
M. Gleirscher, J.v.d. Pol, J. Woodcock (Eds.):
First Workshop on Applicable Formal Methods (AppFM 2021).
EPTCS 349, 2021, pp. 51–67, doi:10.4204/EPTCS.349.4

© Y. Sun et al.
This work is licensed under the
Creative Commons Attribution License.

F-IDEs with Features and VCs Designed to Assist Human
Reasoning When Verification Fails

Yu-Shan Sun
Clemson University
Clemson, SC, USA

yushans@clemson.edu

Daniel Welch
Pennsylvania State University

University Park, PA, USA
dtw5246@psu.edu

Murali Sitaraman
Clemson University
Clemson, SC, USA

msitara@clemson.edu

This paper summarizes our efforts to aid human reasoning when verification fails through the use of
two distinct Formalization Integrated Development Environments (F-IDEs) that we have developed.
Both environments are modular and facilitate reasoning about the full behavior of object-based code.
The first environment, referred to as the web-IDE, has been used for several years to teach aspects
of formal specification and verification, including why and where verification conditions (VCs) arise
and how to use them when verification fails. The second F-IDE, RESOLVE Studio, remains exper-
imental, but is a more fully-fledged environment backed by a sequent-based VC generator that pro-
duces VCs with fewer extraneous givens. While the environments and VC generation techniques are
necessarily language specific, the principles of alternative VC generation methods, F-IDE features,
and observations about their impact on novices and experienced users are more generally applicable.

1 Introduction

As the importance of tools and environments with features for supporting software verification is becom-
ing better understood, a variety of systems have been developed to fill this need. Indeed, the usability of
auto-active [20] specification and verification languages such as Why3 [7], Dafny [19], RESOLVE [28],
and AutoProof [31]—in which users indirectly interact with automated provers through formal contracts
such as loop invariants—hinge almost entirely on the feedback provided to users through their respective
front-end environments.

Auto-active style feedback typically takes the form of a collection of necessary and sufficient ver-
ification conditions (VCs) for proving correctness of code w.r.t. some formal specification. Different
tools report (failed) VC details differently. For example, Dafny tends to report assertion failures through
Z3-generated counter examples [24], whereas AutoProof provides a higher-level English explanation
for each VC. While each tool has its distinct characteristics, they share the common need of providing
effective, non-ambiguous support to users (preferably of all experience levels) when verification fails.

The F-IDE contributions of this paper fall under the categorizations of usefulness and ease of use. We
consider how VC usefulness is achieved and how it can be effective. We detail how ease of understanding
for a VC is achieved, focusing, for example, on how reasoning complexity is simplified for beginners by
minimizing givens.

When necessary and sufficient VCs are generated and proved correct, their details are understandably
of little consequence to software engineers. So why focus on VC generation at all? We consider two
reasons. The first is practical: when verification fails, VCs represent a first, crucial foothold for novices
and experts alike when attempting to identify which fixes are needed at the source code or specification
level. The second reason is pedagogical: even when verification succeeds—students should be able to
examine the details of a VC, understand which line of code (or construct) generated it, and why it was
provable (e.g., making connections to concepts learned in discrete math courses). Consequently, easing

http://dx.doi.org/10.4204/EPTCS.349.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

52 F-IDEs Designed to Assist Human Reasoning When Verification Fails

Figure 1: RESOLVE’s web-based F-IDE (top), and RESOLVE Studio (bottom).

the human reasoning process (through simpler, smaller VCs) and supporting student inquiry into what
happens when a program is verified are chief motivations for the technical VC generation enhancements
and tool features discussed in this paper.

We highlight aspects of two F-IDEs that we have built as the primary means of viewing VCs, prov-
ing, and debugging code that has failed to verify. The language targeted by both environments is RE-
SOLVE [28]—an integrated specification and programming language that is imperative and object-based.
The language—with variants adapted to popular languages such as C++ and Java [14]—has been used
to teach modeling and reasoning principles (such as Design by Contract) from beginning undergraduate
CS education to graduate level courses. Over 25,000 students across multiple institutions have benefited
from from these efforts over two decades [5, 14, 15].

The older of the two environments is the web-IDE (Fig. 1, top), which has been in use for over a
decade as the primary development environment for RESOLVE.1 The second, more recent F-IDE is a
desktop based environment named RESOLVE Studio (Fig. 1, bottom). Built on top of the JetBrains IDE
platform,2 RESOLVE Studio combines the usual modern IDE amenities with a version of the RESOLVE
compiler that includes the revised VC generation scheme detailed in this paper. Additionally, in an
effort to guide the design and application of proof rules, RESOLVE Studio allows users to interactively
derive VCs from Hoare style triples. While this environment remains under development, it has seen
some usage (albeit limited) in a graduate programming languages course to construct specifications using

1https://resolve.cs.clemson.edu/teaching
2https://www.jetbrains.com/

https://resolve.cs.clemson.edu/teaching
https://www.jetbrains.com/

Y. Sun et al. 53

small, student-defined mathematical theories. The contributions of this paper are twofold:

• A general demonstration of how specification and auto-active verification of software can be sup-
ported in the context of two F-IDEs.

• A revised set of proof rules for generating sequent-based VCs in a parsimonious manner that omits
irrelevant givens with the intent of improving human reasoning and VC comprehension.

The paper is organized as follows. Section 2 provides background on the RESOLVE language.
Section 3 illustrates the need for simpler VCs by examining a failed VC in an older version of our web-
IDE. Section 4 provides a high level overview of RESOLVE’s VC generation process, while section 5
details the proof rules that enable generation of parsimonious VCs. Section 6 shows VC feedback and
other features in RESOLVE Studio. Sections 7 - 9 contain respectively: an experimental evaluation of
the revised proof rules, related work, and conclusions with directions for future work.

2 RESOLVE Background

RESOLVE [28] is an imperative, object-based programming and specification framework designed to
support modular verification of sequential code. Every RESOLVE component has a formal interface
specification called a Concept. Below is a snippet of one such concept for bounded queues.

Concept Queue_Template (type Entry; evaluates Max_Length : Integer);
requires Max_Length > 0;
uses String_Theory;

Type family Queue is modeled by Str(Entry);
exemplar Q;
constraints |Q| ≤ Max_Length;
initialization ensures Q = Λ; // note: Q = Λ implies |Q| = 0

The concept shown is parameterized by a generic type Entry and an integer Max_Length that places
an upper bound on the number of entries that can be stored. This bound must be positive (as per the mod-
ule level requires clause) and may be an arbitrary expression of type Integer (as per the evaluates
parameter mode). The imported module, String_Theory, gives the concept access to a mathematical
theory of strings—including operators for: string length | • |, concatenation ◦, the empty string Λ, and a
singleton string formation function 〈•〉.

2.1 Abstract Specification

Specifications in RESOLVE are model-based: that is, each programmatic type is conceptualized through
the Type family construct, which, in this case, declares that the (program) type Queue is mathemat-
ically modeled as a string of generic entries, i.e.: Str(Entry). The exemplar queue, Q, that follows
gives specifiers a formal name to an example queue within the declaration. It is used immediately there-
after in the constraints to assert that (1) not all strings are models of valid queues, but only those of
length Max_Length or less, and (2) that queues are empty upon initialization.

Operations are declared after the model. Below is one such operation for Enqueue.

Operation Enqueue (alters e : Entry; updates Q : Queue);
requires |Q| < Max_Length;
ensures Q = #Q ◦ 〈#e〉;

54 F-IDEs Designed to Assist Human Reasoning When Verification Fails

Formal contracts for Enqueue are communicated through requires and ensures clauses (i.e.:
pre- and post-conditions). The contract also encompasses specification parameter modes. A mode of
updates means that while the value of the incoming queue (#Q) may be meaningful, its outgoing value
(Q) is to be updated in the manner specified in the ensures clause. The ensures clause can be read
as follows: “the outgoing value of Q is equal to the #-denoted incoming queue concatenated with the
singleton string containing the incoming value of entry e.” The alters mode means that the incoming
#e may contain a meaningful value, but its outgoing value e is left unspecified. This gives implementers
of the Enqueue operation the most flexibility as to which value is stored in the parameter e after a call to
Enqueue completes.

To facilitate modular reasoning, the language enforces a strict separation between the abstract state
expressed in interface specifications and executable, implementation level code. Thus, implementations
must provide the correspondence information (abstraction functions or relations) necessary to connect the
concrete state (in the implementation) to the abstract state (in the interface). Readers interested in a more
complete description of RESOLVE should consult [11, 13, 28, 29] or one of the case studies [22, 30, 34]
carried out using the language.

3 The Need for Simpler VCs: Examining a Failed VC

While even modest enhancements made to our presentation of VCs (e.g., annotating the source of VCs
next to the line(s) on which they arise) have helped, the complexity of debugging VCs for beginners is
considerably increased when they include a large, obfuscating number of irrelevant givens.

Figure 2: A VC that fails to prove that stack S is restored; note: the version of RESOLVE pictured does
not accept non-ASCII notations—so Empty_String is used instead of Λ, <..> instead of 〈..〉, etc.

For illustration purposes, Fig. 2 shows a buggy implementation of a Do_Nothing operation on stacks3

which requires |S| >= 1, but fails to verify since the last call to Push is commented out. In this case,
the failed VC was attempting to prove that S had been restored to its original state—as per the restores
parameter mode on S which automatically adds S = #S as a conjunct to Do_Nothing’s ensures clause.
After pressing the MP-Prove button, VCs are generated for pre-conditions of invoked operations, in
addition to the post-condition of the operation being proved. Givens added to each VC arise from module
level requires clauses and external constraints from imported modules.

The process is completed when all VCs are verified or the system times out. Since many initial
student attempts contain errors and fail to verify, to provide quicker feedback, the timeout has been set

3Stacks and queues are modeled the same—though their operations (and specs.) differ

Y. Sun et al. 55

to be minimal on the web-IDE at the risk of not being able to discharge some otherwise provable VCs.
Further, once at least three VCs fail to prove, the other VCs are not attempted. Hovering over the orange
VC badges on specific lines gives information about the source of the VC(s) that arise from that line.

4 VC Generation Process

Generation of VCs that are both necessary and sufficient in order to prove that an implementation is
correct w.r.t. its specification is a syntax-directed process. A more detailed description of RESOLVE’s
VC-derivation scheme and its proof rules can be found in [13, 29].

Prior to the application of any statement level proof rules is a pre-processing step in which user code
is logically grouped into assertive-code blocks wherein all mathematical assertions are made explicit.
The traditional Hoare triple of the form {P} c {Q} looks like the following in our presentation, as
assertive code may include any number of preceding statements or assertions such as Assume P:

C \ c; Confirm Q;

Here, C is a context containing a collection of typed symbols, c is a sequence of zero or more
program statements, and Q is an assertion that must be confirmed to hold at the end.

Throughout the remainder of the paper, we employ a san-serif style font when typesetting the names
of proof rules, as well as any meta-operators we define along the way.

4.1 Abstract Syntax

RESOLVE’s specification language is built on a many-sorted first order logic organized into several
constituent parts. First, we assume an initial set of sort symbols S = {SSet, ..}∪{B}. Here, SSet is the
proper class of sets and the notation T : SSet introduces a new user defined sort T into context.

• A set T of nullary constants c1, ..,cn : T ∈T where c1,cn could also have any other sorts in S.

• A set X of variables x,y,z : T ∈X representing arbitrary elements which range over a domain T .

• A set F of typed function symbols f ,g, ..,h : T1× ..×Tn→ T which range over F . Here T1× ..×
Tn represents the domain, while the (non-subscripted) T represents the co-domain.

• Lastly, a set P of predicate symbols p,q, ..,r : T1× ..×Tn → B; which also includes a reserved
binary predicate for equality (=) as well as nullary predicate symbols for true and false. We denote
the arity of a given function or predicate o as ar(o).

These sets constitute the language’s vocabulary V = T ∪X ∪F ∪P; where V can be enriched via
the definition of new constants, functions, and predicates in RESOLVE’s object theories. As a result,
these sets are not necessarily disjoint in practice. So determining whether a nullary “symbol” denotes a
variable (e.g, bound under a quantifier) or the name of a module level definitional constant is dependent
on the current context, C . With these categories fixed, we now define formulas (which denote truth
values) and terms (which serve as the fundamental building blocks of formulas).
Definition 4.1. The set of formulas and terms of our specification language over vocabulary V is given
by the following abstract syntax.

FormV 3 φ ,ψ ::= P(t1, .., tar(P)) | true | false | ¬φ | φ ◦ψ|Qx̄n,φ | t

TermV 3 t,y,τ ::= t0(t1, .., tar(t0)) | t→ y | t0× ..× tn | λ x̄n, t | · · · | (ψ) | #? s

where ◦ ∈ {∧, ∨, ⇒, ⇔} and Q ∈ {∀, ∃, !∃}.

56 F-IDEs Designed to Assist Human Reasoning When Verification Fails

Formulas consist of the usual binary connectives and quantifiers while terms permit (respectively)
function application,4 function (arrow type) constructors, Cartesian products (×), lambda abstraction,
parenthesized formulae, and terminal symbols s. We use the notation x̄n as shorthand for a list of variable
binders: x1, ..,xn : τ of term/type τ .5

Next, we establish our syntax for assertive code fragments.
Definition 4.2. A fragment of assertive code consists of zero or more program statements interleaved
with assertive statements of the form:

StmtV 3 s ::= Assume φ ; | Confirm φ ; | Stipulate φ ; | v := t; | · · · | id(y1, ..,yn);

AsrtCode 3 a ::= s∗ Confirm
∧

seq+; Seqnt 3 seq ::= Γ ` ∆

where Γ and ∆ are sets of well-formed-formulas (wffs).
The statement production rule admits verification language specific statements (including Assume

and Confirm clauses—which we discuss in Sect. 5) as well as strictly programmatic ones such as func-
tion assignment (v := t) and procedure calls (id(y1, ..,yn)). We omit any remaining programmatic state-
ments for brevity.

Lastly, since our parsimonious rules rely on the ability to compute sets of free variables from specifi-
cations, we employ a contexted “specification free variable” function SFV : C ×TermV →℘(TermX).
The following example demonstrates the function’s behavior.
Example 4.1 (SFV). After processing theory modules for mathematical Booleans, Integers, and Strings,
suppose C contains the following constants and predicates:

C = {Λ : SStr, ∧ : B×B→ B, | • | : SStr→ N, 0 : Z, · · · }.

The meaning of the types assigned to the constants should be reasonably familiar with the excep-
tion of SStr—which is a user-defined sort representing the proper class of all heterogeneously typed
(math) strings. Next, we enrich C with the following operation signature, where the programmatic type
Static_Array is mathematically modeled by Z → Entry.

C ′ = C ∪{ Oper Op (e : Entry; Q : Queue; A : Static_Array);
ensures Q 6= Λ ∧ e = #A(0) ∧

A = λj : Z, if |Q| = j then #e else #A(j); } \

Denoting the ensures clause as ψ , then C ′ \ SFV(ψ) yields: {Q, #A, A, #e, e}. Note that constants
like Λ, | • |, etc. and bound variables j were excluded, while specificational (program) variables (e.g. e,
#e) were included.

4.2 Sequent Calculus Review

Formally, the final Confirm assertion (which always terminates a fragment of assertive code) is repre-
sented as a conjunction of Gentzen-style sequents G1, · · · ,Gn, each of which constitute the final VCs
produced by our goal-directed program proof process.

Each Gentzen sequent has the form G ≡ ϕ1, · · · ,ϕm ` ψ1, · · · ,ψn where m and n are non-negative
and ϕ1, ..,ϕm, ψ1, ..,ψn denote sets of wffs within a given sequent’s antecedent (Γ) and succedent (∆),
respectively. The wffs in these sets are added from different specification contexts based on our proof
rules. Each sequent G semantically adheres to the usual interpretation:

∧m
i=1 ϕi `

∨n
j=1 ψ j.

4Outfix and infix style applications are also accepted, though we omit these for brevity
5Note that this effectively makes the specification language higher order, as one can write, e.g., ∀ f : T → T, f (x); we forego

discussion of this and its ramifications on proof automation—as this paper is primarily concerned with tools and VC-generation

Y. Sun et al. 57

NotLeft
Γ ` φ , ∆

Γ, ¬φ ` ∆
AndLeft

Γ, φ ,ψ ` ∆

Γ, φ ∧ψ ` ∆
OrLeft

Γ, φ ` ∆ Γ, ψ ` ∆

Γ, φ ∨ψ ` ∆

NotRight
Γ, φ ` ∆

Γ ` ¬φ , ∆
AndRight

Γ ` φ , ∆ Γ ` ψ, ∆

Γ ` φ ∧ψ, ∆
OrRight

Γ ` φ ,ψ, ∆

Γ ` φ ∨ψ, ∆

Figure 3: Standard sequent reduction rules for ¬, ∧, and ∨.

To simplify the VCs, we apply the standard sequent reduction rules shown in Fig. 3 to the antecedents
and succedents of the sequents that make up the final Confirm until they contain only atomic formulas.

We also fix convenience functions SFVset(S) which extracts the sfv set from the wffs in a given set
S, and SFV`(seq) which extracts the sfv set from each side of a given sequent, seq.

4.3 Goal-Directed Proof Rule Application

Once assertive code has been constructed, the approach we use to generate VCs is goal-directed and is
illustrated at a high level in Fig. 4.

Figure 4: RESOLVE’s VC generation scheme.

Starting with the penultimate state-
ment (prior to the final Confirm conjunc-
tion), each statement is eliminated one at a
time via the application of its correspond-
ing proof rule. After each statement rule is
applied, sequent reduction rules and oth-
ers (such as rules for handling equality or
theory-specific rewrite rules) are then ap-
plied to further simplify the formulae in
each sequent.

After all statements have been elimi-
nated via application of their correspond-
ing rules, the conjuncted sequents in the
final Confirm are broken apart and sent
off to RESOLVE’s in-house congruence
closure prover for verification [11, 15].
The particulars of the prover are not directly relevant to this paper. Prover backends with which we
have experimented include specialized decision procedures [1] as well as SMT solvers [30] based on
Z3 [24].

5 Proof Rules for Forming Parsimonious VCs

In this section, proof rules for generating parsimonious VCs are formalized and illustrated on a fragment
of example assertive code. As with the sequent reduction rules, in the proof rules that follow, it is
necessary and sufficient to prove what is above the line in order to prove what follows below the line.

58 F-IDEs Designed to Assist Human Reasoning When Verification Fails

Confirm Rule

Confirm clauses add a sequent with a single goal to the final sequent conjunction. This, and the “assume”
rule that follows in the next section, represent an intermediate type of assertion which generally arise
from the application of other (larger) proof rules. For example, applying RESOLVE’s call rule generates
(within the assertive code) a Confirm clause asserting that the called operation’s argument-specialized
precondition ϕ holds. The confirm rule is given below:

Confirm
C \ c; Confirm

∧
Ψ∪{` ϕ};

C \ c; Confirm ϕ; Confirm
∧

Ψ;

Here and in subsequent rules we employ the turnstile ` as a shorthand sequent constructor. For
example, ` ϕ denotes a fresh sequent with no antecedents and a single wff ϕ in its succedent. In cases
where we wish to add ϕ to the antecedent of some non-empty sequent s, we will write Γs,ϕ ` ∆s where
Γs and ∆s refer to sets of existing wffs in the antecedent and succedent of s, respectively.
Example 5.1. Recalling the math string notation outlined in section 2, suppose the system generated the
following assertive code fragment:

Assume |S| ≤ 2 ∧ |T| ≤ 2 ∧ S = Λ ∧ T = 〈1〉 ◦ 〈2〉;
Confirm (S = Λ ∨ T = Λ) ∧ (|S| + |T| = 2);
Confirm

∧
Ψ;

Application of the Confirm rule yields:

Assume |S| ≤ 2 ∧ |T| ≤ 2 ∧ S = Λ ∧ T = 〈1〉 ◦ 〈2〉;
Confirm

∧
Ψ ∪ { {} ` {(S = Λ ∨ T = Λ) ∧ (|S| + |T| = 2)} };

The VC Generator then simplifies the final confirm with an application of AndRight then OrRight to the
first (and only) sequent’s succedent in the set Ψ, yielding:

Assume |S| ≤ 2 ∧ |T| ≤ 2 ∧ S = Λ ∧ T = 〈1〉 ◦ 〈2〉;
Confirm

∧
Ψ ∪ { {} ` {S = Λ, T = Λ} } ∪ { {} ` {|S| + |T| = 2} };

In future assertive code listings, we omit the set Ψ for brevity.

Parsimonious Assume Rule

Assume clauses add antecedents to sequents in the final Confirm. The key to the new parsimonious
rule, however, is to only add givens that are “relevant” to a given sequent. Conservative variants of our
VC generator simply added each conjunct of an encountered assume clause to the list of givens for each
VC—resulting in VCs with many redundant givens (e.g., Sect. 3). Below is our parsimonious variant of
the original rule.

ParsimoniousAssume
C \ c; Confirm

∧
σ(Ψ,ϕ)

C \ c; Assume ϕ; Confirm
∧

Ψ;

The core addition to our revised rule (aside from the usage of sequents) is the addition of a parsimo-
nious “selection” function σ that is applied to the set of existing sequents Ψ in the final Confirm and the
formula ϕ that is being assumed—i.e., σ(Ψ,ϕ). We define this selection function as follows:

σ : ((S :℘(SqntV))× (ψ : FormV))→℘(SqntV) ,

{s : S | ∀φ : 〈〈ψ〉〉,
if FVC(φ ,〈〈ψ〉〉)∩SFV`(s) 6= /0 then s = Γs,φ ` ∆s else s = Γs ` ∆s}.

Y. Sun et al. 59

Specifically, σ takes a set of existing sequents S along with a formula ψ and produces a set of (po-
tentially modified) sequents. Here, the 〈〈•〉〉 operator is used to split ψ into a list of conjuncts. The
comprehension in the body of σ tests whether or not the transitive closure of all free variables of φ ap-
pearing across of the collection of any conjuncted clauses in ψ (computed via a free-var closure function
FVC(φ ,〈〈ψ〉〉) intersects with the free variables obtained from the existing sequent s. If the intersection
is non-empty, φ is added to the antecedent of s, otherwise s remains unchanged.

While the benefits of the parsimonious assume rule will not be immediately evident from exam-
ple 5.1, its impact on the number of givens in VCs generated by larger programs and algorithms will be
examined further in Sect. 7.

Example 5.2. To illustrate why the FVC function is needed, we consider the following assertive code
(where each specificational free variable is subscripted by a v):

Assume p(cv) ∧ cv = bv ∧ sv = xv

Confirm
∧

{} ` {p(bv)}

Suppose we break apart the Assume clause (i.e., using 〈〈•〉〉) and consider each conjunct isolation, one at a
time, from left to right. The sfv set from the first clause, p(cv) (i.e.: {cv}), does not overlap with the sfv
set from the sequent in the final confirm ({bv}), thus it would not be added as an antecedent. However,
the second clause would be added to the antecedent (since bv overlaps). But the first clause—which has
been since discarded—is needed along with the second in order to prove the goal (the third is rightfully
excluded as it has no overlaps). The FVC closure function solves this problem by combining the sfv set
of a given source clause (in this case p(bv)), with any other clauses in the provided list with overlapping
specificational free variables. For example:

FVC(p(bv), 〈〈p(cv), cv = bv, ... 〉〉) = {cv,bv}

which enables us to add required clauses while still filtering unrelated ones.

Postprocessing Rule: Folding Top Level Equalities

We also introduce a separate assertive code postprocessing/simplification rule that performs substitutions
for equalities appearing as top level formulas in a given sequent’s antecedent. Here, such equalities must
be of the general form v = t, where v ∈ SFVset(Γ−{v = t})6.

ApplyEqLeft
C \ Confirm

∧
ϕi[v t] ` δ j[v t]

C \ Confirm
∧

ϕ1, · · · ,ϕn, v = t ` δ1, · · · ,δm
where ϕi ∈ Γ,δ j ∈ ∆ and i≤ |Γ|, j ≤ |∆|

Returning to example 5.1, since ApplyEqLeft requires v = t to appear as a top-level formula in the
antecedent (both of which are currently empty) and that all assertive statements prior to the final confirm
clause are eliminated, the rule cannot yet be applied. Thus, we must first apply the ParsimoniousAssume
rule which yields:

Confirm
∧

{|S| ≤ 2, |T| ≤ 2, S = Λ, T = 〈1〉 ◦ 〈2〉} ` {S = Λ, T = Λ}
{|S| ≤ 2, |T| ≤ 2, S = Λ, T = 〈1〉 ◦ 〈2〉} ` {|S| + |T| = 2};

6The notation ϕ[v t] in the rule denotes the substitution of a variable v for a term t in clause ϕ

60 F-IDEs Designed to Assist Human Reasoning When Verification Fails

Following this, the VC generator’s simplifier then applies any applicable sequent based reduction
rules,7 which, in this case, consists of four back-to-back applications of ApplyEqLeft (two for each
sequent), resulting in:

Confirm
∧

{|Λ| ≤ 2, |〈1〉 ◦ 〈2〉| ≤ 2} ` {Λ = Λ, (〈1〉 ◦ 〈2〉) = Λ}
{|Λ| ≤ 2, |〈1〉 ◦ 〈2〉| ≤ 2} ` {|Λ| + |〈1〉 ◦ 〈2〉| = 2};

The first sequent is provable via the trivially true equality: Λ = Λ (recall that since each wff in the
succeedent is disjuncted, this trivial equality makes the entire succeedent true). The second follows from
application of various corollaries available in our theory of strings including, e.g.:

Corollary Len1: ∀ α, β : SStr, |α ◦ β| = |α| + |β|;

as well as results involving natural numbers, +, and the base case of our string theory’s inductively
defined length | • | function (which establishes |Λ| = 0).

Note that while one could conceivably apply additional rules (such as reflexivity) to “close/prove”
sequents on the fly during VC generation, we instead choose dispatch each VC only at the proving
stage for consistency and reporting purposes—e.g.: displaying results after a “prove” button is pressed.
Otherwise, a proved, missing VC may be surprising or misleading to a learner.

Improving Verifier Feedback for Contradictory Code

The process of removing irrelevant givens requires care, as it can lead to incompleteness that negatively
impacts verifier feedback. Consider, e.g, the contradictory fragment of code starting with (A) in Fig. 5.

Figure 5: Deriving a vacuously true sequent from contradictory nested if-statements using a variant of
the Assume rule called Stipulate

While the VC generator sets up assertive code for all nominal paths through the body, Fig. 5 focuses
on the derivation where the innermost if-statement’s body is presumed to execute. Note that each if-
statement’s condition is translated by the system into a Stipulate statement—meaning any control
predicates resulting from the application of proof rules to If, While, etc. statements always get included
as antecedents in the final confirm’s sequents (regardless of variable overlap). To see why Stipulate
is needed, consider step (E) in Fig. 5 and replace each Stipulate keyword with Assume and proceed
with the derivation. Since there are no overlaps between the assumed clauses and the final confirm, each

7Beyond the traditional statement rules, we broadly categorize any rule involving the ` meta operator as a sequent rule

Y. Sun et al. 61

would be discarded, leaving the unprovable sequent ` {1 = 2} to timeout during a proof attempt. This is
not advantageous from a feedback perspective, as student code often contains similar contradictions and
unreachable logic (though perhaps less obvious ones). Under this approach, vacuously true VCs can be
flagged and reported to the user—identifying suspect code.

6 Sequent-Based VC Generation in RESOLVE Studio

In this section, using a sorting example, we provide an overview of the VC reporting, simplification, and
derivation tracing features included in our second environment, RESOLVE Studio.

6.1 Example: Fully Generic Sorting

For a more complex example, we consider the specification and implementation of a generic sorting
algorithm for queues. However, rather than adding a sort operation to the Queue_Template concept
(which would require updating each existing implementation) we instead use an enhancement module—
which allow users to write layered code for secondary operations using the primary operations of the
base concept (in this case, Queue_Template). The queue Sorting_Capability enhancement is below.

Enhancement Sorting_Capability (Def E: Entry × Entry −→ B) for Queue_Template;
uses Basic_Ordering_Theory, String_Theory with Occ_Tly_Permute_Ext;
requires Is_Total_Preordering(E);

Operation Sort (updates Q : Queue);
ensures Q Is_Permutation #Q ∧ Is_Cfml_w(Q, E);

end Sorting_Capability;

The enhancement is parameterized by an (abstract) binary predicate E that determines ordering of
the queue’s entries. The module level pre-condition subsequently requires that the relation passed is a
total preordering—i.e.: it must be both total and transitive:

(E-total) ∀x,y : Entry, xE y ∨ yE x (E-trans) ∀x,y,z : Entry, xE y⇒ yE z⇒ xE z.

The Sort operation takes a single queue, Q, and ensures two properties: (1) that the resulting queue
is a permutation of (exactly) the incoming queue’s entries, and (2) that the ordering of all entries in
the outgoing queue is conformal with (Is_Cfml_w) the E ordering predicate. Both the permutation
and conformality predicates were imported from String_Theory, augmented with a string occurrence
tallying and permutation theory extension containing the required predicates.

For more information on the predicates that make up the sorting specification—and the way in which
we define them in RESOLVE theories (including aspects of the math type system)—please consult [33].

6.2 An Annotated Implementation

Fig. 6 shows a selection sorting implementation of Sorting_Capability loaded (with VCs already
generated) in RESOLVE Studio.

Note that enhancement implementations are oblivious to any one particular implementation of the
base concept, and must be written in terms of either local operations and/or by calling the primary
operations of the base concept. The implementation iterates over the input queue, extracts the minimum

62 F-IDEs Designed to Assist Human Reasoning When Verification Fails

Figure 6: Selection sorting impl. in RESOLVE Studio; viewing the VC for the loop invariant’s base case

entry in each iteration via the local procedure Remove_Min, then enqueues it onto a temporary queue,
Sorted_Q (which holds the entries ordered thus far). The loop is annotated in several different parts: a
changing clause indicates the variables being updated in the loop (which can help simplify certain styles
of invariants), a decreasing clause (a progress metric for proving termination), and a loop invariant
communicated through the maintaining clause. The invariant, shown in Fig. 6, is summarized below:

• The first conjunct states that the concatenation of elements in the (temporary) Sorted_Q and Q
constitute the entirety of the elements being sorted.

• The second conjunct states that the Sorted_Q’s elements are ordered w.r.t. the E relation.

• The last conjunct states that every element in Sorted_Q is related by E to every element in Q. In
other words: that all entries in Sorted_Q “precede” the remaining entries in Q.

6.3 Verification

The verification process is started by invoking the “Generate VCs” action. Once VCs are generated,
clicking any of the buttons opens a tool menu wherein users can select any VCs arising from that
particular construct or line of code (Fig. 7, leftmost).

Once a VC is selected, the IDE automatically navigates to the VC in question in the tool window,
displaying the goal and givens. Selecting any particular VC in the “Final VCs” window also highlights
the assertion, statement, or construct that generated it within the code. Pressing the prove button invokes
the verifier, updating the badges with a checkmark, warning, or a timeout/failure icon.

Y. Sun et al. 63

Figure 7: VC selection process in RESOLVE Studio

Advanced Feature: VC Derivation Tracing. RESOLVE Studio also allows experienced users and
researchers the ability to trace interactively through the derivation of VCs, starting from initial assertive
code, to final VCs (Fig. 8) below.

Figure 8: Interactive VC derivation tracing and rule application from example 5.1

We anticipate this being of use to math specialists such as theory developers who seek to add theory-
specific simplification rules (e.g., simplifying S ◦Λ to S) and observe their affect when applied during
derivations to further ‘clean’ resulting VCs and ease their comprehension.

7 Experimental Evaluation

We have tested our revised VC generation technique on a modest battery of extension operations8 for a
variety of concepts drawn from RESOLVE’s current component library including typical operations for
lists, stacks, and queues.

Component Non-Parsimonious Parsimonious

#VCs #VCsA≥5 #VCsA≥10 #VCs #VCsA≥5 #VCsA≥10

List Search 35 35 35 35 16 0
List Reverse (R) 8 8 8 8 0 0
Queue Append (R) 8 8 8 8 0 0
Queue Selection Sort 36 36 36 36 16 0
Stack Copy 24 24 24 24 5 0

Table 1: Comparison of VC generation schemes: non-parsimonious vs parsimonious.

Table 1 compares VCs generated without and with the parsimonious scheme. For each, the first
column contains the total number of VCs generated (#VCs), the number of VCs generated with five or
more antecedents (#VCsA≥5), and the number of VCs generated with ten or more antecedents (#VCsA≥10).

8Recursive implementations are labeled with an (R)

64 F-IDEs Designed to Assist Human Reasoning When Verification Fails

Note that with the non-parsimonious scheme, all VCs contain ten or more antecedents, while under
the parsimonious scheme none contain more than ten. Since this paper has been written, the parsimonious
scheme detailed has also been incorporated into the compiler backing the web-IDE, meaning students
have already benefited from the reduced size of each VC. For a sense of how much shorter the VCs are,
consider the (unprovable) VC from our initial example in Fig. 2: {1≤ |〈e′′′〉 ◦ S′|} ` {S′ = 〈e′′′〉 ◦ S′}.

These experimental results indicate that the parsimonious scheme produces fewer givens for humans
to consider when debugging failed VCs. This can be viewed as a measure of usefulness for VC compre-
hension overall, as well as a means of improving ease of use when combined with our existing F-IDEs.

8 Related Work

Since VC generation and auto-active program verification are vast topics, this section focuses primarily
on work in generating simpler, debuggable VCs presented in an IDE or otherwise. A direct comparison
of our work with other efforts is somewhat hindered by the simple fact that others typically “outsource”
the process of generating VCs to Intermediate Verification Languages (IVLs) such as Boogie [18]. Out-
sourcing has its benefits, namely: shifting the burden of VC generation (which can be non-trivial to
implement in general) to a separate, reusable tool that multiple languages can target. Notable disadvan-
tages however include high potential for “impedance mismatches” when translating between IVLs [3], or
(more commonly) when translating the constructs of the rich ‘high level’ specification language into the
‘lower level’ representation employed by a particular IVL [32]—or vice versa [10]. These mismatches in
turn can complicate error reporting efforts, including VC feedback on failed verification attempts. Some
related systems are summarized below.

Dafny [19] integrates its toolchain into an IDE for Visual Studio including the Boogie Verification
Debugger [18], which translates Z3 generated counter examples into a form suitable for human consump-
tion. AutoProof [31], which also uses Boogie and Z3 for the verification of Eiffel programs, employs
“two step" verification to broadly interpret (as opposed to on a per-VC basis) the reasons for verification
failures using a combination of traditional modular verification and approximation (such as unrolling).
For IDE support, push-button verification and a host of other functionality is provided in the Eiffel Veri-
fication Environment.

Why3 [7] is another popular autoactive tool that employs its own IVL (WhyML), to target a number
of SMT solvers for automated proof as well as some traditionally interactive systems (such as Coq) for
proofs requiring manual steps. The language comes with a verification environment (called WhyIDE)
that gives users the ability to browse goals in the current session and perform common transformations
such as, for example, splitting a goal into separate conjuncts (which can then be sent to different provers).

The KeY framework [2], which targets full functional verification of Java programs, perhaps gives
users the most control over how VCs are structured and ultimately dispatched. As opposed to being
reliant on any particular IVL, the language instead employs its own in-house prover that attempts to
automatically verify a VC via repeated application of first order sequent reduction rules (among others).
In cases where automation fails, the system can also serve as an interactive proof assistant that allows
users to systematically apply ‘taclets’ (i.e., tactics) to the current proof state—manually guiding the
system towards the goal.

Y. Sun et al. 65

9 Conclusions and Future Work

We have discussed the design of two F-IDEs that aim to provide users with feedback suitable for reason-
ing about code correctness when verification fails. Following a technical overview of our revised proof
system, including rules for deriving “parsimonious” VCs, we have demonstrated our presentation of VCs
in both the context of the web-IDE (in use for several years) and a newer F-IDE named RESOLVE Stu-
dio. A critical avenue for future work remains the ability to efficiently persist verification results to ease
usability and to support scalable development of larger, more intricate case studies. Though we have
extensive positive feedback from students who have used our online reasoning tools for which the VC
generator detailed in this paper now forms the backbone [8, 9, 25], we anticipate additional studies on
student usage and debugging of VCs in our second experimental environment, RESOLVE Studio.

Acknowledgments

We thank the RSRG research groups at Clemson and Ohio State who have contributed to this work.
Particular thanks are due to Bill Ogden and Joan Krone for their insights on the proof rules detailed.

References

[1] Bruce Adcock (2010): Working Towards the Verified Software Process. PhD thesis, The Ohio State Univer-
sity.

[2] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt & Mattias Ulbrich
(2016): Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS 10001, Springer,
Cham, doi:10.1007/978-3-319-49812-6.

[3] Michael Ameri & Carlo A. Furia (2016): Why Just Boogie? In Erika Ábrahám & Marieke Huisman, editors:
IFM 2016, Springer International Publishing, Cham, pp. 79–95, doi:10.1007/978-3-319-33693-0_6.

[4] Charles T. Cook, Svetlana Drachova-Strang, Yu-Shan Sun, Murali Sitaraman, Jeffrey C. Carver & Joseph E.
Hollingsworth (2013): Specification and reasoning in SE projects using a Web IDE. In: 26th International
Conference on Software Engineering Education and Training, CSEE&T 2013, San Francisco, CA, USA,
May 19-21, 2013, pp. 229–238, doi:10.1109/CSEET.2013.6595254.

[5] Charles T. Cook, Heather Harton, Hampton Smith & Murali Sitaraman (2012): Specification Engineering
and Modular Verification Using a Web-integrated Verifying Compiler. In: ICSE, ACM, pp. 1379–1382,
doi:10.1109/ICSE.2012.6227243.

[6] Charles T. Cook, Heather K. Harton, Hampton Smith & Murali Sitaraman (2012): Specification en-
gineering and modular verification using a web-integrated verifying compiler. In Martin Glinz,
Gail C. Murphy & Mauro Pezzè, editors: ICSE 2012, IEEE Computer Society, pp. 1379–1382,
doi:10.1109/ICSE.2012.6227243.

[7] Jean-Christophe Filliâtre & Andrei Paskevich (2013): Why3 - Where Programs Meet Provers. In Matthias
Felleisen & Philippa Gardner, editors: ESOP 2013, LNCS 7792, Springer, pp. 125–128, doi:10.1007/978-3-
642-37036-6_8.

[8] Megan Fowler, Eileen T. Kraemer, Murali Sitaraman & Joseph E. Hollingsworth (2021): Tool-Aided
Loop Invariant Development: Insights into Student Conceptions and Difficulties. In Carsten Schulte,
Brett A. Becker, Monica Divitini & Erik Barendsen, editors: ITiCSE 2021, ACM, pp. 387–393,
doi:10.1145/3430665.3456351.

[9] Megan Fowler, Eileen T. Kraemer, Yu-Shan Sun, Murali Sitaraman, Jason O. Hallstrom & Joseph E.
Hollingsworth (2020): Tool-Aided Assessment of Difficulties in Learning Formal Design-by-Contract As-
sertions. In Jürgen Mottok, editor: ECSEE 2020, ACM, pp. 52–60, doi:10.1145/3396802.3396807.

http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-319-33693-0_6
http://dx.doi.org/10.1109/CSEET.2013.6595254
http://dx.doi.org/10.1109/ICSE.2012.6227243
http://dx.doi.org/10.1109/ICSE.2012.6227243
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://dx.doi.org/10.1007/978-3-642-37036-6_8
http://dx.doi.org/10.1145/3430665.3456351
http://dx.doi.org/10.1145/3396802.3396807

66 F-IDEs Designed to Assist Human Reasoning When Verification Fails

[10] Carlo A. Furia, Christopher M. Poskitt & Julian Tschannen (2015): The AutoProof Verifier: Usability by
Non-Experts and on Standard Code. In Catherine Dubois, Paolo Masci & Dominique Méry, editors: F-IDE
2015, pp. 42–55, doi:10.4204/EPTCS.187.4.

[11] Smith Hampton (2013): Engineering Specifications and Mathematics for Verified Software. PhD Dissertation,
Clemson University.

[12] Douglas E. Harms & Bruce W. Weide (1991): Copying and Swapping: Influences on the Design of Reusable
Software Components. IEEE Trans. Softw. Eng. 17(5), pp. 424–435, doi:10.1109/32.90445.

[13] Heather Harton (2011): Mechanical and Modular Verification Condition Generation for Object-Based Soft-
ware. PhD Dissertation, Clemson University.

[14] Wayne D. Heym, Paolo A. G. Sivilotti, Paolo Bucci, Murali Sitaraman, Kevin Plis, Joseph E. Hollingsworth,
Joan Krone & Nigamanth Sridhar (2017): Integrating Components, Contracts, and Reasoning in CS Cur-
ricula with RESOLVE: Experiences at Multiple Institutions. In Hironori Washizaki & Nancy Mead, editors:
CSEE&T, IEEE, pp. 202–211, doi:10.1109/CSEET.2017.40.

[15] Nabil M. Kabbani, Daniel Welch, Caleb Priester, Stephen Schaub, Blair Durkee, Yu-Shan Sun & Murali
Sitaraman (2015): Formal Reasoning Using an Iterative Approach with an Integrated Web IDE. In: F-IDE
2015, pp. 56–71, doi:10.4204/EPTCS.187.5.

[16] Jason Kirschenbaum, Bruce M. Adcock, Derek Bronish, Hampton Smith, Heather K. Harton, Murali Sitara-
man & Bruce W. Weide (2009): Verifying Component-Based Software: Deep Mathematics or Simple Book-
keeping? In Stephen H. Edwards & Gregory Kulczycki, editors: ICSR 2009, LNCS 5791, Springer, Berlin,
Heidelberg, pp. 31–40, doi:10.1007/978-3-642-04211-9_4.

[17] Eileen T. Kraemer, Murali Sitaraman & Joseph E. Hollingsworth (2018): An Activity-Based Undergraduate
Software Engineering Course to Engage Students and Encourage Learning. In: Proceedings of the 3rd Eu-
ropean Conference of Software Engineering Education, ECSEE 2018, Seeon Monastery, Bavaria, Germany,
June 14-15, 2018, pp. 18–25, doi:10.1145/3209087.3209100.

[18] Claire Le Goues, K. Rustan M. Leino & Michał Moskal (2011): The Boogie Verification Debugger (Tool
Paper). In Gilles Barthe, Alberto Pardo & Gerardo Schneider, editors: SEFM 2011, LNCS, Springer, Berlin,
Heidelberg, pp. 407–414, doi:10.1007/978-3-642-24690-6_28.

[19] K. Rustan M. Leino (2013): Developing verified programs with Dafny. In David Notkin, Betty H. C. Cheng
& Klaus Pohl, editors: ICSE 2013, IEEE, pp. 1488–1490, doi:10.1109/ICSE.2013.6606754.

[20] K. Rustan M. Leino & Michal Moskał (2010): Usable Auto-Active Verification. In Tom Ball, Lenore Zuck &
Natarajan Shankar, editors: UV 2010. Available at http://fm.csl.sri.com/UV10/.

[21] K. Rustan M. Leino & Clément Pit-Claudel (2016): Trigger Selection Strategies to Stabilize Program Ver-
ifiers. In Swarat Chaudhuri & Azadeh Farzan, editors: CAV 2016, LNCS 9779, Springer, pp. 361–381,
doi:10.1007/978-3-319-41528-4_20.

[22] Nicodemus M. J. Mbwambo (2017): A Well-Designed, Tree-Based, Generic Map Component to Challenge
the Process Towards Automated Verification. Master’s Thesis, Clemson University.

[23] Bertrand Meyer (1992): Applying “Design by Contract". Computer 25(10), pp. 40–51,
doi:10.1109/2.161279.

[24] Leonardo de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In C. R. Ramakrishnan & Jakob
Rehof, editors: TACAS 2008, LNCS 4963, Springer, Berlin, Heidelberg, pp. 337–340, doi:10.1007/978-3-
540-78800-3_24.

[25] C. Priester, Y. S. Sun & M. Sitaraman (2016): Tool-Assisted Loop Invariant Development and Analysis. In:
2016 IEEE 29th International Conference on Software Engineering Education and Training (CSEET), pp.
66–70, doi:10.1109/CSEET.2016.28.

[26] Kalyan C. Regula, Hampton Smith, Heather Keown, Jason O. Hallstrom, Nigamanth Sridhar & Murali Sitara-
man (2012): A Case Study in Verification of Embedded Network Software. In Alwyn Goodloe & Suzette
Person, editors: NFM 2012, LNCS 7226, Springer, pp. 433–448, doi:10.1007/978-3-642-28891-3_38.

http://dx.doi.org/10.4204/EPTCS.187.4
http://dx.doi.org/10.1109/32.90445
http://dx.doi.org/10.1109/CSEET.2017.40
http://dx.doi.org/10.4204/EPTCS.187.5
http://dx.doi.org/10.1007/978-3-642-04211-9_4
http://dx.doi.org/10.1145/3209087.3209100
http://dx.doi.org/10.1007/978-3-642-24690-6_28
http://dx.doi.org/10.1109/ICSE.2013.6606754
http://fm.csl.sri.com/UV10/
http://dx.doi.org/10.1007/978-3-319-41528-4_20
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/CSEET.2016.28
http://dx.doi.org/10.1007/978-3-642-28891-3_38

Y. Sun et al. 67

[27] Iman Saleh (2015): Formalizing Data-Centric Web Services. Web-Scale Workflow and Analytics, Springer,
doi:10.1007/978-3-319-24678-9.

[28] Murali Sitaraman, Bruce M. Adcock, Jeremy Avigad, Derek Bronish, Paolo Bucci, David Frazier, Har-
vey M. Friedman, Heather K. Harton, Wayne D. Heym, Jason Kirschenbaum, Joan Krone, Hampton Smith
& Bruce W. Weide (2011): Building a Push-Button RESOLVE Verifier: Progress and Challenges. Formal
Aspects of Computing 23(5), pp. 607–626, doi:10.1007/s00165-010-0154-3.

[29] Yu-Shan Sun (2018): Towards Automated Verification of Object-Based Software with Reference Behavior.
PhD Dissertation, Clemson University.

[30] Aditi Tagore, Diego Zaccai & Bruce W. Weide (2012): Automatically Proving Thousands of Verification
Conditions Using an SMT Solver: An Empirical Study. In: NFM 2012, pp. 195–209, doi:10.1007/978-3-
642-28891-3_20.

[31] Julian Tschannen, Carlo A. Furia, Martin Nordio & Nadia Polikarpova (2015): AutoProof: Auto-Active
Functional Verification of Object-Oriented Programs. In Christel Baier & Cesare Tinelli, editors: TACAS
2015, LNCS 9035, Springer, Berlin, Heidelberg, pp. 566–580, doi:10.1007/978-3-662-46681-0_53.

[32] Mark Utting, David J. Pearce & Lindsay Groves (2017): Making Whiley Boogie! In Nadia Polikarpova &
Steve Schneider, editors: IFM 2017, LNCS 10510, Springer, pp. 69–84, doi:10.1007/978-3-319-66845-1_5.

[33] Daniel Welch (2019): Scaling Up Automated Verification: A Case Study and a Formalization IDE for Build-
ing High Integrity Software. PhD Dissertation, Clemson University.

[34] Daniel Welch & Murali Sitaraman (2017): Engineering and Employing Reusable Software Components for
Modular Verification. In Goetz Botterweck & Claudia Werner, editors: ICSR 2017, LNCS 10221, Springer,
pp. 139–154, doi:10.1007/978-3-319-56856-0_10.

http://dx.doi.org/10.1007/978-3-319-24678-9
http://dx.doi.org/10.1007/s00165-010-0154-3
http://dx.doi.org/10.1007/978-3-642-28891-3_20
http://dx.doi.org/10.1007/978-3-642-28891-3_20
http://dx.doi.org/10.1007/978-3-662-46681-0_53
http://dx.doi.org/10.1007/978-3-319-66845-1_5
http://dx.doi.org/10.1007/978-3-319-56856-0_10

	1 Introduction
	2 RESOLVE Background
	2.1 Abstract Specification

	3 The Need for Simpler VCs: Examining a Failed VC
	4 VC Generation Process
	4.1 Abstract Syntax
	4.2 Sequent Calculus Review
	4.3 Goal-Directed Proof Rule Application

	5 Proof Rules for Forming Parsimonious VCs
	6 Sequent-Based VC Generation in RESOLVE Studio
	6.1 Example: Fully Generic Sorting
	6.2 An Annotated Implementation
	6.3 Verification

	7 Experimental Evaluation
	8 Related Work
	9 Conclusions and Future Work

