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This paper is about pregroup models of natural languages, and how they relate to the explicitly
categorical use of pregroups in Compositional Distributional Semantics and Natural Language Pro-
cessing. These categorical interpretations make certain assumptions about the nature of natural
languages that, when stated formally, may be seen to impose strong restrictions on pregroup gram-
mars for natural languages.

We formalize this as a hypothesis about the form that pregroup models of natural languages must
take, and demonstrate by an artificial language example that these restrictions are not imposed by
the pregroup axioms themselves. We compare and contrast the artificial language examples with
natural languages (using Welsh, a language where the ‘noun’ type cannot be taken as primitive, as
an illustrative example).

The hypothesis is simply that there must exist a causal connection, or information flow, between
the words of a sentence in a language whose purpose is to communicate information. This is not
necessarily the case with formal languages that are simply generated by a series of ‘meaning-free’
rules. This imposes restrictions on the types of pregroup grammars that we expect to find in natural
languages; we formalize this in algebraic, categorical, and graphical terms.

We take some preliminary steps in providing conditions that ensure pregroup models satisfy these
conjectured properties, and discuss the more general forms this hypothesis may take.

1 Introduction

Lambek pregroups are algebraic structures with a strongly categorical / logical flavor, proposed for mod-
eling linguistic phenomena [17]. More recently they have been used heavily within Natural Language
Processing – in particular, the field of Compositional Distributional Semantics [5]. In language process-
ing, their utility is heavily based on a strongly categorical interpretation, and we will freely mix algebraic
and categorical descriptions throughout this paper – hopefully pointing out how the two are related.

A particularly puzzling feature of pregroups is that they seem to be ‘overspecified’; they have dual
notions of expansion and contraction (see Section 2.1), and a corresponding neat graphical calculus
of underscores and overscores (Section 2.1). However, for linguistic purposes, only the expansions /
underscores are relevant. From Lambek’s original work onwards, this has been something of a mystery;
[17] proposes that although the ‘extra structure’ has no linguistic interpretation, it nevertheless helps
determine the algebraic structures that are in fact useful.

An alternative viewpoint comes from categorical perspectives on Natural Language Processing such
as [5, 8]. Although this field works with a degenerate notion of pregroups (i.e. compact closed categories
– see Section 3.1), both ‘underscores’ and ‘overscores’ of graphical models are crucial in describing
flow of information or causal connections in the sense of [16]. In the linguistic setting, this is a direct
claim that they model information flow or interaction between distinct parts of (grammatically correct)
sentences. We refer to this as the categorical hypothesis (see Section 6).

By contrast with linguistic models generally, Compositional Distributional Semantics uses a very
degenerate form of pregroups. However, the categorical hypothesis is equally applicable to arbitrary
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pregroup models of natural language. The purpose of this paper is to show that it is not simply a useful
heuristic or worldview, but also makes concrete claims about the structure of (pregroup models of) natural
languages.

We first give the basic formalism, including the construction of free pregroups (the particular form
used in linguistic models), give a categorical interpretation of this, and relate it to the highly graphical
properties of pregroup representations. This is followed by an illustrative example of modeling natural
language grammar using pregroups, together with a formal categorical description of this process. We
then use this formal description to consider some concrete consequences of the categorical hypothesis.

We then give a formal language example of a pregroup grammar that does not conform to the pre-
dictions of the categorical hypothesis, and explain why we would not expect to find such behavior in a
pregroup model of natural language. We conclude by considering potential counterexamples, possible
extensions, and take the first steps towards an algebraic axiomatisation of grammars with the predicted
behavior.

2 Basic definitions & properties

In [17], pregroups are defined as follows:

Definition 1. A (Lambek) pregroup is a monoid P equipped with a partial order ≤ compatible with
composition (so p ≤ q and r ≤ s implies pr ≤ qs), and two operations ( )l,( )r : P→ P called the
left- and right- adjoints respectively. These are related by the defining identities, pl p ≤ 1 ≤ ppl and
ppr ≤ 1≤ pr p.

Following [4], we say that a pregroup P is proper if some left- and right- adjoints are distinct – i.e.
there exists some a ∈ P satisfying ar 6= al . Extending this, we say that P is fully proper if all non-unit
left- and right- adjoints are distinct – i.e. ar 6= al for all a 6= 1 ∈ P.

Remark 2. Free pregroups are, of course, fully proper. However, there are few concrete models of proper
pregroups. The vector space models used in Compositional Distributional Semantics not only identify
left- and right- adjoints, but also identify elements with their own adjoints.

The following results on pregroups are standard; see [17]

Lemma 3. Let (P,≤,( )l,( )r) be a pregroup. Then, for all p,q ∈ P, the adjoints are contravariant,
and order-inverting, so (pq)l = ql pl and p ≤ q⇔ ql ≤ pl , and similarly for the right adjoint. The
identity is its own left and right adjoint, so 1r = 1 = 1l and the two adjoints are mutually inverse, so
(pr)l = p = (pl)r.

2.1 Contractions & expansions

The following definitions provide useful notational tools for calculations within pregroups:

Definition 4. Given a pregroup (P,≤,( )l,( )r), contractions are inequalities of the form uaarv ≤ uv
or ualav ≤ uv, and expansions are inequalities of the form uv ≤ uarav or uv ≤ uaalv. Graphically,
contractions (resp. expansions) are indicated by underscores (resp. overscores). These may be nested
and combined, to give a concise notation for expressing inequalities; the decorated word

nr n nl n nl nnr n nl n nl n

expresses, via the contractions, the inequality nrnnlnnln ≤ nrnnln ≤ nrn and via the expansions, the
inequality 1≤ nrn≤ nrnnln≤ nrnnlnnln.
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Remark 5 (Normal forms for expansions and contractions). As demonstrated in [17], any inequality in
a pregroup may be derived by first considering contractions, and then expansions. This gives a normal
form for patterns of underscores & overscores. Logically / categorically, this may be seen as a cut-
elimination or coherence result.

We will rely on normal forms throughout, but first first consider the categorical status of pregroups
and the free pregroup construction.

3 Free pregroups and quasi-pregroups

Linguistic applications commonly use free pregroups. These are defined in [4] in terms of free quasi-
pregroups, as follows:

Definition 6. A quasi-pregroup (Q,≺,( )l,( )r) is a weakening of Definition 1 to the case where ≺ is a
compatible preorder rather than a partial order on the monoid Q. The free quasi-pregroup FQPG on a
poset (G,≤G) is defined as follows:

• The underlying monoid is the free monoid (G×Z)∗.

• The left- and right- adjoints are defined by inductively by

– 1l = 1 = 1r

– (g,z)r = (g,z+1) and (g,z)l = (g,z−1), for all (g,z) ∈ G×Z,
– (uv)r = (vr)(ur) and (uv)l = (vl)(ul), for all u,v ∈ (G×Z)∗.

• The preorder ≺ is the smallest preorder containing the inductively defined relation R, given by

– g≤ g′ ∈ G implies (g,z)R(g′,z) for even z ∈ Z, and (g′,z)R(g,z) for odd z ∈ Z.
– (g,z)(g,z+1) R 1 R (g,z+1)(g,z) for all (g,z) ∈ G×Z,
– a R b⇒ uav R ubv, for all a,b,u,v ∈ (G×Z)∗.

By basic algebra, ≺=
⋃

∞
j=0 R j is the reflexive transitive closure, or Kleene star, of R.

The free quasi-pregroup on a set H is given by assuming the discrete partial ordering (i.e. equality).

Remark 7. The preorder ≺ in the above definition is not a partial order; (g,0)(g,1)(g,0) ≺ (g,0) and
(g,0)(g,1)(g,0)≺ (g,0), but (g,0) 6= (g,0)(g,1)(g,0).

Free pregroups then arise as quotients of free quasi-pregroups by the induced equivalence relation.

Definition 8. Let (P,≺) be a preordered set. The induced equivalence relation ∼≺ is defined by p∼≺
q ⇔ p≺ q and q≺ p, and the quotient P/∼≺ is a poset w.r.t. the induced partial order ≺ /∼≺.

Proposition 9. Let Q,≺,( )l,( )r) be a quasi-pregroup. Then the induced equivalence relation is a
congruence on the quasi-pregroup structure.

Proof. This is a key feature of the construction of free pregroups from free quasi-pregroups found in [4],
where it is shown that, ax∼≺a′x′, (a)l∼≺(a′)l , and (a)r∼≺(a′)r, for all a∼≺ a′,x∼≺ x′ ∈ Q.

Definition 10. The free pregroup on a partially ordered set (G,≤), denoted PG, is defined in [4] to be
the quotient of FQPG by the induced equivalence relation ∼≺.

The construction of free pregroups from free quasi-pregroups may of course be viewed categorically.
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3.1 Pregroups and quasi-pregroups, categorically

It is natural to treat pregroups and quasi-pregroups as categories; these are of a special form.

Definition 11. A category is called posetal if each hom-set has at most one element. We define POSETAL

to be the category whose objects are posetal categories and whose arrows are functors, and POSET to be
the full subcategory whose objects are posets, considered as small categories.

Interpretation of pregroups as posetal categories is well-established [17, 6]. Any preordered set may
be treated as a category with arrows given by the preorder. Monoid composition is then a monoidal
tensor, with the interchange law corresponding to compatibility, and the identity being a strict unit. The
adjoints are contravariant monoidal endofunctors, and the defining identities become the axioms for a
non-commutative form of compact closure.

Compact closure was originally defined in terms of abstract 2-categorical properties. In [15], the
abstract 2-categorical definition is shown to have a neat characterization in terms of the existence of a
duality, and distinguished arrows,giving both a coherence theorem and diagrammatic calculus. We take
the following definition, from [15] as fundamental:

Definition 12. A compact closed category (CCC) is a symmetric monoidal category with a dual
(C ,⊗,σ ,( )∗, I), equipped with unit & co-unit arrows ηA : I → A⊗A∗ and εA : A∗⊗A→ I at every
object, A ∈ Ob(C ). These satisfy the yanking axiom (1A⊗ ε)(η⊗1A) = 1A = (εA∗⊗1A)(1A⊗ηA∗).

As is well-established [17], the correct setting for pregroups is the non-commutative form of the
above:

Definition 13. A (non-symmetric) compact closed category (NSCCC) is a monoidal category with left-
and right- duals ( )l,( )r, and left- and right- unit and co-unit arrows η

(l)
A ,η

(r)
A and ε

(l)
A ,ε

(r)
A satisfying

the obvious non-symmetric analogues of the yanking axiom.

Note that the above definitions give CCCs as degenerate cases of NSCCCs. A great deal of literature
exists on graphical interpretations and calculii for both symmetric & non-symmetric compact closure
(e.g. [13, 14, 19]) so we do not reproduce it here.

Remark 14. It is well-established that pregroups are posetal non-symmetric compact closed categories
[17, 5]. Identical reasoning demonstrates that quasi-pregroups are also posetal non-symmetric compact
closed categories.

Notation 15 (Duals in category theory, the free monoid functor, and the Kleene star). There is an un-
fortunate clash of notation between the category theorists dual ( )∗, the algebraists Kleene star ( )∗ of
relations, and the free monoid construction ( )∗ on sets (which we will treat as a functor).

Hopefully the intended meaning of the overloaded ‘star’ notation will be clear from the context, as
this paper works with fully proper pregroups, and hence distinguishes left- and right- duals.

Definition 16. We define NSCCC to be the category whose objects are non-symmetric compact closed cat-
egories and whose arrows are adjoint-preserving monoidal functors, and CCC to be the full subcategory
of compact closed categories.

Essentially by definition, free constructions are functorial, and pregroups / quasi-pregroups are no
exception – this follows from the universal property for freeness. We make the following definitions:

Definition 17. We define FQP : POSET→ NSCCC to be the functor that takes a poset to the free quasi-
pregroup on that poset. Similarly, FP : POSET→ NSCCC is the functor that takes a poset to the free
pregroup on that poset.
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Proposition 18. There exists a natural transformation from FQP to FP whose components are given by
the ‘quotienting by the induced equivalence relation’ step of Definition 10.

Proof. Categorically, Proposition 9 states that for a given poset G, quotienting by the induced equiv-
alence relation gives a functor of non-symmetric compact closed categories, and hence an arrow in
NSCCC(FQP(G),FP(G)). We then have a family of arrows indexed by the objects of POSET, and we
again appeal to the universal properties implied by freeness to demonstrate that these are indeed the
components of a natural transformation.

4 Graphical properties of pregroups

Many of the categorical properties of pregroups are best illustrated graphically, using the conventions
of overscores and underscores described above. Free pregroups (but not pregroups generally) then sat-
isfy three core properties of undirectedness, planarity and acyclicity. By construction, the underscores
and overscores are undirected. The lack of commutativity in the definition corresponds to planarity in
an obvious way; in the free setting two distinct underscores (resp. overscores) may not overlap. The
final property, acyclicity, means that in proper pregroups it is not possible to form closed loops using
under- / over- scores. Although intuitively obvious, we provide a proof below to demonstrate how this is
closely related to the construction of free pregroups given in Section 3, and thus how the free pregroup
construction relates to the Yanking axiom from the categorical description.

Theorem 19. Let w ∈ P be an arbitrary non-empty word in a fully proper pregroup. Then no pattern of
expansions / contractions on w can contain a closed cycle.

Proof. We show that the only word satisfying 1≤w≤ 1 is the empty word (i.e. the identity); the general
result follows by induction.

Assume some word w 6= 1 ∈ P satisfying 1 ≤ w ≤ 1. Then there exists a set of expansions demon-
strating w ≤ 1 and a set of contractions demonstrating 1 ≤ w. Thus every symbol in w is part of both a
contraction and an expansion. We drawing these as under- / over- scores, and connect the ends of these
with their corresponding symbols. This gives a set of (possibly nested) Jordan curves in the plane:

Figure 1: Every symbol is part of an expansion & a contraction

The symbols of w lie on the intersection of the curve, and a bisecting line – note that each symbol
uniquely determines, and is uniquely determined by, its neighbours on the Jordan curve. Now choose
some symbol x of the word w together with a direction to traverse the curve on which it lies. Trivially,
each symbol encountered is some adjoint of x; which one is uniquely determined by the direction of
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movement and whether the current arc lies above or below the bisecting line:

xr x

+1
��

x

−1
��
xl

xl x

−1

[[ x,

+1

CCx
r

We label these directed arcs by ‘weights’ as shown, and take the sum around this closed loop.
Consider a sub-arc of this Jordan curve that starts & finishes with a contraction, on which the direc-

tion of movement (with respect to the bisecting line) does not change, as shown below:

No matter the length of this arc, the sum of weights along it is always 1 when traversed from left to right,
and −1 otherwise. We therefore replace each such arc by a single arc beneath the bisecting line, labeled
by either 1, or −1, depending on the direction of traversal, as follows:

Category theorists will, of course, notice the implicit appeal to the Yanking axioms!
We do a similar replacement (with a similar interpretation) to repeated unidirectional subarcs that

start / finish with an expansion, leaving a closed loop where the direction of movement ( with respect to
the bisecting line) changes every time this line is crossed.

On the original Jordan curve, a contraction can never be followed by another contraction, nor can an
expansion be followed by another expansion, and the same holds in our simplified diagram. Thus, the
total number of contractions in the Jordan curve is equal to the total number of expansions. Therefore, as
we change direction at each crossing of the bisecting line, the sum the weights around the entire closed
loop is either 2 or −2. This implies the existence of some element whose left and right adjoints are
identical, contradicting the assumption that P is a fully proper pregroup.

Corollary 20. Let w be a word of length ≥ 2 in a free pregroup. Then every pattern of expansions /
contractions in will leave at least two symbols that are either not part of a contraction, or of an expansion.

Corollary 21. Let Q be a (not necessarily free) pregroup. Then acyclicity fails precisely when ql = qr

for some q 6= 1 ∈ Q.
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5 Grammatical interpretations

Grammatical interpretations are traditionally carried out using free pregroups on sets or posets1. For
purely linguistic applications, grammatical types are modeled by words in a free pregroup, and the partial
ordering is interpreted as an information ordering; x≤ y expresses that ‘x is a special case of y’. We are of
course interested in pregroup words that are a special case of the ‘sentence’ type, and seek to demonstrate
this by a suitable pattern of reductions / underscores. This is best illustrated by a concrete example:

5.1 A worked example

As a concrete example, we demonstrate how pregroups may be used to describe grammatical structure
in a language where the noun phrase type is not primitive, due to mutations of nouns following either
possessives or prepositions. We give a pregroup analysis of the grammaticality of the modern Welsh
sentence: “Dyma fy nghath i” (See Figure 2 for an explanation of the grammatical constituents).
Our generating poset is {n,s,dpt ,c1,np : np ≤ n,dpt ≤ s}, with the following interpretation:

s sentence
dpt declarative present tense sentence
n noun phrase
np noun (1st person possessive form)
c1 1st person confirming pronoun

Figure 2: An example Welsh sentence

declarative p.t. sentence dpt ≤ s

Dyma “here is” dptnl

fy “my” ncl
1nl

p

nghath “cat” [pos.] np ≤ n

i [confirming pronoun] c1
(first person)

The pattern of contractions

dptnl ncl
1nl

p np c1

then demonstrates that dptnlncl
1nl

pnpc1 ≤ dpt ≤ s, and so the given sentence is a special case of a declar-
ative present tense sentence, which is itself a special case of a sentence.

1There appears to be little discussion in the literature of the relative merits of using free vs. non-free pregroups within
linguistics. We therefore observe that the constructions and results of this paper are equally applicable in the non-free case, but
use free pregroups for our concrete examples.
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5.2 Formalizing grammaticality, and the ‘language bracketing’

The informal description of Section 5 may be recast in monoid theoretic and categorical terms.

Definition 22. Assume some set T of grammatical types that contains a distinguished sentence type,
such as

T = {SENT ENCE,T RANSIT IV E V ERB,CONFIRMING PRONOUN, . . .}

A pregroup model is simply a function µ : T → P that assigns elements of a pregroup P to each gram-
matical type. When the pregroup is the free pregroup on some generating poset G (as is standard for
natural language models), the interpretation of the sentence type is presumed to be a generator, com-
monly denoted s ∈G. (We are unaware of any linguistic argument for or against the assumption that the
sentence type must be modeled by a generator).

We formalize this categorically, based on the free monoid functor ( )∗ : Set→Mon from the category
of sets to the category of monoids, and the well-known monadicity of the free monoid / underlying set
pairing.

Definition 23. Given arbitrary M ∈Ob(Mon), we denote the flattening associated with the above monad
by ( )[M ∈Mon(M∗,M). A pregroup model µ : T → P extends to a monoid homomorphism by the free
monoid functor, giving µ∗ ∈Mon(T ∗,P∗). We refer to this as the language bracketing for reasons we
explain below.

It is then usual to work with the composite of the language bracketing and the flattening functor,
giving the pregroup interpretation µ◦ : T ∗→ P, by the following diagram in Mon

T ∗
µ∗ //

µ◦

!!

P∗

( )[

��
P

Remembering the pregroup structure on P, a word of grammatical types w ∈ T ∗ is then a grammatically
correct sentence iff µ◦(w)≤ µ◦(SENT ENCE).

(We will, as is traditional, abuse terminology and talk about the pregroup interpretation of the sen-
tence within a language, as well as the pregroup interpretation of a formal string of grammatical types).

At least in the free setting, if not generally, the language bracketing may be thought of as taking the
pregroup interpretation of a sentence, and bracketing it (implicitly, giving a word in the free monoid over
the relevant pregroup). For the interpretation of the sentence, “Dyma fy ngath i”, we have the following:

( dptnl ) (ncl
1nl

p) ( np ) (c1 )

This is an element of the free monoid (PG)
∗, rather than the free pregroup PG. However, applying the

flattening homomorphism will result in a word of PG that is beneath the sentence type, as required.

6 Contractions, expansions, and the categorical hypothesis

In the demonstration of Section 2, only contractions are used to demonstrate that the given sentence is a
special case of the sentence type. This is indeed a general principle [17]; expansions currently play no
role in grammatical applications of pregroups (as opposed to Natural Language Processing applications).
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From Lambek onwards [17], authors have sought to account for the fact that the formalism has both
expansions and contractions.

The justification given by J. Lambek is that they nevertheless determine the structure of pregroups,
even though they play no rôle in grammatical applications. A related but stronger viewpoint is implicit
or explicit in more recent categorically motivated approaches such as [5, 6, 8]. This claim is that:

Both underscores and overscores model the interaction, or flow of informa-
tion, between components of a (grammatically correct) sentence

We refer to this as the categorical hypothesis. It is motivated by previous applications of compact closed
categories such as logical models [1, 9], lambda calculus [3], Turing machines [9, 11], quantum protocols
[2], and causal structures [16], where the interpretation of units and co-units as modeling information
flow or causal connection is by now well-established.

Our claim is that this hypothesis is not simply a convenient viewpoint, but makes concrete predictions
about pregroup models of natural languages (as opposed to the formal languages that may be expressed
in pregroup terms), and thus about grammatical structures for natural language generally.

6.1 The importance of information flow

Implicit in the categorical hypothesis is the claim that there is actual interaction, or information flow
between all the individual words in a sentence: words are brought together to form a sentence because
there is non-trivial interaction between them all. Although this may seem a triviality, it is not enforced
by the pregroup axioms, and we may build example grammars where this is not the case.

Consider a language with grammatical types T = {SENT ENCE,FOO,BAR,DOG,DUCK}, together
with the free pregroup over the discretely ordered set G = {s,a,b,c}, and the pregroup model

µ(SENT ENCE) = s , µ(FOO) = sacl , mu(BAR) = car , µ(DOG) = arbl , µ(DUCK) = barr

The pregroup interpretation of FOO.BAR.DOG.DUCK is saclcararblbarr, so this identified as a gram-
matically correct sentence by the following pattern of contractions:

s a cl c ar ar bl b arr

When considering the overscores, we observe that there are in fact no expansions at all! Thus FOO.BAR
and DOG.DUCK are connected by neither underscores nor overscores. Assuming the correctness of
the categorical hypothesis, we conclude that there is no causal interaction / information flow between
FOO.BAR and DOG.DUCK in any (grammatically correct) sentence with this typing. We therefore
wish to rule it out as an appropriate typing for a meaningful sentence.
Remark 24. The above objection to this typing as appropriate for a meaningful sentence in a natural
language is of course reminiscent of the usual undergraduate objection to the ‘implication’ of boolean
logic — that there is no causal connection between the antecedent and the consequent. Although the
use of logical connectives in natural language is not always a good match for their formal logical inter-
pretations, in Section 8 we consider a restricted fragment that rules out such possibilities, and consider
consequences of the categorical hypothesis within this restricted setting.

7 Causal connections in sentences and grammars

We wished to rule out the FOO.BAR.DOG.DUCK example of Section 6.1 due to a failure of ‘connect-
edness’, which interprets under the categorical hypothesis as a lack of information flow between the
constituents of the sentence. We formalize this as follows
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Definition 25. We assume a set of grammatical types T , a pregroup P, and a grammatical model µ :
T → PG. Given a word w ∈ T ∗, we define its causal graph Cw to be the following undirected graph:

Nodes These are elements of the language bracketing µ∗(w) ∈ P∗G.

Edges There is an edge between two nodes for each underscore / overscore connecting them, in the
image of the language bracketing under the under the ‘flattening’ homomorphism.

If Cw is connected, we say that w is a causally connected word of T ∗. If this condition holds for all words
of T ∗ that reduce to a given grammatical type S ∈ T , we say that the grammatical model µ : T → PG is
S-connected.

Example 26. By way of illustration, we contrast the causal graph for our modern Welsh sentence, “Dyma
fy ngath i” with that of the formal example “FOO.BAR.DOG.DUCK”. As we are working within free
pregroups, we may simply superimpose the language bracketing with the underscores and overscores.
For the Welsh example, we derive:

(dptnl) (ncl
1nl

p) (np) (c1)

Doing the same for the formal example, we derive the following two causal graphs:

c1

Dyma fy nghath i snl ncl
1nl

p

np

sacl

FOO BAR DOG DUCK arbl barr

car

Although the pattern of underscores & overscores is almost identical for these two examples, the language brack-
eting differs significantly. This leads to substantially different causal graphs; one of which we find reasonable for
a natural language, and the other we do not.

7.1 A hypothesis on natural vs formal Languages

Hypothesis 27 (The Connectedness Hypothesis).
We conjecture, based on the categorical hypothesis, that pregroup models of natural lan-
guages are SENT ENCE-connected.
Remark 28. The above hypothesis is not a conjecture in the mathematical / logical sense. It is not
amenable to a formal proof but may perhaps be disproved by a convincing counterexample. It shares
some common features with the notion of a scientific theory within K. Popper’s ‘critical rationalism’,
where it is claimed that, “Every ‘good’ scientific theory is a prohibition: it forbids certain things to
happen. The more a theory forbids, the better it is” [18]. However, it is somewhat exceptional in that it
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does not seek to relate a man-made model (with predictive power) to natural phenomena; rather, it could
be seen as a scientific theory about models.

This of course, raises the question of what a ‘convincing counterexample’ would look like, and
whether a pregroup model of natural language that was not SENT ENCE-connected would instead be
taken as evidence that the model, rather than the hypothesis, was incorrect.

It is also worthwhile to note the underlying assumptions. It is clearly derived from the categorical
hypothesis, and so is underpinned by the assumption that there is indeed ‘information flow’ between
the words in a natural language sentence. This in turn assumes that the purpose of natural language
grammar is to connect words in a meaningful way, and is not simply a game played with a possibly
arbitrary set of rules.

Should the above hypothesis be disproved by a convincing counterexample, we would, of course,
simply move on to analysing differences between sentences which are, and are not, causally connected.
However, it is more likely that degeneracies at the level of the models result in us seeing spurious causal
connectedness traces of information flow that does not actually take place. If we take the FOO-BAR
DOG-DUCK example, and identify al = a = ar, we see exactly this via the resulting pattern of over-
scores. The linguists convention of using free (and hence fully proper) pregroup models should go some
way towards eliminating this, but we will observe similar phenomena in ‘degenerate’ models, where
what should be distinct grammatical types are mapped to the same pregroup words.

8 A simplified class of sentences

We now define a simplified fragment of the languages identified as grammatically correct by a pregroup
model. The original motivation for this was applications to Compositional Distributional Semantics [5],
which aims to combine both meaning and grammar into a single concrete setting. The intention was to
rule out grammatical constructs that unavoidably lead to rather structurally complex models.
Definition 29. Given a set G = A∪{s}, we say that a word w ≤ s ∈ PG simply reduces to s iff it is of
the form usv where u,v≤ 1 ∈ PA ≤ PG. We call the set of all such words the simply s-reducing words of
PG. Given a set T of grammatical types, we say that a pregroup model µ : T → PG is simply reducing
iff all elements of µ◦(T ∗) that reduce to s also simply reduce to s.
Remark 30 (The original motivation for simply-reducing words). In [12], a strong case is made that
‘logical’ connectives in natural language (such as ‘and’, ‘or’, etc.) must be polymorphically typed (in a
similar manner to [7]), & as a consequence of this any concrete models must be self-dual idempotents of
a compact closed category. This would of course imply that they are reflexive [10], and there is a direct
link from there to models of pure untyped lambda calculus [3]. In terms of computational tractability,
this is not where we wish to go!

Such structures are also not expressible within the vector space models commonly used in distribu-
tional semantics; it is only the subcategory of finite-dimensional vector spaces that is compact closed,
and this of course contains no non-trivial idempotent objects.

The intention of the above definition was to rule out such grammatical constructs that take as ‘input’
an arbitrary sentence or family of sentences and then ‘output’ a larger grammatically correct sentence –
the motivation being that unrestricted use of such constructs leads in short order to irreducibly complex
models2. Thus, as well as ruling out logical connectives, this also eliminates the possibility of modeling

2A somewhat facetious example being the ‘Encyclopædia Britannica’ problem, where we take any particularly large text
and replace every full stop by conjunction. This leads to the question of exactly how large and complex our concrete ‘sentence
type’ should be when we allow for naive unrestricted conjunctions.
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epistemic constructs such as “He knows that ...”, “I believe ...”, and indeed, meta-statements “It is not
provable that ...”.

Logicians – including the author – may consider these restrictions to be taking all the fun out of
models of meaning. However, they do lead to fragments of language that are amenable to vector space
style models, and also provide a secure setting for formalizing some consequences of the categorical
hypothesis. We hope to show that they also lead to some interesting non-trivial algebra.

9 P{n,s} — a toy example

Although deciding whether an individual sentence is causally connected seems to be a simple task (Ex-
ample 26), deciding whether an entire pregroup model is causally connected appears to be a harder task,
even in the simply reducing case.

We take some small steps in this direction, within a ‘toy example’ based on the free pregroup over the
set {n,s}, equipped with the discrete partial order. This is commonly used as an illustration of pregroup
models, with the two basic types correspond to ‘noun’ and ‘sentence’ respectively.

Let us assume a set of grammatical types

T = {SENT ENCE , transV ERB , intV ERB , NOUN , attADJ , NONCE} (Types Example)

These all, excluding the type NONCE, have the obvious intended meaning, so we may go some way
towards constructing a simply reducing pregroup model µ : T → P{n,s} by defining

µ(transV ERB) = nrsnl , µ(intV ERB) = nrs , µ(attADJ) = nnr (Partial Model)

We now demonstrate how to give a pregroup typing to NONCE ∈ T that leads to a simply reducing
pregroup model µ : T → P{n,s} that is not SENT ENCE-connected. We thus exhibit a class of pregroup
models that, by Hypothesis 27, we do not expect to model any real-world natural language.

Definition 31. In a pregroup P, we define the down-closure of the identity [1P]↓ to be the submonoid
of words that are below the identity. This contains the identity and closure under composition is ensured
by compatibility of composition and partial order (categorically, the interchange law for a monoidal
tensor).

Remark 32. From a linguistic point of view, we should be suspicious of any pregroup model where
where the interpretation of some type or string of types falls within this monoid; this would correspond
to a series of words that could be arbitrarily added to either side of any grammatically correct sentence
to give another grammatically correct sentence.

Theorem 33. Let T and µ : T −{NONCE}→ P{n,s} be as defined in Types Example and Partial Model
respectively. Let us also denote the sub-pregroup of P{n,s} generated by {n} ⊆ {n,s} by P{n} ≤ P{n,s}.
Then for arbitrary w ∈

[
P{n}

]
↓, completing µ to a globally defined function by taking µ(NONCE) = w

will give a pregroup typing that is:

1. simply reducing, and

2. not SENT ENCE-connected.

Proof. It is almost immediate that µ is indeed simply reducing, as µ(NONCE) contains no occurrences
of s ∈ P{n,s}.
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By compatibility of partial order and composition, µ◦(NOUN.intV ERB.NONCE) ≤ s.1 = s so any
sentence of this type is also a grammatical sentence. However, µ◦(NOUN.intV ERB.NONCE) is of
the form nnrsw, where w ∈

[
P{n}

]
↓. By considering the word bracketing, there is no causal connection

between (nrs) and µ◦(NONCE). Thus µ : T → P{n,s} is not causally connected.

Remark 34. Mathematically, the above toy example is based on elements within the down-closure of the
identity in the free pregroup generated by a singleton. Such elements are amenable to a simple graphical
description, based on the proof of Theorem 19 – the more general case appears to be significantly harder.

10 Comments on the assumption of freeness

Linguistically, it is standard to base grammatical models on free pregroups. Even in areas where non-
proper pregroups are used (such as natural language processing and compositional distributional seman-
tics), the grammatical typing is commonly thought of as a mapping into a free pregroup, followed by
some appropriate quotient.

Due to this linguistic convention, much of this paper has used free pregroups for illustrative purposes;
however, concepts such as language bracketing, causal connectedness and the categorical and connect-
edness hypotheses are defined generally, rather than in simply in the free pregroup setting (notably, as
observed in Section 5.2, the language bracketing is significantly more subtle in the non-free case).

11 Conclusions & future directions

This paper is of course very preliminary work. Our overall thesis is that the categorical hypothesis of
Compositional Distributional Semantics makes predictions about the forms of grammar we do and do
not expect to find in natural languages. We have attempted to formalize this to the point where concrete
predictions can be made and potentially tested.

We do still require a better algebraic and categorical understanding of the implications of these re-
strictions, including characterizing the grammars that do and do not satisfy these conditions.

11.1 Other forms of connectedness, and the definition of types

The motivation for the claim that natural languages should be sentence-connected is clear, and it is natural
to wonder whether the same applies to other grammatical types. Given a series of natural language words
that come together to make up something of, say, the NOUN PHRASE type, the same intuition would
suggest that pregroup models of natural language should be NOUN PHRASE connected.

Based on this intuition, it is then hard to conceive of a grammatical type U where we would not
expect U-connectedness of pregroup models (with the possible exception of the constructions outlined in
Section 8). We could then consider a much stronger form of Hypothesis 27, and speculate that pregroup
models of natural language should be T -connected, for all grammatical types T .

This raises the question of what should be considered as a ‘grammatical type’? The discussion
of Section 5.2 presents them as an a priori given, but it is worthwhile to consider their origins. In a
language with V ERB−SUBJECT −OBJECT ordering, we are happy to call V ERB or V ERB PHRASE
a grammatical type, but do not refer to the SUBJECT −OBJECT pair of noun-phrases as a single type.
Of course, a pair of NOUN PHRASE types will not in general be connected, but will rely on the verb
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phrase to establish connections between them in a complete sentence. We may conjecture that causal
connection or information flow is what distinguishes types from more arbitrary collections of words.
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