVMController03 mvmcontroller03;

void loop(){
mvmcontroller03.getInputs();
mvmcontroller03.r Main();
mvmcontroller03.setOutputs();
mvmcontroller03.fireUpdateSet();

}

Code 13: Example of the .ino file containing the implementation of the ASM execution

• 9 buttons, which simulates all the monitored functions contained in the ASM, namely dropPAW -
ITS, pawGTMaxPinsp, cmdRm, cmdInPause, cmdExPause, flowDropPSV, respirationMode, sto-
pRequested, startupEnded, selfTestPassed, and startVentilation. They represent both user inputs
and external breathing events.

One can play with the MVM on Arduino by pressing the buttons and observing the status of the
MVM. However, as it is, it provides a very limited user interface. To enable a more meaningful user
experience, we have developed a custom-made Java breathing simulator. It is based on a simple lung
model [19] whose electrical equivalent circuit is shown in Fig. 7. The breathing simulator allows the
simulation of different patients, by setting the right values for resistance and compliance of their lungs, it
can provide the measure of the pressure and flow of air in the patient lungs, and moreover, it can simulate
events related to the patient’s breathing like a drop in the pressure when the patient starts. We connected
the software simulator to the MVM on the Arduino using a serial port - so the MVM can communicate
the status of the valves and therefore set the pressure of the ventilator and can read breathing events. An
example of the breathing simulation is shown in Fig. 6.

We have tested the Arduino version of the MVM and a video, showing the functioning in all the
ventilation modes, can be found at the following link https://youtu.be/a3fhqLpYVMI.

7 Discussion and Conclusions

In this section, we try to address the concerns and answer the questions proposed by the organizers.
We believe that applying ASMETA to a real case study, that has been successfully completed with our
direct involvement but without the use of formal methods, can put us in the privileged position to better
understand the strength and weaknesses points of ASMETA and what is still needed to make it applicable
in the future. Regarding applicability, ASMETA has never been applied in industrial projects, but we
have used it in industrial case studies provided in several contexts like in the medical sector [6, 13],
automotive [8], and avionics [10] to name a few. Barriers to the wide adoption of a formal method do

https://youtu.be/a3fhqLpYVMI
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Figure 5: The Arduino version of the MVM Figure 6: Example of the breathing simulation

Figure 7: RC equivalent circuit of a human lung

exist [20, 21] and thanks to this work we have a better vision of what we need to do in order to favor the
use of ASMETA in an industrial setting.

We have always given great importance to automation and our method is well supported by a set
of tools (as explained in Sect. 2). In this case study, we did not suffer from the lack of a specific tool
supporting a task. However, as explained below, our tools have different levels of maturity and sometimes
the tool support has not been exhaustive.

For this work, integration among tools and techniques has played an important role. We think that
having a model on which several techniques can be applied, including V&V, testing, and code generation
is crucial for the use in the context of critical systems. Some integration among ASMETA tools is still
work-in-progress. For instance, the TimeLibrary is not directly supported by the test generator tool and
the support for the model checker NuXmv is rather new and it has some problems.

Another aspect to be considered is the integration of a formal approach into the engineering process.
For MVM, as for some critical software lately [23], the software development process has been agile,
with frequent changes in requirements that are then implemented in the code in a continuous integration
way. ASMETA, as any Model-Driven Engineering approach, struggles in the integration with agile
processes. For instance, direct modifications of the generated source code risk being lost if a change in
the specification is performed and a new version of the code is generated.

For complex systems, modeling their entire behavior in one shot may be difficult. Thus, with the
ASMETA methodology, users can incrementally add details in models using the refinement technique
(see Sect. 4) or including already existing modules. Refinement and modularity are exploitable also when
defining scenarios for model validation. We envision the application of a formal process only to core
components of the entire system. In the case of the MVM ventilator, for example, only the controller has
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been modeled by using ASMETA and the code obtained automatically from the specifications. Although
for other MVM components, like the alarm system, a formal methodology could be a good fit, for
other parts, such as graphical widgets or sensor drivers, formal specifications are possible but sometimes
useless or even not suitable, especially if the source code is already provided or it can be reused (for
instance for sensor drivers). In any case, the methodology must foresee a phase in which the whole
code (the one obtained through formal specification and the one handwritten) is integrated (and tested)
for building the complete system. In terms of the hardware platform, Arduino is a good choice when it
comes to developing prototypes. However, for the real medical device, it should be replaced with a more
robust one (MVM actually embeds a microcontroller that is Arduino code compatible).

One undoubted advantage regarding the usefulness of using a formal approach is that the certification
process, if required, is easier to complete. The main standard for medical software certification to be
considered is the IEC 62304 [1]. It does not prescribe a specific life cycle model but defines the process,
activities, and tasks that the life cycle model has to follow.

In [6], we have identified how ASMs can be used to satisfy the process and how the activities pre-
scribed by the standard can be mapped to activities performed by using our formal approach. After
requirements are captured by models, the verification and validation activities are straightforward, and
the desired system behavior is automatically transferred to the generated code. Moreover, the formal
process allows for requirements traceability which is required by the certification. Wrt the MVM agile
process used for deploying the device and that required a huge effort to provide and guarantee require-
ments traceability, here, the use of ASMETA formal approach makes traceability easier to demonstrate
(e.g. by mapping requirements to rules). When it comes to the usefulness in terms of the rapidness of
code development, with the ASMETA framework and following the process described in this paper, we
have been able to obtain the final code of the MVM controller in only a couple of days. However, one
must consider that when modeling with ASMETA we already knew requirements, having contributed to
the device development.

One activity whose usefulness is sometimes questioned is the unit test generation. After all, if the
code is automatically generated from models, is there any need to validate it with tests derived from
the same specification? We believe that there are at least three motivations: (i) the source code could
be modified and the tests can check that the behavior as specified by the ASM is preserved; (ii) the
translation from ASM to C++ itself must be validated, so unit tests check the conformance between the
ASM and the C++ code; (iii) for certification purposes, source code must come with a test suite that
provides confidence in its correctness.

Over the years, we have strived to improve ASMETA usability [7] by developing it as a set of Eclipse
plugins, and feedbacks from our students, as well as the application of the method to competitive case
studies, have been the basics for further improvements and extensions. However, it remains an academic
tool whose stability and maintenance cannot reach the level often required in an industrial setting (and
this was one of the reasons why we decided not to use it during the real MVM development). Moreover,
the improvements introduced in the years have made ASMETA similar to higher-level programming
languages, as for other formal methods. Nevertheless, the pseudo-code style and freedom of abstrac-
tion in ASMs allow for capturing of requirements at a very high-level of abstraction in a form that is
understandable by the stakeholders.

In conclusion, we have applied ASMETA to assemble a prototype of a system which we have con-
tributed to develop and deploy in the recent past and we have been able to evaluate the feasibility of
our formal process. Although we believe that there is still some work to be done in order to provide the
necessary stability and maturity of the tools and of the process, we were able to carry on the development
of the MVM controller from the requirement specification to the code.
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refinement. In Rocco De Nicola & Eva Kühn, editors: Software Engineering and Formal Methods: 14th Inter-
national Conference, SEFM 2016, Held as Part of STAF 2016, Vienna, Austria, July 4-8, 2016, Proceedings,
Lecture Notes in Computer Science, Springer International Publishing, Cham, pp. 253–269, doi:10.1007/978-
3-319-41591-8 17.

[10] Paolo Arcaini, Angelo Gargantini & Elvinia Riccobene (2017): Rigorous development process of a safety-
critical system: from ASM models to Java code. International Journal on Software Tools for Technology
Transfer 19(2), pp. 247–269, doi:10.1007/s10009-015-0394-x.

[11] Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene & Patrizia Scandurra (2011): A model-driven pro-
cess for engineering a toolset for a formal method. Software: Practice and Experience 41, pp. 155–166,
doi:10.1002/spe.1019.

[12] ASMETA (ASM mETAmodeling) toolset. https://asmeta.github.io/.

[13] Andrea Bombarda, Silvia Bonfanti & Angelo Gargantini (2019): Developing Medical Devices from Abstract
State Machines to Embedded Systems: A Smart Pill Box Case Study. In: Software Technology: Methods and
Tools, Springer International Publishing, Cham, pp. 89–103, doi:10.1007/978-3-030-29852-4 7.

[14] Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini & Elvinia Riccobene (2021): Extending ASMETA
with Time Features. In: Rigorous State-Based Methods, Springer International Publishing, pp. 105–111,
doi:10.1007/978-3-030-77543-8 8.

http://dx.doi.org/10.1063/5.0044445
http://dx.doi.org/10.1145/1134285.1134406
http://dx.doi.org/10.1007/978-3-319-50230-4_12
http://dx.doi.org/10.1007/978-3-319-50230-4_12
http://dx.doi.org/10.1007/978-3-030-76020-5_13
http://dx.doi.org/10.1016/j.scico.2017.07.003
http://dx.doi.org/10.1007/978-3-030-54994-7_6
http://dx.doi.org/10.1007/978-3-030-48077-6_25
http://dx.doi.org/10.1007/978-3-319-41591-8_17
http://dx.doi.org/10.1007/978-3-319-41591-8_17
http://dx.doi.org/10.1007/s10009-015-0394-x
http://dx.doi.org/10.1002/spe.1019
https://asmeta.github.io/
http://dx.doi.org/10.1007/978-3-030-29852-4_7
http://dx.doi.org/10.1007/978-3-030-77543-8_8


A. Bombarda, S. Bonfanti, A. Gargantini & E. Riccobene 29

[15] Silvia Bonfanti, Marco Carissoni, Angelo Gargantini & Atif Mashkoor (2017): Asm2C++: A Tool for Code
Generation from Abstract State Machines to Arduino. In: Lecture Notes in Computer Science, Springer
International Publishing, pp. 295–301, doi:10.1007/978-3-319-57288-8 21.

[16] Silvia Bonfanti, Angelo Gargantini & Atif Mashkoor (2019): Design and validation of a C++ code gen-
erator from Abstract State Machines specifications. Journal of Software: Evolution and Process 32(2),
doi:10.1002/smr.2205.

[17] Egon Börger (2003): Abstract State Machines : a Method for High-Level System Design and Analysis.
Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-642-18216-7.

[18] Egon Börger & Alexander Raschke (2018): Modeling Companion for Software Practitioners. Springer Berlin
Heidelberg, doi:10.1007/978-3-662-56641-1.

[19] D. Campbell & J. Brown (1963): THE ELECTRICAL ANALOGUE OF LUNG. BJA: British Journal of
Anaesthesia 35, pp. 684–692, doi:10.1093/bja/35.11.684.

[20] Hubert Garavel, Maurice H. ter Beek & Jaco van de Pol (2020): The 2020 Expert Survey on Formal Methods.
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