
Steffen van Bakel, Stefano Berardi, Ulrich Berger (Eds.):
Classical Logic and Computation 2010 (Cl&C’10)
EPTCS 47, 2011, pp. 34–43, doi:10.4204/EPTCS.47.5

c© C. Houtmann
This work is licensed under the
Creative Commons Attribution License.

Superdeduction inλ µµ̃

Clément Houtmann
INRIA Saclay - Île de France and LIX/École Polytechnique, 91128 Palaiseau Cedex

Clement.Houtmann@inria.fr

Superdeduction is a method specially designed to ease the use of first-order theories in predicate
logic. The theory is used to enrich the deduction system withnew deduction rules in a systematic,
correct and complete way. A proof-term language and a cut-elimination reduction already exist for
superdeduction, both based on Christian Urban’s work on classical sequent calculus. However the
computational content of Christian Urban’s calculus is notdirectly related to the (λ -calculus based)
Curry-Howard correspondence. In contrast theλ µµ̃-calculus is aλ -calculus for classical sequent
calculus. This short paper is a first step towards a further exploration of the computational content
of superdeduction proofs, for we extend theλ µµ̃-calculus in order to obtain a proofterm langage
together with a cut-elimination reduction for superdeduction. We also prove strong normalisation for
this extension of theλ µµ̃-calculus.

Keywords: Classical sequent calculus, Superdeduction,λ µµ̃-calculus

1 Introduction

Superdeduction is an extension of predicate logic designed to ease the use offirst-order theories by
enriching a deduction system with new deduction rules computed from the theory. Once the theory is pre-
sented as a rewrite system, the translation into a set of custom (super)deduction rules is fully systematic.
Superdeduction systems [1] are usually constructed on top of the classical sequent calculus LK which is
described in Figure 1. New deduction rules are computed froma theory presented as a set ofproposition
rewrite rules, i.e. rewrite rules of the formP→ ϕ whereP is some atomic formula. Such rewrite rules
actually stand for equivalences∀x.(P⇔ ϕ) wherex represents the free variables ofP. The computation
of custom inferences for the proposition rewrite ruleP→ ϕ goes as follows. On the right, the algorithm
decomposes (bottom-up) the sequent⊢ ϕ using LK\{Cut,ContrR,ContrL} (non-deterministically) until
it reaches a sequence of atomic sequents1 (Γi ⊢ ∆i)16i6n. During this decomposition, each application of
∃L and∀R corresponds to a side conditionx /∈ FV (ϒ) for some first-order variablex and for some list
of formulaϒ. This particular decomposition of⊢ ϕ then leads to the inference rule

(Γ,Γi ⊢ ∆i ,∆)16i6n

Γ ⊢ P,∆
C

for introducingP on the right whereC is the conjunction of the side conditions. On the left, the algo-
rithm similarly decomposesϕ ⊢ until it reaches a sequence of atomic sequents(Γ′

j ⊢ ∆′
j)16 j6m and a

conjunction of side conditionsC′ yielding similarly the inference rule

(Γ,Γ′
j ⊢ ∆′

j ,∆)16 j6m

Γ,P⊢ ∆
C′

.

1i.e. sequents containing only atomic formulæ

http://dx.doi.org/10.4204/EPTCS.47.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

C. Houtmann 35

Ax
Γ,ϕ ⊢ ϕ ,∆

Cut
Γ ⊢ ϕ ,∆ Γ,ϕ ⊢ ∆

Γ ⊢ ∆
ContrR

Γ ⊢ ϕ ,ϕ ,∆
Γ ⊢ ϕ ,∆

ContrL
Γ,ϕ ,ϕ ⊢ ∆

Γ,ϕ ⊢ ∆

⊥R
Γ ⊢ ∆

Γ ⊢ ⊥,∆
⊥L

Γ,⊥ ⊢ ∆
⊤R

Γ ⊢ ⊤,∆
⊤L

Γ ⊢ ∆
Γ,⊤ ⊢ ∆

∧R
Γ ⊢ ϕ1,∆ Γ ⊢ ϕ2,∆

Γ ⊢ ϕ1∧ϕ2,∆
∧L

Γ,ϕ1,ϕ2 ⊢ ∆
Γ,ϕ1∧ϕ2 ⊢ ∆

⇒R
Γ,ϕ1 ⊢ ϕ2,∆

Γ ⊢ ϕ1 ⇒ ϕ2,∆

∨R
Γ ⊢ ϕ1,ϕ2,∆

Γ ⊢ ϕ1∨ϕ2,∆
∨L

Γ,ϕ1 ⊢ ∆ Γ,ϕ2 ⊢ ∆
Γ,ϕ1∨ϕ2 ⊢ ∆

⇒L
Γ ⊢ ϕ1,∆ Γ,ϕ2 ⊢ ∆

Γ,ϕ1 ⇒ ϕ2 ⊢ ∆

∀R
Γ ⊢ ϕ ,∆

Γ ⊢ ∀x.ϕ ,∆
x /∈ FV (Γ,∆) ∀L

Γ,ϕ [t/x] ⊢ ∆
Γ,∀x.ϕ ⊢ ∆

∃R
Γ ⊢ ϕ [t/x],∆
Γ ⊢ ∃x.ϕ ,∆

∃L
Γ,ϕ ⊢ ∆

Γ,∃x.ϕ ⊢ ∆
x /∈ FV (Γ,∆)

Figure 1: Classical Sequent Calculus LK

As remarked in [7], this non-deterministic algorithm may return several inference rules for introducing
P respectively on the right or on the left. One must add all the possible inference rules in order to obtain
a complete superdeduction system.

Definition 1 (Superdeduction systems [1]). If R is a set of proposition rewrite rules, the superdeduction
system associated withR is obtained by adding to LK all the inferences which can be computed from the
elements ofR.

The paradigmatic example for superdeduction is the system associated with the proposition rewrite
rule A⊆ B → ∀x.(x ∈ A⇒ x ∈ B) which defines the inclusion predicate⊆. This rewrite rule yields
inference rules

Γ,x ∈ A⊢ x ∈ B,∆
Γ ⊢ A⊆ B,∆

x /∈ FV (Γ,∆)
and

Γ,t ∈ B⊢ ∆ Γ ⊢ t ∈ A,∆
Γ,A⊆ B⊢ ∆ .

As demonstrated in [1], superdeduction systems are always soundw.r.t. predicate logic. Complete-
ness is ensured whenever right-hand sides of proposition rewrite rules do not alternate quantifiers2. Cut-
elimination is more difficult to obtain: several counterexamples are displayed in [8]. We have proved in
[7] that whenever right-hand sides of proposition rewrite rules do not contain universal quantifiers and ex-
istential quantifiers at the same time3, cut-elimination in superdeduction is equivalent to cut-elimination
in deduction modulo(another formalism which removes computational argumentsfrom proofs by rea-
soning modulo rewriting on propositions [6]).

In the original paper introducing superdeduction [1], a proof-term language and a cut-elimination
reduction are defined for superdeduction, both based on Christian Urban’s work on classical sequent
calculus [13]. The reduction is proved to be strongly normalising on well-typed terms when the set of
proposition rewrite rulesR satisfies the following hypothesis.

Hypothesis 1. The rewriting relation associated withR is weakly normalising and confluent and no
first-order function symbol appears in the left-hand sides of proposition rewrite rules ofR.

2Formulæ such as(∀x.ϕ)∧ (∃y.ψ) are allowed.
3Formulæ such as(∀x.ϕ)∧ (∃y.ψ) arenot allowed.

36 Superdeduction inλ µµ̃

c ::= 〈π|e〉 (commands)
π ::= x | λx.π | µα .c | λx.π (terms)
e ::= α | π ·e | µ̃x.c | t ·e | f (environments)

(a) Grammar

〈λx.π|π ′ ·e〉 → 〈π[π ′/x]|e〉
〈µα .c|e〉 → c[e/α]
〈π|µ̃x.c〉 → c[π/x]
〈λx.π|t ·e〉 → 〈π[t/x]|e〉

(b) Reduction

Γ,x : A⊢ x : A | ∆ Γ | α : A⊢ α : A,∆
Γ,x : A⊢ π : B | ∆

Γ ⊢ λx.π : A⇒ B | ∆

Γ ⊢ π : A | ∆ Γ | e : B⊢ ∆
Γ | π ·e : A⇒ B⊢ ∆

Cut
Γ ⊢ π : A | ∆ Γ | e : A⊢ ∆

〈π|e〉⊲Γ ⊢ ∆ Γ | f : ⊥ ⊢ ∆

c⊲Γ ⊢ α : A,∆
Γ ⊢ µα .c : A | ∆

c⊲Γ,x : A⊢ ∆
Γ | µ̃x.c : A⊢ ∆

Γ ⊢ π : A | ∆
Γ ⊢ λx.π : ∀x.A | ∆

x /∈ FV (Γ,∆)
Γ | e : A[t/x] ⊢ ∆
Γ | t ·e : ∀x.A⊢ ∆

(c) Type System

Figure 2: Theλ µµ̃-calculus

The computational content of Christian Urban’s calculus isnot directly related to the (functional)
Curry-Howard correspondence whereas theλ µµ̃-calculus [4] is aλ -calculus for sequent calculus. In
order to explore the computational content of superdeduction inferences, we will define in Section 2
an extension of theλ µµ̃-calculus for superdeduction systems and prove the same strong normalisation
result using Hypothesis 1. But before doing so, let us recallthe definition of theλ µµ̃-calculus.

The λ µµ̃-calculus is defined as follows. In order to avoid confusion between first-order variables
andλ µµ̃ variables, we will use sans-serif symbols for first-order variables (x,y . . .) and first-order terms
(t,u . . .). Commands, terms and environments are respectively defined by the grammar in Figure 2(a).
The type system is described in Figure 2(c). Reduction rulesare depicted in Figure 2(b). We have added
a constant environmentf in order to realise falsity. We also have added constructions λx.π andt ·e in
order to realise universal quantifications respectively onthe right and on the left. Implication, universal
quantification and falsity are sufficient to express all the connectives in LK. The typing rules

FocusR
Γ ⊢ π : A | ∆

〈π|α〉⊲Γ ⊢ α : A,∆ and
FocusL

Γ | e : A⊢ ∆
〈x|e〉⊲Γ,x : A⊢ ∆

are admissible in the type system of Figure 2(c). Replacing the Cut rule by FocusR and FocusL yields a
type system that we will callcut-freeλ µµ̃ . It is obviously not equivalent to the original type system in
Figure 2(c). The reduction relation defined in Figure 2(b) isstrongly normalising on well-typed terms as
demonstrated in [12].

Notations. Sequences(ai)16i6n may be denoted(ai)i or justā when the upper boundn can be retrieved
from the context (or is irrelevant). Both notations may evenbe combined:(āi)i represents a sequence of
sequences((a j,i)16 j6mi)16i6n. Finally if Γ = (Ai)i andx̄= (xi)i are respectively a sequence ofn formulæ
and a sequence ofn variables, then ¯x : Γ denotes the (typed) contextx1 : A1,x2 : A2 . . .

C. Houtmann 37

2 Extending λ µµ̃

In the paper introducing superdeduction [1], Christian Urban’s calculus is presented as a better choice
than theλ µµ̃-calculus for a basis of a proofterm language for superdeduction. In this section, we refute
this claim and demonstrate that theλ µµ̃-calculus is as suitable as Christian Urban’s calculus. Such an
extension is a first step towards a Curry-Howard based computational interpretation of superdeduction,
since theλ µµ̃-calculus relates directly to theλ -calculus. An inaccuracy of the original paper [1] is
also corrected in the process. The extension of theλ µµ̃-calculus that we will present corrects this mis-
take. The imprecision concerns first-order quantifications. Indeed a superdeduction inference represents
an open derivation which may contain several quantifier destructions. The structure organizing these
destructions is essential to the definition of the underlying cut-elimination mechanisms. For instance
a sequence∀∃ on the right corresponds to the creation of an eigenvariable, sayx, followed by an in-
stantiation by some first-order term, sayt, which may containx as a free variable. A sequence∃∀ on
the right corresponds to an instantiation by some first-order term, sayt, followed by the creation of an
eigenvariable, sayx. In this latter case,t is not allowed to containx as a free variable. This distinc-
tion is completely erased in the syntax of the original extension [1]. It results in an imprecision of the
scope of eigenvariables in extended proofterms: the scope is not explicit in the syntax. In our extension
of the λ µµ̃-calculus, this syntactical imprecision is corrected by introducing a notion oftrace which
represents the correct syntax for a precise syntactical representation of the scopes of eigenvariables in
extended proofterms. Then we present a correct cut-elimination procedure by introducing a notion ofin-
terpretationfor the constructs of the extendedλ µµ̃-calculus relating such constructs toλ µµ̃ proofterms
in a correct way. At the end of the section, a pathological example is depicted to illustrate the imprecision
of the original extension [1] and the correction of the present extension.

First, let us consider any derivation in LK, potentially unfinished,i.e. with leaves that remain un-
proven. Since such a derivation is a tree, there exists a natural partial order on its inferences: an inference
precedes another if the former is placed under the latter. Such a partial order can easily be extended into
a total order (in a non-deterministic way). Considering only instances of∀R,∀L, ∃R and∃L, such a total
order returns a listL of such instances. Each instance of∀R or∃L corresponds to the use of an eigenvari-
able, sayx. Such a use will be denotedx?. Each instance of∀L or ∃R corresponds to the instantiation of
some first-order variable by a first-order term, sayt. Such a use will be denotedt!. The list L becomes
a list whose elements are either of the formx? or of the formt!. Such a list is called atrace for the
derivation.

Let us consider a proposition rewrite ruler : P→ ϕ leading to the superdeduction inferences

(Γ,Γi ⊢ ∆i,∆)i

Γ ⊢ P,∆
C

and

(Γ,Γ′
j ⊢ ∆′

j ,∆) j

Γ,P⊢ ∆
C′

.

Let us consider the first one. Since it is derived from inferences of LK, there exists a derivation of⊢ ϕ
with open leaves(Γi ⊢ ∆i)i in LK [8, Property 6.1.3]. LetL be a trace for this derivation. Then the
superdeduction inference introducingP on the right is turned into the typing rule

rR
(ci ⊲Γ,xi : Γi ⊢ α i : ∆i ,∆)i

Γ ⊢ r(L,(µi(xi,α i).ci)i) : P | ∆
C
.

Here variablesxi andα i are bound inci for eachi. Similarly we obtain a corresponding traceL′ for the

38 Superdeduction inλ µµ̃

superdeduction inference introducingP on the left which is turned into the typing rule

rL
(c′j ⊲Γ,y j : Γ′

j ⊢ β j : ∆′
j ,∆) j

Γ | r(L′,(µ̃ j (y j ,β j).c
′
j) j) : P⊢ ∆

C′

.

Here variablesy j andβ j are bound inc′j for each j. For example, the inference rules for⊆ are turned
into

c⊲Γ,x : x ∈ A⊢ α : x ∈ B,∆
Γ ⊢ r(x?,µ(x,α).c) : A⊆ B,∆

x /∈ FV (Γ,∆)
and

c1⊲Γ,x : t ∈ B⊢ ∆ c2⊲Γ ⊢ α : t ∈ A,∆
Γ, r(t!, µ̃1(x).c1, µ̃2(α).c2) : A⊆ B⊢ ∆ .

If R is a set of proposition rewrite rules, the type system resulting of extending the type system of Figure
2(c) with the typing rules forR is denotedλ µµ̃R .

We must now define how cuts of the form

〈 r(L,(µi(xi ,α i).ci)i) | r(L′,(µ̃ j(y j ,β j).c
′
j) j) 〉

are reduced. Such reductions are computed usingopenλ µµ̃ , a type system for derivations with open
leaves4 in theλ µµ̃-calculus type system. An open leaf is represented by avariable command(symbols
X,Y . . .). The types of such variables have the same shape as the typesof usual commands inλ µµ̃-
calculus: full sequentsΓ ⊢ ∆. Therefore typing in openλ µµ̃ is performed in a contextΘ which contains
a list of typed variable commands of the formX⊲Γ ⊢ ∆. As usual, variable commands are allowed to
appear only once in such contexts. Typing judgements are denoted

Θ
 c⊲Γ ⊢ ∆ when typing a command;
Θ
 Γ ⊢ π : A | ∆ when typing a term

and Θ
 Γ | e : A⊢ ∆ when typing an environment.

Openλ µµ̃ is obtained by extending cut-freeλ µµ̃ to such judgements and by adding the typing rule

Open
Θ;X⊲S
 X⊲S .

For example, Figure 3 contains a derivation of

X⊲x : C ⊢ α : D ; Y⊲ ⊢ α : D,β : B
 〈λy.µα .〈y|(µβ .Y) · (µ̃x.X)〉|γ〉 ⊲ (⊢ γ : (B⇒C)⇒ D) .

(where the prefixX⊲x : C ⊢ α : D ; Y⊲ ⊢ α : D,β : B
 is omitted for readability.)
The reduction in Figure 2(b) is extended to openλ µµ̃ by simply defining how subtitutions behave on

command variables (X[t/x], X[e/α] or X[t/x]): they are turned intodelayed substitutions, i.e. syntactic
constructions, denotedX{t/x}, X{e/α} or X{t/x}, which will be turned back into primitive substitu-
tions onceX is instanciated.

A typing derivation in openλ µµ̃ obviously corresponds to a derivation in LK (with open leaves). If
K is a typed command, term or environment, then a trace for K is atrace for the derivation corresponding
to K. Let us reconsider our extended terms

r(L,(µi(xi,α i).ci)i) and r(L′,(µ̃ j(x j ,α j).c
′
j) j)

4i.e. leaves that remain unproven

C. Houtmann 39

Open
Y⊲ ⊢ β : B,α : D

⊢ µβ .Y : B | α : D

Open
X⊲x : C ⊢ α : D

| µ̃x.X : C ⊢ α : D

| (µβ .Y) · (µ̃x.X) : (B⇒C) ⊢ α : D

〈y|(µβ .Y) · (µ̃x.X)〉⊲y : (B⇒C) ⊢ α : D

y : (B⇒C) ⊢ µα .〈y|(µβ .Y) · (µ̃x.X)〉 : D |

⊢ λy.µα .〈y|(µβ .Y) · (µ̃x.X)〉 : (B⇒C)⇒ D |

〈λy.µα .〈y|(µβ .Y) · (µ̃x.X)〉|γ〉⊲ ⊢ γ : (B⇒C)⇒ D

Figure 3: Typing in openλ µµ̃

and their respective typing rules rR and rL. The sets

r̃R=

{
π

/
(Xi ⊲ (xi : Γi ⊢ α i : ∆i))i
 ⊢ π : ϕ well-typed in openλ µµ̃
andL is a trace forπ

}

and

r̃L =

{
e

/ (Yj ⊲ (yj : Γ′
j ⊢ β j : ∆′

j)) j
 e : ϕ ⊢ well-typed in openλ µµ̃
andL′ is a trace fore

}

are both non-empty: Indeed by construction of the superdeduction inference rules, we know that there
exists a derivation in LK of⊢ ϕ (resp. ϕ ⊢) from premisses(Γi ⊢ ∆i)i (resp. (Γ′

j ⊢ ∆′
j) j) such that

L (resp. L′) is a trace for this derivation. Therefore by logical completeness of (open)λ µµ̃ , there
exists at least one term iñrR (resp. one environment iñrL). Each termπ ∈ r̃R intuitively represents
r(L,(µi(xi ,α i).Xi)i) in openλ µµ̃ . Each environmente∈ r̃L intuitively representsr(L′,(µ̃ j(x j ,α j).c′j) j)

in openλ µµ̃ . Therefore wheneverπ ande are respectively iñrR andr̃L, any normal form〈π|e〉 can be
chosen as a direct reduct of

〈 r(L,(µi(xi ,α i).ci)i) | r(L′,(µ̃ j (x j ,α j).c
′
j) j) 〉 .

We suppose that for each typing rule rR (resp. rL) one specificπ ∈ r̃R (resp. one specifice∈ r̃L) is
distinguished. This term (resp. this environment) is called the interpretation of r(L,(µi(xi,α i).Xi)i)
(resp.r(L′,(µ̃ j(x j ,α j).Yj) j)). Then for each normal formc of 〈π|e〉, the rule

〈(r(L,(µi(xi ,α i).ci)i)|r(L
′,(µ̃ j (y j ,β j).c

′
j) j)〉 → c[(ci/Xi)i ,(c

′
j/Yj) j]

is added to the cut-elimination reduction (delayed substitutions{·/·} are replaced inc by primitive sub-
stitutions[·/·]).

Let us reconsider the inclusion example. The termπ = λx.λx.µα .X is a potential interpretation of
r(x?,µ(x,α).c). Indeed

X⊲x : x ∈ A⊢ x ∈ B
⊢ π : ∀x.x ∈ A⇒ x ∈ B |

is well-typed in openλ µµ̃ as demonstrated in Figure 4(a) andx? is a trace forπ. The environment
e= t · (µβ .Y) · (µ̃y.Z) is a potential interpretation ofr(t!, µ̃1(y).c1, µ̃2(β).c2). Indeed

Y⊲ ⊢ β : t ∈ A,Z⊲y : t ∈ B
| e : ∀x.x ∈ A⇒ x ∈ B⊢

40 Superdeduction inλ µµ̃

Open
X⊲x : x ∈ A⊢ x ∈ B
 X⊲x : x ∈ A⊢ α : x ∈ B

X⊲x : x ∈ A⊢ x ∈ B
 x : x ∈ A⊢ µα .X : x ∈ B |

X⊲x : x ∈ A⊢ x ∈ B
 x : x ∈ A⊢ µα .X : x ∈ B |

X⊲x : x ∈ A⊢ x ∈ B
⊢ λx.µα .X : x ∈ A⇒ x ∈ B |

X⊲x : x ∈ A⊢ x ∈ B
⊢ λx.λx.µα .X : ∀x.x ∈ A⇒ x ∈ B |

(a) Typingλx.λx.µα.X

Open
Y⊲ ⊢ β : t ∈ A;Z⊲y : t ∈ B
Y⊲ ⊢ β : t ∈ A

Y⊲ ⊢ β : t ∈ A;Z⊲y : t ∈ B
⊢ µβ .Y : t ∈ A |
·········

Open
Y⊲ ⊢ β : t ∈ A;Z⊲y : t ∈ B
 Z⊲y : t ∈ B⊢

Y⊲ ⊢ β : t ∈ A;Z⊲y : t ∈ B
| µ̃y.Z : t ∈ B⊢

Y⊲ ⊢ β : t ∈ A;Z⊲y : t ∈ B
| (µβ .Y) · (µ̃y.Z) : t ∈ A⇒ t ∈ B⊢

Y⊲ ⊢ β : t ∈ A,Z⊲y : t ∈ B
| t · (µβ .Y) · (µ̃y.Z) : ∀x.x ∈ A⇒ x ∈ B⊢

(b) Typingt · (µβ .Y) · (µ̃y.Z)

Figure 4: Typing interpretations for inclusion

is well-typed in openλ µµ̃ as demonstrated in Figure 4(b) andt! is a trace fore. The cut

〈λx.λx.µα .X|t · (µβ .Y) · (µ̃y.Z)〉

has two normal forms, namely

X{t/x}{(µβ .Y)/x}{µ̃y.Z/α} and Z{µα .X{t/x}{(µβ .Y)/x}/y} .

Therefore a cut
〈r(x?,µ(x,α).c)|r(t!, µ̃1(y).c1, µ̃2(β).c2)〉

reduces to
c[t/x][(µβ .c2)/x][µ̃y.c1/α] and c1[µα .c[t/x][(µβ .c2)/x]/y] .

If R is a set of proposition rewrite rules, the reduction relation of Figure 2(b) extended by the reduc-
tion rules forR will be denoted→λ µµ̃R

.

Theorem 1 (Subject Reduction). For all R, typability in λ µµ̃R is preserved by reduction through
→λ µµ̃R

.

Proof. The only case worth considering is a reduction of somesupercut

〈r(L,(µi(xi ,α i).ci)i)|r(L
′,(µ̃ j (y j ,β j).c

′
j) j)〉 .

If π ande are the respective interpretations ofr(L,(µi(xi ,α i).Xi)i) andr(L′,(µ̃ j (y j ,β j).Yj) j) andc is a
normal form of〈π|e〉, then the supercut reduces toc[(ci/Xi)i ,(c′j/Yj) j]. By definition of the interpre-

tations, the judgements(Xi ⊲ (xi : Γi ⊢ α i : ∆i))i
⊢ π : ϕ and(Yj ⊲ (y j : Γ′
j ⊢ β j : ∆′

j)) j
 e : ϕ ⊢ are

well-typed in openλ µµ̃ . Therefore by subject reduction in openλ µµ̃

(Xi ⊲ (xi : Γi ⊢ α i : ∆i))i ; (Yj ⊲ (y j : Γ′
j ⊢ β j : ∆′

j)) j
 c⊲ ⊢

C. Houtmann 41

is also well-typed in openλ µµ̃ . Then a simple substitution lemma on command variables5 proves that
if the command

〈r(L,(µi(xi ,α i).ci)i)|r(L
′,(µ̃ j (y j ,β j).c

′
j) j)〉

has a certain type, then so does the commandc[(ci/Xi)i ,(c′j/Yj) j].

Theorem 2 (Strong Normalisation). For all R satisfying hypothesis 1,→λ µµ̃R
is strongly normalising

on commands, terms and environments that are well-typed inλ µµ̃R .

Proof. Hypothesis 1 implies that any formulaϕ has a unique normal form forR that we denoteϕ ↓p.
Let us denote→e the rewrite relation defined by replacing extended terms forsuperdeduction by their
interpretations.

r(L,(µi(xi ,α i).ci)i) →e π[ci/Xi]

r(L′,(µ̃ j(y j ,β j).c
′
j) j) →e e[c′j/Yj]

. . .

Such a rewrite relation is strongly normalising and confluent, therefore yielding for any extended com-
mandc, term π or environmente a normal form denotedc↓e, π ↓e of e↓e. Such normal forms are
raw λ µµ̃ commands, terms or environments. Strong normalisation of our extended cut-elimination re-
duction comes from the facts that1. c⊲ Γ ⊢ ∆ well-typed in our extended type system implies that
c↓e ⊲(Γ)↓p⊢ (∆)↓p well-typed inλ µµ̃ ; 2. Γ ⊢ π : A | ∆ well-typed in our extended type system implies
that(Γ)↓p⊢ π ↓e: A↓p| (∆)↓p well-typed inλ µµ̃ ; 3. Γ | e : A⊢ ∆ well-typed in our extended type system
implies that(Γ) ↓p| e↓e: A↓p⊢ (∆) ↓p well-typed inλ µµ̃ ; 4. c → c′ implies c↓e→

+ c′ ↓e 5. π → π ′

implies π ↓e→
+ π ′ ↓e 6. e→ e′ implies e↓e→

+ e′ ↓e. The hypothesis on first-order function symbols
(see Hypothesis 1) is crucial in establishing points 1 to 3: indeed for any formulaϕ and any first-order
substitutionσ , it must be the case that(ϕ ↓p)σ = (ϕσ)↓p. These six points (combined with Theorem 1)
demonstrate that through↓e and↓p, theλ µµ̃-calculus simulates our extended calculus: any well-typed
reduction in our extended calculus induces through↓e and↓p a longer well-typed reduction inλ µµ̃ .
Strong normalisation ofλ µµ̃ therefore implies strong normalisation of our extended reduction.

The end of this section is dedicated to a pathological example for superdeduction: the proposition
rewrite rule

r : P→ (∃x1.∀x2.A(x1,x2))∨ (∃y1.∀y2.B(y1,y2))

whosemost generalsuperdeduction rules are

Γ ⊢ A(t,x2),B(u,y2),∆
Γ ⊢ P,∆

{
x2 /∈ FV (Γ,∆,u)
y2 /∈ FV (Γ,∆) and

Γ ⊢ A(t,x2),B(u,y2),∆
Γ ⊢ P,∆

{
x2 /∈ FV (Γ,∆)
y2 /∈ FV (Γ,∆, t) .

The original proofterm extension [1] transforms these two inferences into a unique proofterm
rR(λx2.λy2.(λα .λβ .m),t,u,γ). It is obviously inaccurate with respect to the scope ofx2 andy2: in
the proofterm there is no mention that eithert is not in the scope ofy2 or u is not in the scope ofx2. This
fact is not reflected in the pure syntax but in the typing rules

m⊲Γ ⊢ α : A(t,x2),β : B(u,y2),∆
rR(λx2.λy2.(λα .λβ .m),t,u,γ)⊲Γ ⊢ γ : P,∆

{
x2 /∈ FV (Γ,∆,u)
y2 /∈ FV (Γ,∆)

5not detailed here for simplicity

42 Superdeduction inλ µµ̃

and
m⊲Γ ⊢ α : A(t,x2),β : B(u,y2),∆

rR(λx2.λy2.(λα .λβ .m),t,u,γ)⊲Γ ⊢ γ : P,∆

{
x2 /∈ FV (Γ,∆)
y2 /∈ FV (Γ,∆, t) .

Let us see how this mistake is corrected in our extension of theλ µµ̃-calculus. Traces for the superde-
duction inferences are respectivelyu! y2?t! x2? andt! x2?u! y2?. These traces clearly specify that whether
t is not in the scope ofy2 or u is not in the scope ofx2. Our extension of theλ µµ̃-calculus translates
these superdeduction inferences into the typing rules

c⊲Γ ⊢ α : A(t,x2),β : B(u,y2),∆
Γ ⊢ r(u! y2?t! x2?,µ(α ,β).c) : P | ∆

{
x2 /∈ FV (Γ,∆,u)
y2 /∈ FV (Γ,∆)

and
c⊲Γ ⊢ α : A(t,x2),β : B(u,y2),∆

Γ ⊢ r(t! x2?u! y2?,µ(α ,β).c) : P | ∆

{
x2 /∈ FV (Γ,∆)
y2 /∈ FV (Γ,∆, t) .

The proofterms (and the typing rules) reflect the scope of theeigenvariables. Theinterpretation of
r(u! y2?t! x2?,µ(α ,β).c) is by definition a term well-typed inλ µµ̃ whose trace isu! y2?t! x2? and the
interpretation of r(t! x2?u! y2?,µ(α ,β).c) is by definition a term well-typed inλ µµ̃ whose trace is
t! x2?u! y2?. This trace restriction implies thatr(u! y2?t! x2?,µ(α ,β).c) and r(t! x2?u! y2?,µ(α ,β).c)
behave differently with respect to cut-elimination.

3 Conclusion

This extension of theλ µµ̃-calculus is a first step towards a computational interpretation of superde-
duction. Indeed it refutes the idea [1] that Christian Urban’s calculus is a better basis for a proofterm
language for superdeduction:λ µµ̃ syntax, typing and reduction is as suitable as Christian Urban’s calcu-
lus for superdeduction. The extension presented in this short paper is almost a mechanical transcription
of the original extension [1]. It relates superdeduction more closely to theλ -calculus based Curry-
Howard correspondence without exploring any further the computational content of cut-elimination for
superdeduction.

We believe that one of the key ingredients towards this goal is pattern-matching. Indeed superde-
duction systems historically come fromsupernatural deduction[14], an extension of natural deduction
designed to type the rewriting-calculus (a.k.a.ρ-calculus) [3]. Supernatural deduction turns proposition
rewrite rules of the form

r : P → ∀x̄.((A1∧A2 . . .An)⇒C)

into inference rules for natural deduction

Γ,A1 . . .An ⊢C

Γ ⊢ P
x̄ /∈ FV (Γ)

and

Γ ⊢ P (Γ ⊢ Ai[t̄/x̄])i

Γ ⊢C[t̄/x̄] .

(The first rule is an introduction rule and the second is an elimination rule.) The rewriting calculus is
an extension of theλ -calculus where rewrite rules replace lambda-abstractions. The idea underlying
the relation between supernatural deduction and rewritingcalculus is that the proposition rewrite ruler
corresponds to a specific patternr(x̄,x1 . . .xn). The introduction rule types an abstraction on this pattern
(i.e. a rewrite rule)

Γ,x1 : A1 . . .xn : An ⊢ π : C

Γ ⊢ r(x̄,x1 . . .xn)→ π : P
x̄ /∈ FV (Γ)

.

C. Houtmann 43

Dually the elimination rule types an application on this pattern

Γ ⊢ π : P (Γ ⊢ πi : Ai [t̄/x̄])i

Γ ⊢ π r(t̄,π1 . . .πn) : C .

Supernatural deduction systems (in intuitionistic natural deduction) have later been transformed into
superdeduction systems (in classical sequent calculus) inorder to handle more general proposition
rewrite rules. This transformation from supernatural deduction to superdeduction systems should not
break the relation with pattern matching. Indeed cut-elimination in sequent calculus relates to pattern
matching [2]. Recent analysis shows that the duality between patterns and terms reflects the duality be-
tween phases in focused proof systems [15]. Finally we demonstrated [7, 8] that superdeduction systems
share strong similarities with focused proof systems such as LKF [9, 10], a focused sequent calculus
for classical logic. Answers should naturally arise from the study of the computational content of such
focused systems [11, 5].

References

[1] Paul Brauner, Clément Houtmann & Claude Kirchner (2007): Principles of Superdeduction. In: LICS, pp.
41–50.

[2] Serenella Cerrito & Delia Kesner (2004):Pattern matching as cut elimination. Theor. Comput. Sci.323(1-3),
pp. 71–127.

[3] Horatiu Cirstea & Claude Kirchner (2001):The rewriting calculus –- Part I and II. Logic Journal of the
Interest Group in Pure and Applied Logics9(3), pp. 427–498.

[4] Pierre-Louis Curien & Hugo Herbelin (2000):The duality of computation. In: ICFP, pp. 233–243.

[5] Pierre-Louis Curien & Guillaume Munch-Maccagnoni (2010): The duality of computation under focus. In:
IFIP TCS. Accepted.

[6] Gilles Dowek, Thérèse Hardin & Claude Kirchner (2003):Theorem Proving Modulo. Journal of Automated
Reasoning31(1), pp. 33–72.

[7] Clément Houtmann (2008):Axiom Directed Focusing. In: TYPES, pp. 169–185.

[8] Clément Houtmann (2010):Représentation et interaction des preuves en superdéduction modulo. Ph.D.
thesis, Université Henri Poincaré, Nancy Universités.

[9] Chuck Liang & Dale Miller (2007):Focusing and Polarization in Intuitionistic Logic. In: CSL, pp. 451–465.

[10] Chuck Liang & Dale Miller (2009):A Unified Sequent Calculus for Focused Proofs. In: LICS, IEEE Com-
puter Society, pp. 355–364.

[11] Guillaume Munch-Maccagnoni (2009):Focalisation and Classical Realisability. In: CSL, pp. 409–423.

[12] Emmanuel Polonowski (2004):Strong Normalization of lambda-mu-mu/tilde-Calculus with Explicit Substi-
tutions. In: FoSSaCS, pp. 423–437.

[13] Christian Urban (2000):Classical Logic and Computation. Ph.D. thesis, University of Cambridge.

[14] Benjamin Wack (2005):Typage et déduction dans le calcul de réécriture. Ph.D. thesis, Université Henri
Poincaré, Nancy 1.

[15] Noam Zeilberger (2008):Focusing and higher-order abstract syntax. In: POPL, pp. 359–369.

	1 Introduction
	2 Extending
	3 Conclusion

