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Superdeduction is a method specially designed to ease #hefusst-order theories in predicate
logic. The theory is used to enrich the deduction system nétlv deduction rules in a systematic,
correct and complete way. A proof-term language and a ¢uonivghtion reduction already exist for
superdeduction, both based on Christian Urban’s work ossidal sequent calculus. However the
computational content of Christian Urban’s calculus isdicgctly related to theX-calculus based)
Curry-Howard correspondence. In contrast Mefi-calculus is aA-calculus for classical sequent
calculus. This short paper is a first step towards a furthplogation of the computational content
of superdeduction proofs, for we extend thgfi-calculus in order to obtain a proofterm langage
together with a cut-elimination reduction for superdeéuctWe also prove strong normalisation for
this extension of thd pfi-calculus.
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1 Introduction

Superdeduction is an extension of predicate logic designed to ease the usstebrder theories by
enriching a deduction system with new deduction rules caetpitom the theory. Once the theory is pre-
sented as a rewrite system, the translation into a set afrwu&uper)deduction rules is fully systematic.
Superdeduction systems [1] are usually constructed onfttigealassical sequent calculus LK which is
described in Figurel 1. New deduction rules are computed &dneory presented as a sepodposition
rewrite rules i.e. rewrite rules of the forr® — ¢ whereP is some atomic formula. Such rewrite rules
actually stand for equivalencé®.(P < ¢) wherex represents the free variablesRfThe computation
of custom inferences for the proposition rewrite rBle> ¢ goes as follows. On the right, the algorithm
decomposes (bottom-up) the sequemt using LK\ {Cut ContrR ContrL} (non-deterministically) until
it reaches a sequence of atomic seq st Aj)1<i<n. During this decomposition, each application of
JL and VR corresponds to a side conditia .7 7 (Y) for some first-order variable and for some list
of formulaY. This particular decomposition 6f ¢ then leads to the inference rule

(M, i F A, D) 1<i<n
rFPA

for introducingP on the right whereC is the conjunction of the side conditions. On the left, thgoal
rithm similarly decomposes - until it reaches a sequence of atomic sequéhfs- Aj)i<j<m and a
conjunction of side condition8’ yielding similarly the inference rule

(N7 B, A)1<j<m o

PEA
1j.e. sequents containing only atomic formulae
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Figure 1: Classical Sequent Calculus LK

As remarked in[[[7], this non-deterministic algorithm magura several inference rules for introducing
P respectively on the right or on the left. One must add all thesfble inference rules in order to obtain
a complete superdeduction system.

Definition 1 (Superdeduction systems [1]f & is a set of proposition rewrite rules, the superdeduction
system associated wit# is obtained by adding to LK all the inferences which can bepmated from the
elements ofZ.

The paradigmatic example for superdeduction is the systmmcated with the proposition rewrite
rueACB — Vx.(x € A= x € B) which defines the inclusion predicate This rewrite rule yields
inference rules

MxecAFxeB,A rteBFA THteAA

xd ZV(T,A)
r-ACB,A and FACBFA

As demonstrated in [1], superdeduction systems are alwaysdsv.r.t. predicate logic. Complete-
ness is ensured whenever right-hand sides of propositieriteerules do not alternate quantifir@ut-
elimination is more difficult to obtain: several countenexdes are displayed inl[8]. We have proved in
[7] that whenever right-hand sides of proposition rewrnities do not contain universal quantifiers and ex-
istential quantifiers at the same t@neut—elimination in superdeduction is equivalent to diaaation
in deduction moduldanother formalism which removes computational arguménts proofs by rea-
soning modulo rewriting on propositions [6]).

In the original paper introducing superdeduction [1], aghterm language and a cut-elimination
reduction are defined for superdeduction, both based orsi@mriUrban’s work on classical sequent
calculus [[18]. The reduction is proved to be strongly noisiad on well-typed terms when the set of
proposition rewrite rules? satisfies the following hypothesis.

Hypothesis 1. The rewriting relation associated witt is weakly normalising and confluent and no
first-order function symbol appears in the left-hand sidigroposition rewrite rules of7Z.

2Formulee such ag/x.¢) A (3y.y) are allowed.
SFormulee such a@/x.¢) A (Jy.¢) arenot allowed.
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¢ = (me) (commands) (Ax.mm -e) — (m{r’/X]|e)
.._ (na.cle)  — cle/a]
= X|AXTT| ga.c| Ax.mm  (terms) ~
e:= a|me|fixc|t-e[f (environments) (mpxc) — — c[m/X
(Ax.mjt-€) — (mt/x]|e)

(@) Grammar .
(b) Reduction

rX:AFm:B|A

MX:AEX:AIA Mo:AFa:AA FEAXmT:A=B|A
FrEm:AlA e:BFA Cutrl—n:A|A Ie:AFA
Mme:A=BFA (me)>T FA Mf:LEA
c>lHa:AA c>T,x:AFA FrEmAlA Me:Alt/xFA

= x¢ 7V (,0)
M-ua.c:AlA M| gxc:AFA MEAx.TT: VXA A

(c) Type System

Mt-e:vxAFA

Figure 2: The\ uji-calculus

The computational content of Christian Urban’s calculuads directly related to the (functional)
Curry-Howard correspondence whereas Ahii-calculus [4] is aA-calculus for sequent calculus. In
order to explore the computational content of superdedudtiferences, we will define in Section 2
an extension of tha ufi-calculus for superdeduction systems and prove the sammgstormalisation
result using Hypothesis 1. But before doing so, let us reheldefinition of the ufi-calculus.

The Auji-calculus is defined as follows. In order to avoid confusion betweern-tirder variables
andA ufi variables, we will use sans-serif symbols for first-ordeialales &,y ...) and first-order terms
(t,u...). Commands, terms and environments are respectively defipehe grammar in Figuile 2{a).
The type system is described in Figlire 2(c). Reduction raleslepicted in Figuie 2(b). We have added
a constant environmerjtin order to realise falsity. We also have added construstionrr andt - ein
order to realise universal quantifications respectivelyh@nright and on the left. Implication, universal
guantification and falsity are sufficient to express all therectives in LK. The typing rules

FrEm:AlA re:AFA
FocusR FocusL
(Ma)o>TFa:AA and (xle)>T,x: AFA

are admissible in the type system of Figure 2(c). Repladiegdut rule by FocusR and FocusL yields a
type system that we will cattut-freeA fi. It is obviously not equivalent to the original type system i
Figure[2(c). The reduction relation defined in Figure R(Istisngly normalising on well-typed terms as
demonstrated i [12].

Notations. Sequence&;)i<i<n may be denoteds;); or justawhen the upper boundcan be retrieved
from the context (or is irrelevant). Both notations may elbercombined{(a ); represents a sequence of
sequences§(a; i )1<j<m )1<i<n- Finally if F = (A); andx= (x;); are respectively a sequencendbrmulze
and a sequence ofvariables, thex : T denotes the (typed) context : Ay, X : As...



C. Houtmann 37

2 Extending A ufi

In the paper introducing superdeduction [1], Christian &b calculus is presented as a better choice
than theA pfi-calculus for a basis of a proofterm language for superdéstucin this section, we refute
this claim and demonstrate that the:fi-calculus is as suitable as Christian Urban’s calculus hSuc
extension is a first step towards a Curry-Howard based catipnal interpretation of superdeduction,
since theA pfi-calculus relates directly to th&-calculus. An inaccuracy of the original pap&t [1] is
also corrected in the process. The extension of\th@i-calculus that we will present corrects this mis-
take. The imprecision concerns first-order quantificationdeed a superdeduction inference represents
an open derivation which may contain several quantifierrdeSbns. The structure organizing these
destructions is essential to the definition of the undegyént-elimination mechanisms. For instance
a sequencé&’d on the right corresponds to the creation of an eigenvariaagx, followed by an in-
stantiation by some first-order term, sgywhich may contairx as a free variable. A sequengg on

the right corresponds to an instantiation by some firstiotelen, sayt, followed by the creation of an
eigenvariable, say. In this latter caset is not allowed to contaix as a free variable. This distinc-
tion is completely erased in the syntax of the original esiem [1]. It results in an imprecision of the
scope of eigenvariables in extended proofterms: the scopetiexplicit in the syntax. In our extension
of the A ufi-calculus, this syntactical imprecision is corrected bydducing a notion ofrace which
represents the correct syntax for a precise syntacticaéseptation of the scopes of eigenvariables in
extended proofterms. Then we present a correct cut-eltronmarocedure by introducing a notion iof
terpretationfor the constructs of the extendaqii-calculus relating such constructsXeifi proofterms

in a correct way. At the end of the section, a pathologicaiga is depicted to illustrate the imprecision
of the original extensiori [1] and the correction of the prégxtension.

First, let us consider any derivation in LK, potentially um$hed,i.e. with leaves that remain un-
proven. Since such a derivation is a tree, there exists aatg@rtial order on its inferences: an inference
precedes another if the former is placed under the lattexh Syartial order can easily be extended into
a total order (in a non-deterministic way). Consideringyanktances of/R, VL, IR anddL, such a total
order returns a list of such instances. Each instance/&f or 3L corresponds to the use of an eigenvari-
able, say. Such a use will be denote®. Each instance 6fL or IR corresponds to the instantiation of
some first-order variable by a first-order term, saypuch a use will be denotetl The listL becomes
a list whose elements are either of the foxfhor of the formt!. Such a list is called &ace for the
derivation.

Let us consider a proposition rewrite ruleP — ¢ leading to the superdeduction inferences

(F,Ti F AL D); c (MM =4, D))
r-PA and  T.PLA

Let us consider the first one. Since it is derived from infeemnof LK, there exists a derivation bf¢g
with open leavesT; - 4A); in LK [8] Property 6.1.3]. Letl be a trace for this derivation. Then the
superdeduction inference introduciRgon the right is turned into the typing rule

(G>TX: i Eap: AL A); c
M- F(L, (Ui ()_(i,ﬁi).Ci)i) P | A

Here variables; and@; are bound irc; for eachi. Similarly we obtain a corresponding tracefor the
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superdeduction inference introduciRgon the left which is turned into the typing rule

(S >T,y; ) By A, );

C (L, (5 (94,85)-c))j) : PHA

/

Here variabley; andﬁj are bound irc’j for eachj. For example, the inference rules farare turned
into

c>lx:xeArFa:xeB,A FH(.D) c>M,x:teBFA c>lMFa:teAA
rw(x'.),y(x,or).c):AgB,AX§§ (T and For(t!, fy(X).cp, fio(a).co) :ACBRA

If % is a set of proposition rewrite rules, the type system respttf extending the type system of Figure
with the typing rules foe7 is denoted i fis.
We must now define how cuts of the form

(r(L, (i (%, ai).c)i) | r(L (B (Y5, 85)-€))5) )

are reduced. Such reductions are computed uspEnA 1 fi, a type system for derivations with open
leavel in the A ufi-calculus type system. An open leaf is represented ¥grimble commandsymbols
X,Y...). The types of such variables have the same shape as thedfypssal commands if pfi-
calculus: full sequents - A. Therefore typing in open ufi is performed in a contex® which contains

a list of typed variable commands of the fox> T - A. As usual, variable commands are allowed to
appear only once in such contexts. Typing judgements aretelén

OlFc>TEFA when typing a command;
OIFTFm:A|A when typing a term
and OIFT |e:AFA when typing an environment.

OpenA uji is obtained by extending cut-fréeufi to such judgements and by adding the typing rule

Open
O;X>SIFX>S.

For example, Figurel 3 contains a derivation of
Xe>x:Cha:D;Y>ta:D,B:Bl-(Ay.uay[(uB.Y) - (ixX)|y) > (Fy:(B=C)=D).

(where the prefiX>x:CFa:D; Y>>+ a: D, : Bl is omitted for readability.)

The reduction in Figure 2(p) is extended to opanf! by simply defining how subtitutions behave on
command variablesX(t/x], X[e/a] or X[t/x]): they are turned intdelayed substitutions.e. syntactic
constructions, denoted{t/x}, X{e/a} or X{t/x}, which will be turned back into primitive substitu-
tions onceX is instanciated.

A typing derivation in oper i obviously corresponds to a derivation in LK (with open legjvef
K is a typed command, term or environment, then a trace for Krisce for the derivation corresponding
to K. Let us reconsider our extended terms

r(L, (pi (%, 0i).Gi)i) and (L, ({1 (x,a;).c));)

4j.e. leaves that remain unproven
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Open Open
Y>FB:Ba:D X>x:Cka:D

FupBY:B|a:D | ixX:Cka:D
| (UB.Y) - (fixX): (B=C)Fa:D
YI(uBY)- (ixX))>y: (B=C)Fa:D
y:(B=C)F pa.y|(uB.Y)- (ixX)):D|
FAy.pa(yl(uB.Y) - (ixX)): (B=C)=D|
Ay.pa.yl(uB.Y) - (AxX))|y)>Fy: (B=C)=D

Figure 3: Typing in opel i i

and their respective typing rules rR and rL. The sets

ey . / (Xi> (X T )i IF - ;¢ well-typed in opem p i
N andL is a trace font

and

i— {e / (Yj> (yj AN I—Ej 147))jI-e: ¢ - well-typed in opem ujl }
andLl’ is a trace fore

are both non-empty: Indeed by construction of the supetagtuinference rules, we know that there

exists a derivation in LK of- ¢ (resp. ¢ I-) from premisseqT; - Aj); (resp. (I - 4})j) such that

L (resp. L) is a trace for this derivation. Therefore by logical contgtess of (open) ufi, there

exists at least one term iR (resp. one environment ). Each termm € R intuitively represents

r(L, (t(X,a@i).%)i) in openA ufi. Each environmere ¢ rL intuitively represents (L', ({; (Xj,0j)-¢)j)

in openA ufi. Therefore whenever ande are respectively imR andrL, any normal form(rje) can be

chosen as a direct reduct of

(orL(ma).a)) |l (3 ®,aj).ch)) )

We suppose that for each typing rule rR (resp. rL) one spemificrR (resp. one specifie € rL) is
distinguished. This term (resp. this environment) is chliee interpretation of r(L, (14 (X, 0;).X)i)
(resp.r(L', (f1j(X;,@j).Y;)j)). Then for each normal formof (rje), the rule

((r(L, (i (). e (L (35 (95, 85)-€)i)) - — cl(ei/X)i, (€] /Y))j]

is added to the cut-elimination reduction (delayed sulistits {-/-} are replaced i by primitive sub-
stitutions]-/-]).

Let us reconsider the inclusion example. The term Ax.AXx.ua.X is a potential interpretation of
r(x? u(x,a).c). Indeed

X>Xx:xe AFxeBIFFT:Vxx€e A=x€B|

is well-typed in opem ufi as demonstrated in Figufe 4(a) ax®lis a trace for. The environment
e=t-(uB.Y)-(fty.2) is a potential interpretation oft!, fi;(y).cy, fio(B8).c;). Indeed

Y>EB:teAZ>y:teBlHe:Vxxe A=xeBF
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Open
X>X:xeAFxeBlFX>X:xec At a:xeB

X>Xx:xe AFxeBlFx:xe AFua.X:xeB|
X>x:xeAFxeBIFx:xe Ak pua.X:xeB|
X>x:x€ AFxeBIFFAxpa. X :xe A=xeB|
X>X:x € AFxeBIFFAxAX o . X :Vxxe A= xe€B|
(a) TypingAx.Ax.pa.X

Op

en
Y>FB:teAZby:teBIFYDEFBiteA
Y>FB:teAZ>y:teBIFFuBY:teAl

Op

N SFB teAZ>y teBlFZmoy teBF
Y>FB:te AZ>y:teBIH iyZ:teBH
Y>FB:te AZ>y:teBIH (UBY) (iy.2) :te A=te B

Y>FB:teAZry:teBIHt - (UB.Y)  (ly.Z) :Vxxe A=xec Bt

(b) Typingt- (uB.Y)- (fly.Z)

Figure 4: Typing interpretations for inclusion

is well-typed in oper i as demonstrated in Figure 4|(b) ards a trace fore. The cut
(AxAx.pua X[t (UB.Y) - (f1y.2))

has two normal forms, namely

X{t/xH(uBY)/xHiyz/a}  and  Z{pa X{t/x}{(uB.Y)/x}/y} .
Therefore a cut
(r(x?,pu(x, a).c)lr(t!, fr(y).ca, f2(B).c2))
reduces to
clt/x|[(uB.c2)/x|[fy.ci/a]l  and  cifpa.clt/x][(uB.c2)/X/Y] -

If Z is a set of proposition rewrite rules, the reduction refatd Figure 2(b) extended by the reduc-
tion rules forZ will be denoted—quw.
Theorem 1 (Subject Reduction)For all %, typability in A i, is preserved by reduction through
R

Proof. The only case worth considering is a reduction of s@ugercut

(r(L, (i (%,a0).)i)[r (L, (35 (Y4, 84)-€))) -

If Tande are the respective interpretationsrok, (1 (%, @i).X)i) andr (L', ({(y;,8;).Y})j) andcis a
normal form of (7€), then the supercut reducesddci/X)i, (cj/Yj);]. By definition of the interpre-
tations, the judgements§ > (X : i @ 1 4))i I 12 ¢ and (Y > (; - T} = B 1 4)))j IFe: ¢ - are
well-typed in opem ufi. Therefore by subject reduction in op&p fi

Xi> (R TiEai )i (Y (3T F By 1 A))j ke =
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is also well-typed in oped ufi. Then a simple substitution lemma on command varit;beeves that
if the command

(r (L, (s (%, @) Ir (L, (B (95, 85)-€)) )
has a certain type, then so does the comma(@l/ X )i, (¢;/Y;);]. O
Theorem 2 (Strong Normalisation) For all # satisfying hypothesls 1;>+ is strongly normalising

'~ Al
on commands, terms and environments that are well-typadljin;, .

Proof. Hypothesig ]l implies that any formuahas a unique normal form fo# that we denote |p.
Let us denote—¢ the rewrite relation defined by replacing extended termsifgerdeduction by their
interpretations.
Hi(%i,@i).C)i)  —ve TG /X]

i(¥5:B)-€)j) —e €lcj/Yj]

Such a rewrite relation is strongly normalising and conftugrerefore yielding for any extended com-
mandc, term 7T or environmente a normal form denoted |., 7] Of €le. Such normal forms are
raw A ufi commands, terms or environments. Strong normalisatioruoégtended cut-elimination re-
duction comes from the facts that c>T F A well-typed in our extended type system implies that
cle> (M) lp (A)]p well-typed iNAufi; 2.7+ m: A| Awell-typed in our extended type system implies
that(I") L p- 1le: Alp| (A)p well-typed inAufi;3.T |e: A Awell-typed in our extended type system
implies that(I) |p| ele: Alp- (A) p well-typed inApfi ; 4. ¢ — ¢ impliescle—" ¢ e 5. m— 17
implies mle—" 1 | 6. € — € impliesele—T € |e. The hypothesis on first-order function symbols
(see Hypothesis| 1) is crucial in establishing points 1 tan8eéd for any formulg and any first-order
substitutiono, it must be the case thép | ;)0 = (¢ o) |p. These six points (combined with Theorem 1)
demonstrate that througla andp, the A ufi-calculus simulates our extended calculus: any well-typed
reduction in our extended calculus induces throyigland|, a longer well-typed reduction iA Ll
Strong normalisation of ufi therefore implies strong normalisation of our extendedicéidn. O

The end of this section is dedicated to a pathological exarfgyl superdeduction: the proposition
rewrite rule
r: P— (Ix1.Vx2.A(x1,x2)) V (Ty1.Vy2.B(y1,y2))

whosemost generasuperdeduction rules are

rFA(t,Xz),B(u,yz),A{ xo & FV (T, u) FFA(t,Xz),B(u,yz),A{ xo & FV(T,D)
r=PA y2¢ .77 (T,4) and Fr-PA y2¢ FV(FA)

The original proofterm extensior |[1] transforms these twderiences into a unique proofterm
rR(Ax2.Ay2.(Aa.AB.m),t,u,y). Itis obviously inaccurate with respect to the scopexpindy;: in
the proofterm there is no mention that eitlhés not in the scope of, or u is not in the scope of,. This
fact is not reflected in the pure syntax but in the typing rules

ml>r|—a:A(tax2)>B:B(u>YZ)>A { X2¢97(|—,A,u)
rRAx2Ay2.Aa.AB.m) tu,y)>THy:PA | y2¢F7(T,4)

5not detailed here for simplicity
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and

ml>r|—a:A(tax2)>B:B(u7YZ)>A { X2¢ydf/(r7A)
rR(Ax2.Ay2.(Aa.AB.m),t,u,y)>TFy:PA | 2¢ F7(TA)

Let us see how this mistake is corrected in our extensioneok thji-calculus. Traces for the superde-
duction inferences are respectivalyy,?t! xo? andt! x,?ul y,?. These traces clearly specify that whether
t is not in the scope of, or u is not in the scope of,. Our extension of tha ufi-calculus translates
these superdeduction inferences into the typing rules

c>Ta:Alt,x2), B:B(u,y2),A { xo & FV (T, A u)
CEr(uly2?t!x?, u(a,B).c):P|A | v2¢-F7(T.4)

and

ce>l-a :A(t,Xz),B : B(“»YZ)vA { X2§é EIV(I',A)
M Er(thx?uly? u(a,B).c):P|a | y2¢ 77 (MA )

The proofterms (and the typing rules) reflect the scope ofeigenvariables. Thénterpretation of
r(uly2?t!x2? p(a, B).c) is by definition a term well-typed iA ufi whose trace isi! y,?t!x,? and the
interpretation of r(t!xx?ul y2?, u(a,B).c) is by definition a term well-typed i ufi whose trace is
tIxp?uly,?. This trace restriction implies thatu! y,?t!x2?, u(a, B).c) andr(t!xx?ul y2? u(a,).c)
behave differently with respect to cut-elimination.

3 Conclusion

This extension of the\ pji-calculus is a first step towards a computational interfieteof superde-
duction. Indeed it refutes the ided [1] that Christian Utbamalculus is a better basis for a proofterm
language for superdeductioh i syntax, typing and reduction is as suitable as Christiaraygbcalcu-
lus for superdeduction. The extension presented in thig glaper is almost a mechanical transcription
of the original extension_[1]. It relates superdeductionrendosely to theA-calculus based Curry-
Howard correspondence without exploring any further thematational content of cut-elimination for
superdeduction.

We believe that one of the key ingredients towards this goglitern-matching. Indeed superde-
duction systems historically come frosupernatural deductiofiLl4], an extension of natural deduction
designed to type the rewriting-calculusK.a. p-calculus) [3]. Supernatural deduction turns proposition
rewrite rules of the form

r-P — W ((AAA2...Ay)=C)
into inference rules for natural deduction
MAL... A FC FrEP (T A/X)

r-p x¢ F7(r) and M +Clt/X]

(The first rule is an introduction rule and the second is amiaktion rule.) The rewriting calculus is
an extension of tha -calculus where rewrite rules replace lambda-abstragtiorhe idea underlying
the relation between supernatural deduction and rewrdaigulus is that the proposition rewrite rule
corresponds to a specific patter(ix,X; ...X,). The introduction rule types an abstraction on this pattern
(i.e. a rewrite rule)

X A1 X AT C _

FEr(x,xy...%n) = m:P *

7y ()
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Dually the elimination rule types an application on thistgat

FrEm:P (T Alt/X)
FEmr(t,m...m):C

Supernatural deduction systems (in intuitionistic ndtdeduction) have later been transformed into
superdeduction systems (in classical sequent calculugydar to handle more general proposition
rewrite rules. This transformation from supernatural déidn to superdeduction systems should not
break the relation with pattern matching. Indeed cut-elation in sequent calculus relates to pattern
matching [[2]. Recent analysis shows that the duality betvwgedterns and terms reflects the duality be-
tween phases in focused proof systems [15]. Finally we dstrated([7) B8] that superdeduction systems
share strong similarities with focused proof systems swchka- [9,[10], a focused sequent calculus
for classical logic. Answers should naturally arise frora #tudy of the computational content of such
focused systems [11] 5].
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