A Sheaf Model of the Algebraic Closure

Bassel Mannaa Thierry Coquand Department of Computer Science and Engineering University of Gothenburg* Gothenburg, Sweden bassel.mannaa@cse.gu.se thierry.coquand@cse.gu.se

In constructive algebra one cannot in general decide the irreducibility of a polynomial over a field K. This poses some problems to showing the existence of the algebraic closure of K. We give a possible constructive interpretation of the existence of the algebraic closure of a field in characteristic 0 by building, in a constructive metatheory, a suitable site model where there is such an algebraic closure. One can then extract computational content from this model. We give examples of computation based on this model.

1 Introduction

Since in general it is not decidable whether a given polynomial over a field is irreducible, even when the field is given explicitly [6], the notion of algebraic field extension and consequently the notion of algebraic closure becomes problematic from a constructive point of view. Even in situations where one can constructively assert the existence of an algebraic closure of a field [14, Ch. 6] the computational content of such assertions are not always clear. We present a constructive interpretation of the algebraic closure of field K in characteristic 0 as a site model. Our approach is different from [15] in that we do not assume a polynomial over a field to be decomposable into irreducible factors. The model presented here has a direct computational content and can be viewed as a model of dynamical evaluation in the sense of Duval [5] (see also [4]). The site, described in section 3, is given by the category of finitely presented (von Neumann) regular algebras over K with the appropriate Grothendieck topology. In section 4 we prove that the topos \mathscr{E} of sheaves on this site contains a model of an algebraically closed field extension of K. An alternative approach using profinite Galois group is presented in [8]. We also investigate some of the properties of the topos \mathscr{E} . Theorem 6.3 shows that the axiom of choice fails to hold in \mathscr{E} whenever K is not algebraically closed. Theorem 6.4 shows that when the base field K is the rationals the weaker axiom of dependent choice fails to hold. We restrict ourselves to constructive metatheory throughout the paper with the exception of section 8 in which we show that in a classical metatheory the topos \mathscr{E} is boolean (Theorem 8.6). As we will demonstrate by Theorem 8.8 this cannot be shown to hold in an intuitionistic metatheory.

2 Coverage, sheaves, and Kripke–Joyal semantics

In this section we recall some notions that we will use in the remainder the paper, mostly following the presentation in [7]. A *coverage* on a category \mathscr{C} is a function **J** assigning to each object *C* of \mathscr{C} a collection $\mathbf{J}(C)$ of families of morphisms with codomain *C* such that for any $\{f_i : C_i \to C\}_{i \in I} \in \mathbf{J}(C)$ and morphism $g : D \to C$ of \mathscr{C} there exist $\{h_j : D_j \to D\}_{j \in J} \in \mathbf{J}(D)$ such that for each $j \in J$ the morphism

^{*}The research leading to this work has been supported by ERC Advanced grant project 247219.

 gh_j factors through f_ℓ for some $\ell \in I$. A family $S \in \mathbf{J}(C)$ is called *elementary cover* or elementary covering family of *C*. A site is a category with coverage $(\mathscr{C}, \mathbf{J})$. For a presheaf $\mathbf{P} : \mathscr{C}^{op} \to \mathbf{Set}$ and family $S = \{g_i : A_i \to A\}_{i \in I}$ of morphisms of \mathscr{C} we say that a family $\{s_i \in \mathbf{P}(A_i)\}_{i \in I}$ is compatible if for each $\ell, j \in I$ whenever we have $h : B \to A_\ell$ and $f : B \to A_j$ such that $g_\ell h = g_j f$ then $s_\ell h = s_j f$, where by $s_\ell h$ we mean the restriction of s_ℓ along h, i.e. $\mathbf{P}(h)s_\ell$. A presheaf \mathbf{P} is a sheaf on the site $(\mathscr{C}, \mathbf{J})$ if for any object C and any $\{f_i : C_i \to C\}_{i \in I} \in \mathbf{J}(C)$ if $\{s_i \in \mathbf{P}(C_i)\}_{i \in I}$ is compatible then there exist a unique $s \in \mathbf{P}(C)$ such that $sf_i = s_i$. We call such s the amalgamation of $\{s_i\}_{i \in I}$. Let \mathbf{J} be a coverage on \mathscr{C} we define a closure \mathbf{J}^* of \mathbf{J} as follows: For all objects C of \mathscr{C} i. $\{C \xrightarrow{1_C} C\} \in \mathbf{J}^*(C)$, ii. If $S \in \mathbf{J}(C)$ then $S \in \mathbf{J}^*(C)$, and, iii. If $\{C_i \xrightarrow{f_i} C\}_{i \in I} \in \mathbf{J}^*(C)$ and for each $i \in I$, $\{C_{ij} \xrightarrow{g_{ij}} C_i\}_{j \in J_i} \in \mathbf{J}^*(C_i)$ then $\{C_{ij} \xrightarrow{f_{ig_{ij}}} C\}_{i \in I, j \in J_i} \in \mathbf{J}^*(C)$. A family $T \in \mathbf{J}^*(C)$ is called *cover* or covering family of C.

We work with a typed language with equality $\mathscr{L}[V_1, ..., V_n]$ having the basic types $V_1, ..., V_n$ and type formers $- \times -, (-)^-, \mathscr{P}(-)$. The language $\mathscr{L}[V_1, ..., V_n]$ has typed constants and function symbols. For any type *Y* one has a stock of variables $y_1, y_2, ...$ of type *Y*. Terms and formulas of the language are defined as usual. We work within the proof theory of intuitionistic higher-order logic (IHOL). A detailed description of this deduction system is given in [1].

The language $\mathscr{L}[V_1, ..., V_n]$ along with deduction system IHOL can be interpreted in an elementary topos in what is referred to as *topos semantics*. For a sheaf topos this interpretation takes a simpler form reminiscent of Beth semantics, usually referred to as *Kripke–Joyal sheaf semantics*. We describe this semantics here briefly following [15].

Let $\mathscr{E} = \operatorname{Sh}(\mathscr{C}, \mathbf{J})$ be a sheaf topos. An interpretation of the language $\mathscr{L}[V_1, ..., V_n]$ in the topos \mathscr{E} is given as follows: Associate to each basic type V_i of $\mathscr{L}[V_1, ..., V_n]$ an object \mathbf{V}_i of \mathscr{E} . If Y and Z are types of $\mathscr{L}[V_1, ..., V_n]$ interpreted by objects \mathbf{Y} and \mathbf{Z} , respectively, then the types $Y \times Z, Y^Z, \mathscr{P}(Z)$ are interpreted by $\mathbf{Y} \times \mathbf{Z}, \mathbf{Y}^Z, \Omega^Z$, respectively, where Ω is the subobject classifier of \mathscr{E} . A constant e of type E is interpreted by an arrow $\mathbf{1} \xrightarrow{\mathbf{e}} \mathbf{E}$ where \mathbf{E} is the interpretation of E. For a term τ and an object \mathbf{X} of \mathscr{E} , we write $\tau: \mathbf{X}$ to mean τ has a type X interpreted by the object \mathbf{X} .

Let $\phi(x_1, ..., x_n)$ be a formula with variables $x_1: \mathbf{X}_1, ..., x_n: \mathbf{X}_n$. Let $c_1 \in \mathbf{X}_j(C), ..., c_n \in \mathbf{X}_n(C)$ for some object *C* of \mathscr{C} . We define the relation *C* forces $\phi(x_1, ..., x_n)[c_1, ..., c_n]$ written $C \Vdash \phi(x_1, ..., x_n)[c_1, ..., c_n]$ by induction on the structure of ϕ .

Definition 2.1 (Forcing). First we replace the constants in ϕ by variables of the same type as follows: Let $e_1: \mathbf{E}_1, ..., e_m: \mathbf{E}_m$ be the constants in $\phi(x_1, ..., x_n)$ then $C \Vdash \phi(x_1, ..., x_n)[c_1, ..., c_n]$ iff

$$C \Vdash \phi[y_1/e_1, ..., y_m/e_m](y_1, ..., y_m, x_1, ..., x_n)[\mathbf{e}_{1_C}(*), ..., \mathbf{e}_{m_C}(*), c_1, ..., c_n]$$

where $y_i: \mathbf{E}_i$ and $\mathbf{e}_i: \mathbf{1} \to \mathbf{E}_i$ is the interpretation of e_i .

Now it suffices to define the forcing relation for formulas free of constants by induction as follows:

- $\top \mid C \Vdash \top$.
- $\perp | C \Vdash \perp$ iff the empty family is a cover of *C*.

$$\Box C \Vdash (x_1 = x_2)[c_1, c_2] \text{ iff } c_1 = c_2.$$

$$\land C \Vdash (\phi \land \psi)(x_1, ..., x_n)[c_1, ..., c_n] \text{ iff } C \Vdash \phi(x_1, ..., x_n)[c_1, ..., c_n] \text{ and } C \Vdash \psi(x_1, ..., x_n)[c_1, ..., c_n].$$

- $\boxed{\bigvee} C \Vdash (\phi \lor \psi)(x_1, ..., x_n)[c_1, ..., c_n] \text{ iff there exist a cover } \{C_i \xrightarrow{f_i} C\}_{i \in I} \in \mathbf{J}^*(C) \text{ such that} \\ C_i \Vdash \phi(x_1, ..., x_n)[c_1f_i, ..., c_nf_i] \text{ or } C_i \Vdash \psi(x_1, ..., x_n)[c_1f_i, ..., c_nf_i] \text{ for each } i \in I.$
- $\begin{array}{|c|c|c|c|c|c|c|} \hline \Rightarrow & C \Vdash (\phi \Rightarrow \psi)(x_1, ..., x_n)[c_1, ..., c_n] \text{ iff for every morphism } f: D \to C \text{ whenever} \\ & D \Vdash \phi(x_1, ..., x_n)[c_1 f, ..., c_n f] \text{ one has } D \Vdash \psi(x_1, ..., x_n)[c_1 f, ..., c_n f]. \end{array}$

Let *y* be a variable of the type *Y* interpreted by the object **Y** of \mathscr{E} .

- $\exists C \Vdash (\exists y \phi(x_1, ..., x_n, y))[c_1, ..., c_n] \text{ iff there exist a cover } \{C_i \xrightarrow{f_i} C\}_{i \in I} \in \mathbf{J}^*(C) \text{ such that for each } i \in I \text{ one has } C_i \Vdash \phi(x_1, ..., x_n, y)[c_1f_i, ..., c_nf_i, d] \text{ for some } d \in \mathbf{Y}(C_i).$
- $\begin{array}{|c||} \hline \forall & C \Vdash (\forall y \phi(x_1, ..., x_n, y))[c_1, ..., c_n] \text{ iff for every morphism } f: D \to C \text{ and for all } d \in \mathbf{Y}(D) \text{ one has } \\ & D \Vdash \phi(x_1, ..., x_n, y)[c_1 f, ..., c_n f, d]. \end{array}$

We have the following derivable local character and monotonicity laws:

 $\begin{array}{|c|c|} \hline \mathbf{LC} & \text{If } \{C_i \xrightarrow{f_i} C\}_{i \in I} \in \mathbf{J}^*(C) \text{ and for all } i \in I, C_i \Vdash \phi(x_1, ..., x_n)[c_1 f_i, ..., c_n f_i] \text{ then } C \Vdash \phi(x_1, ..., x_n)[c_1, ..., c_n]. \\ \hline \mathbf{M} & \text{If } C \Vdash \phi(x_1, ..., x_n)[c_1, ..., c_n] \text{ and } f : D \to C \text{ then } D \Vdash \phi(x_1, ..., x_n)[c_1 f, ..., c_n f]. \end{array}$

3 The topos $\operatorname{Sh}(\mathscr{R}\mathscr{A}_{K}^{op}, \mathbf{J})$

Definition 3.1 (Regular ring). A commutative ring *R* is (*von Neumann*) regular if for every element $a \in R$ there exist $b \in R$ such that aba = a and bab = b. This element *b* is called the quasi-inverse of *a*.

The quasi-inverse of an element *a* is unique for *a* [9, Ch. 4]. We thus use the notation a^* to refer to the quasi-inverse of *a*. A ring is regular iff it is zero-dimensional and reduced. To be regular is equivalent to the fact that any principal ideal (consequently, any finitely generated ideal) is generated by an idempotent. If *R* is regular and $a \in R$ then $e = aa^*$ is an idempotent such that $\langle e \rangle = \langle a \rangle$ and *R* is isomorphic to $R_0 \times R_1$ with $R_0 = R/\langle e \rangle$ and $R_1 = R/\langle 1 - e \rangle$. Furthermore *a* is 0 on the component R_0 and invertible on the component R_1 .

Definition 3.2 (Fundamental system of orthogonal idempotents). A family $(e_i)_{i \in I}$ of idempotents in a ring *R* is a fundamental system of orthogonal idempotents if $\sum_{i \in I} e_i = 1$ and $\forall i, j [i \neq j \Rightarrow e_i e_j = 0]$.

Lemma 3.3. Given a fundamental system of orthogonal idempotents $(e_i)_{i \in I}$ in a ring A we have a decomposition $A \cong \prod_{i \in I} A/\langle 1 - e_i \rangle$.

Proof. Follows by induction from the fact that $A \cong A/\langle e \rangle \times A/\langle 1-e \rangle$ for an idempotent $e \in A$.

Definition 3.4 (Separable polynomial). Let *R* be a ring. A polynomial $p \in R[X]$ is separable if there exist $r, s \in R[X]$ such that rp + sp' = 1, where $p' \in R[X]$ is the derivative of *p*.

Definition 3.5. A ring *R* is a (strict) Bézout ring if for all $a, b \in R$ we can find $g, a_1, b_1, c, d \in R$ such that $a = a_1g, b = b_1g$ and $ca_1 + db_1 = 1$ [9, Ch. 4].

If *R* is a regular ring then R[X] is a strict Bézout ring (and the converse is true [9]). Intuitively we can compute the gcd as if *R* was a field, but we may need to split *R* when deciding if an element is invertible or 0. Using this, we see that given a, b in R[X] we can find a decomposition R_1, \ldots, R_n of *R* and for each *i* we have g, a_1, b_1, c, d in $R_i[X]$ such that $a = a_1g, b = b_1g$ and $ca_1 + db_1 = 1$ with g monic.

Lemma 3.6. If *R* is regular and *p* in R[X] is a separable polynomial then $R[a] = R[X]/\langle p \rangle$ is regular.

Proof. If c = q(a) is an element of R[a] with q in R[X] we compute the gcd g of p and q. If $p = gp_1$, we can find u and v in R[X] such that $ug + vp_1 = 1$ since p is separable. We then have $g(a)p_1(a) = 0$ and $u(a)g(a) + v(a)p_1(a) = 1$. It follows that e = u(a)g(a) is idempotent and we have $\langle e \rangle = \langle g(a) \rangle$. \Box

An algebra A over a field K is *finitely presented* if it is of the form $K[X_1,..,X_n]/\langle f_1,...,f_m\rangle$, i.e. the quotient of the polynomial ring over K in finitely many variables by a finitely generated ideal.

In order to build the classifying topos of a coherent theory T it is customary in the literature to consider the category of all finitely presented T_0 algebras where T_0 is an equational subtheory of T. The axioms of T then give rise to a coverage on the dual category [11, Ch. 9]. For our purpose consider the category \mathscr{C} of finitely presented K-algebras. Given an object R of \mathscr{C} , the axiom schema of algebraic closure and the field axiom give rise to families (i.) $R \to R[X]/\langle p \rangle$ where $p \in R[X]$ is monic and

(ii.) $R \xrightarrow{R/\langle a \rangle}$, for $a \in R$. Dualized, these are elementary covering families of R in \mathscr{C}^{op} . We $R[\frac{1}{a}]$

observe however that we can limit our consideration only to those finitely presented *K*-algebras that are zero dimensional and reduced, i.e. regular. In this case we can assume *a* is an idempotent and we only consider extensions $R[X]/\langle p \rangle$ where *p* is separable.

Let \mathscr{RA}_K be the small category of finitely presented regular algebras over a fixed field *K* and *K*-homomorphisms. First we fix an countable set of names *S*. An object of \mathscr{RA}_K is a regular algebra of the form $K[X_1, ..., X_n]/\langle f_1, ..., f_m \rangle$ where $X_i \in S$ for all $1 \leq i \leq n$. Note that for any object *R*, there is a unique morphism $K \to R$. A finitely presented regular *K*-algebra *A* is a finite dimensional *K*-algebra, i.e. *A* has a finite dimension as a vector space over *K* [9, Ch 4, Theorem 8.16]. The trivial ring 0 is the terminal object in the category \mathscr{RA}_K and *K* is its initial object.

To specify a coverage **J** on the category \mathscr{RA}_{K}^{op} , we define for each object *A* a collection $\mathbf{J}^{op}(A)$ of families of morphisms of \mathscr{RA}_{K} with domain *A*. We then take $\mathbf{J}(A)$ to be the dual of $\mathbf{J}^{op}(A)$ in the sense that $\{\overline{\varphi_{i}}: A_{i} \to A\}_{i \in I} \in \mathbf{J}(A)$ *if and only if* $\{\varphi_{i}: A \to A_{i}\}_{i \in I} \in \mathbf{J}^{op}(A)$ where φ_{i} of \mathscr{RA}_{K} is the dual of $\overline{\varphi_{i}}$ of \mathscr{RA}_{K}^{op} . We call \mathbf{J}^{op} cocoverage. We call an element of $\mathbf{J}^{op}(A)$ an elementary cocover (cocovering family) of *A*. We define \mathbf{J}^{*op} similarly. We call elements of $\mathbf{J}^{*op}(A)$ cocovers (cocovering families) of *A*. By a *separable extension* of a ring *R* we mean a ring $R[a] = R[X]/\langle p \rangle$ where $p \in R[X]$ is non-constant, monic and separable.

Definition 3.7 (Topology for \mathscr{RA}_{K}^{op}). For an object *A* of \mathscr{RA}_{K} the cocovering families are given by:

- (i.) If $(e_i)_{i \in I}$ is a fundamental system of orthogonal idempotents of A, then $\{A \xrightarrow{\varphi_i} A / \langle 1 e_i \rangle\}_{i \in I} \in \mathbf{J}^{op}(A)$ where for each $i \in I$, φ_i is the canonical homomorphism.
- (ii.) Let A[a] be a separable extension of A. We have $\{A \xrightarrow{\vartheta} A[a]\} \in \mathbf{J}^{op}(A)$ where ϑ is the canonical embedding.

Note that in particular 3.7.(i.) implies that the trivial algebra 0 is covered by the empty family of morphisms since an empty family of elements in this ring form a fundamental system of orthogonal idempotents. Also note that 3.7.(ii.) implies that $\{A \xrightarrow{l_A} A\} \in \mathbf{J}^{op}(A)$.

Lemma 3.8. The function **J** of Definition 3.7 is a coverage on \mathscr{RA}_{K}^{op} .

Proof. Let $\eta : R \to A$ be a morphism of \mathscr{RA}_K and $S \in \mathbf{J}^{op}(R)$. We show that there exist an elementary cocover $T \in \mathbf{J}^{op}(A)$ such that for each $\vartheta \in T$, $\vartheta \eta$ factors through some $\varphi \in S$. By duality, this implies \mathbf{J} is a coverage on \mathscr{RA}_K^{op} . By case analysis on the clauses of Definition 3.7.

(i.) If $S = \{\varphi_i : R \to R/\langle 1 - e_i \rangle\}_{i \in I}$, where $(e_i)_{i \in I}$ is a fundamental system of orthogonal idempotents of *R*. In *A*, the family $(\eta(e_i))_{i \in I}$ is fundamental system of orthogonal idempotents. We have an elementary cocover $\{\vartheta_i : A \to A/\langle 1 - \eta(e_i) \rangle\}_{i \in I} \in \mathbf{J}^{op}(A)$. For each $i \in I$, the homomorphism η induces a *K*-homomorphism $\eta_{e_i} : R/\langle 1 - e_i \rangle \to A/\langle 1 - \eta(e_i) \rangle$ where $\eta_{e_i}(r + \langle 1 - e_i \rangle) = \eta(r) + \langle 1 - \eta(e_i) \rangle$. Since $\vartheta_i(\eta(r)) = \eta(r) + \langle 1 - \eta(e_i) \rangle$ we have that $\vartheta_i \eta = \eta_{e_i} \varphi_i$.

(ii.) If $S = \{\varphi : R \to R[r]\}$ with $R[r] = R[X]/\langle p \rangle$ and $p \in R[X]$ monic, non-constant, and separable. Since sp + tp' = 1, we have $\eta(s)\eta(p) + \eta(t)\eta(p') = \eta(s)\eta(p) + \eta(t)\eta(p)' = 1$. Then $q = \eta(p) \in A[X]$ is separable. Let $A[a] = A[X]/\langle q \rangle$. We have an elementary cocover $\{\vartheta : A \to A[a]\} \in \mathbf{J}^{op}(A)$ where ϑ is the canonical embedding. Let $\zeta : R[r] \to A[a]$ be the *K*-homomorphism such that $\zeta|_R = \eta$ and $\zeta(r) = a$. For $b \in R$, we have $\vartheta(\eta(b)) = \zeta(\varphi(b))$.

Lemma 3.9. Let $\mathbf{P}: \mathscr{RA}_K \to \mathbf{Set}$ be a presheaf on \mathscr{RA}_K^{op} such that $\mathbf{P}(0) = 1$. Let R be an object of \mathscr{RA}_K and let $(e_i)_{i \in I}$ be a fundamental system of orthogonal idempotents of R. For each $i \in I$, let $R_i = R/\langle 1 - e_i \rangle$ and let $\varphi_i : R \to R_i$ be the canonical homomorphism. Any family $\{s_i \in \mathbf{P}(R_i)\}$ is compatible.

Proof. Let *B* be an object and for some $i, j \in I$ let $\vartheta : R_i \to B$ and $\zeta : R_j \to B$ be such that $\vartheta \varphi_i = \zeta \varphi_j$. We will show that $\mathbf{P}(\vartheta)(s_i) = \mathbf{P}(\zeta)(s_j)$.

(i.) If i = j, then since φ_i is surjective we have $\vartheta = \zeta$ and $\mathbf{P}(\vartheta) = \mathbf{P}(\zeta)$.

(ii.) If $i \neq j$, then since $e_i e_j = 0$, $\varphi_i(e_i) = 1$ and $\varphi_j(e_j) = 1$ we have $\varphi_j(e_i) = \varphi_j(e_i e_j) = 0$. But then

$$1 = \vartheta(1) = \vartheta(\varphi_i(e_i)) = \zeta(\varphi_i(e_i)) = \zeta(0) = 0$$

Hence *B* is the trivial algebra 0. By assumption $\mathbf{P}(0) = 1$, hence $\mathbf{P}(\vartheta)(s_i) = \mathbf{P}(\zeta)(s_i) = *$.

Corollary 3.10. Let **F** be a sheaf on $(\mathscr{RA}_K^{op}, \mathbf{J})$. Let *R* be an object of \mathscr{RA}_K and $(e_i)_{i \in I}$ a fundamental system of orthogonal idempotents of *R*. Let $R_i = R/\langle 1 - e_i \rangle$ and $\varphi_i : R \to R_i$ be the canonical homomorphism. The map $f : \mathbf{F}(R) \to \prod_{i \in I} \mathbf{F}(R_i)$ such that $f(s) = (\mathbf{F}(\varphi_i)s)_{i \in I}$ is an isomorphism.

Proof. Since $\mathbf{F}(0) = 1$, by Lemma 3.9 any family $\{s_i \in \mathbf{F}(R_i)\}_{i \in I}$ is compatible. Since \mathbf{F} is a sheaf, the family $\{s_i \in \mathbf{F}(R_i)\}_{i \in I}$ has a unique amalgamation $s \in \mathbf{F}(R)$ with restrictions $s\varphi_i = s_i$. The isomorphism is given by $fs = (s\varphi_i)_{i \in I}$. We can then use the tuple notation $(s_i)_{i \in I}$ to denote the element s in $\mathbf{F}(R)$. \Box

One say that a polynomial $f \in R[X]$ has a *formal degree n* if f can be written as $f = a_n X^n + ... + a_0$ which is to express that for any m > n the coefficient of X^m is known to be 0.

Lemma 3.11. Let R be a regular ring and $p_1, p_2 \in R[X]$ be monic polynomials of degrees n_1 and n_2 respectively. Let $R[a,b] = R[X,Y]/\langle p_1(X), p_2(Y) \rangle$. Let $q_1, q_2 \in R[Z]$ be of formal degrees $m_1 < n_1$ and $m_2 < n_2$ respectively. If $q_1(a) = q_2(b)$ then $q_1 = q_2 = r \in R$.

Proof. The statement follows immediately since the *R*-basis $a^i, i > 0$ and $b^j, j > 0$ are linearly independent.

Corollary 3.12. Let *R* be an object of \mathscr{RA}_K and $p \in R[X]$ separable and monic. Let $R[a] = R[X]/\langle p \rangle$ and $\varphi : R \to R[a]$ the canonical morphism. Let $R[b,c] = R[X,Y]/\langle p(X), p(Y) \rangle$. The commuting diagram

$$\begin{array}{c} R[a] & \xrightarrow{\vartheta} & R[b,c] \\ \varphi \uparrow & & \zeta \uparrow \\ R & \xrightarrow{\varphi} & R[a] \end{array} \qquad \vartheta|_{R} = \zeta|_{R} = 1_{R}, \ \vartheta(a) = b, \ \zeta(a) = c$$

is a pushout diagram of \mathcal{RA}_K . Moreover, φ is the equalizer of ζ and ϑ .

Proof. Let $R[a] \xrightarrow[\rho]{} B$ be morphisms of \mathscr{RA}_K such that $\eta \varphi = \rho \varphi$. Then for all $r \in R$ we have $\eta(r) = \rho(r)$. Let $\gamma: R[b,c] \to B$ be the homomorphism such that $\gamma(r) = \eta(r) = \rho(r)$ for all $r \in R$ while $\gamma(b) = \eta(a), \gamma(c) = \rho(a)$. Then γ is the unique map such that $\gamma \vartheta = \eta$ and $\gamma \zeta = \rho$.

Let *A* be an object of \mathscr{RA}_K and let $\varepsilon : A \to R[a]$ be a map such that $\zeta \varepsilon = \vartheta \varepsilon$. By Lemma 3.11 if for some $f \in R[a]$ one has $\zeta(f) = \vartheta(f)$ then $f \in R$ (i.e. *f* is of degree 0 as a polynomial in *a* over *R*). Thus $\varepsilon(A) \subset R$ and we can factor ε uniquely (since φ is injective) as $\varepsilon = \varphi \mu$ with $\mu : A \to R$.

Let $\{\varphi : R \to R[a]\}$ be a singleton elementary cocover. Since one can form the pushout of φ with itself, the compatibility condition on a singleton family $\{s \in \mathbf{F}(R[a])\}$ can be simplified as: Let $R \xrightarrow{\varphi} R[a] \xrightarrow{\eta} A$ be a pushout diagram. A family $\{s \in \mathbf{F}(R[a])\}$ is compatible if and only if $s\vartheta = s\eta$.

Corollary 3.13. The coverage **J** is subcanonical, i.e. all representable presheaves in **Set**^{$\mathscr{R}\mathscr{A}_{K}$} are sheaves on ($\mathscr{R}\mathscr{A}_{K}^{op}$, **J**).

4 The algebraically closed field extension

We define the presheaf $\mathbf{F} : \mathscr{RA}_K \to \mathbf{Set}$ to be the forgetful functor. That is, for an object *A* of \mathscr{RA}_K , $\mathbf{F}(A) = A$ and for a morphism $\varphi : A \to C$ of \mathscr{RA}_K , $\mathbf{F}(\varphi) = \varphi$.

Lemma 4.1. F is a sheaf of sets on the site $(\mathscr{R}\mathscr{A}_{K}^{op}, \mathbf{J})$

Proof. By case analysis on the clauses of Definition 3.7.

- (i.) Let $\{R \xrightarrow{\varphi_i} R/\langle 1-e_i \rangle\}_{i \in I} \in \mathbf{J}^{op}(R)$, where $(e_i)_{i \in I}$ is fundamental system of orthogonal idempotents of *R*. The presheaf **F** has the property $\mathbf{F}(0) = 1$. By Lemma 3.9 a family $\{a_i \in R/\langle 1-e_i \rangle\}_{i \in I}$ is a compatible family. By the isomorphism $R \xrightarrow{(\varphi_i)_{i \in I}} \prod_{i \in I} R/\langle 1-e_i \rangle$ the element $a = (a_i)_{i \in I} \in R$ is the unique element such that $\varphi_i(a) = a_i$.
- (ii.) Let $\{R \xrightarrow{\varphi} R[a]\} \in \mathbf{J}^{op}(R)$ where $R[a] = R[X]/\langle p \rangle$ with $p \in R[X]$ monic, non-constant and separable polynomial. Let $\{r \in R[a]\}$ be a compatible family. Let $R \xrightarrow{\varphi} R[a] \xrightarrow{\vartheta} Z[b,c]$ be the pushout diagram of Corollary 3.12. Compatibility then implies $\vartheta(r) = \zeta(r)$ which by the same Corollary is true only if the element *r* is in *R*. We then have that *r* is the unique element restricting to itself along the embedding φ .

We fix a field *K* of characteristic 0. Let $\mathscr{L}[F,+,.]$ be a language with basic type *F* and function symbols $+, .: F \times F \to F$. We extend $\mathscr{L}[F,+,.]$ by adding a constant symbol of type *F* for each element $a \in K$, to obtain $\mathscr{L}[F,+,.]_K$. Define Diag(*K*) as : if ϕ is an atomic $\mathscr{L}[F,+,.]_K$ -formula or the negation

of one such that $K \models \phi(a_1,...,a_n)$ then $\phi(a_1,...,a_n) \in \text{Diag}(K)$. The theory *T* equips the type *F* with axioms of the geometric theory of algebraically closed field containing *K*

Definition 4.2. The theory T has the following sentences (with all the variables having the type F).

- 1. Diag(K).
- 2. The axioms of a commutative group: (a) $\forall x [0+x=x+0=x]$ (b) $\forall x \forall y \forall z [x+(y+z)=(x+y)+z]$ (c) $\forall x \exists y [x+y=0]$ (d) $\forall x \forall y [x+y=y+x]$
- 3. The axioms of a commutative ring: (a) $\forall x [x1 = x]$ (b) $\forall x [x0 = 0]$ (c) $\forall x \forall y [xy = yx]$ (d) $\forall x \forall y \forall z [x(yz) = (xy)z]$ (e) $\forall x \forall y \forall z [x(y+z) = xy + xz]$
- 4. The field axioms: (a) $1 \neq 0$. (b) $\forall x [x = 0 \lor \exists y [xy = 1]]$.
- 5. The axiom schema for algebraic closure: $\forall a_1 \dots \forall a_n \exists x [x^n + \sum_{i=1}^n x^{n-i} a_i = 0]$.
- 6. *F* is algebraic over *K*: $\forall x [\bigvee_{p \in K[Y]} p(x) = 0]$.

With these axioms the type *F* becomes the type of an algebraically closed field containing *K*. We proceed to show that with the interpretation of the type *F* by the object **F** the topos $Sh(\mathscr{RA}_{K}^{op}, \mathbf{J})$ is a model of *T*, i.e. **F** is a model, in Kripke–Joyal semantics, of an algebraically closed field containing of *K*. First note that since there is a unique map $K \to C$ for any object *C* of \mathscr{RA}_{K} , an element $a \in K$ gives rise to a unique map $\mathbf{1} \xrightarrow{a} \mathbf{F}$, that is the map $* \mapsto a \in \mathbf{F}(K)$. Every constant $a \in K$ of the language is then interpreted by the corresponding unique arrow $\mathbf{1} \xrightarrow{a} \mathbf{F}$. (we use the same symbol for constants and their interpretation to avoid cumbersome notation). That **F** satisfies Diag(K) then follows directly.

Lemma 4.3. F is a ring object.

Proof. For an object *C* of \mathscr{RA}_K the object $\mathbf{F}(C)$ is a commutative ring.

Lemma 4.4. F is a field.

Proof. For any object R of \mathscr{RA}_K one has $R \Vdash 1 \neq 0$ since for any $R \xrightarrow{\varphi} C$ such that $C \Vdash 1 = 0$ one has that C is trivial and thus $C \Vdash \bot$. Next we show that for variables x and y of type \mathbf{F} and any object R of \mathscr{RA}_K^{op} we have $R \Vdash \forall x \ [x = 0 \lor \exists y \ [xy = 1]]$. Let $\varphi : A \to R$ be a morphism of \mathscr{RA}_K^{op} and let $a \in A$. We need to show that $A \Vdash a = 0 \lor \exists y \ [ya = 1]$. The element $e = aa^*$ is an idempotent and we have a cover $\{\varphi_1 : A / \langle e \rangle \to A, \varphi_2 : A / \langle 1 - e \rangle \to A\} \in \mathbf{J}^*(A)$ with $A / \langle e \rangle \Vdash a\varphi_1 = 0$ and $A / \langle 1 - e \rangle \Vdash (a\varphi_2)(a^*\varphi_2) = e\varphi_2 = 1$. Hence by \exists we have $A / \langle 1 - e \rangle \Vdash \exists y \ [(a\varphi_2)y = 1]$ and by $[\lor, A / \langle 1 - e \rangle \Vdash a\varphi_2 = 0 \lor \exists y \ [(a\varphi_2)y = 1]$. Similarly, $A / \langle e \rangle \Vdash a\varphi_1 = 0 \lor \exists y \ [(a\varphi_1)y = 1]$. By \forall we get $R \Vdash \forall x \ [x = 0 \lor \exists y \ [xy = 1]]$.

To show that $A \Vdash \forall a_1 \dots \forall a_n \exists x [x^n + \sum_{i=1}^n x^{n-i}a_i = 0]$ for every *n*, we need to be able to extend an algebra *R* of \mathscr{RA}_K with the appropriate roots. We need the following lemma.

Lemma 4.5. Let *L* be a field and $f \in L[X]$ a monic polynomial. Let $g = \langle f, f' \rangle$, where f' is the derivative of *f*. Writing f = hg we have that *h* is separable. We call *h* the separable associate of *f*.

Proof. Let *a* be the gcd of *h* and *h'*. We have $h = l_1 a$. Let *d* be the gcd of *a* and *a'*. We have $a = l_2 d$ and $a' = m_2 d$, with l_2 and m_2 coprime.

The polynomial *a* divides $h' = l_1a' + l'_1a$ and hence that $a = l_2d$ divides $l_1a' = l_1m_2d$. It follows that l_2 divides l_1m_2 and since l_2 and m_2 are coprime, that l_2 divides l_1 .

Also, if a^n divides p then $p = qa^n$ and $p' = q'a^n + nqa'a^{n-1}$. Hence da^{n-1} divides p'. Since l_2 divides l_1 , this implies that $a^n = l_2 da^{n-1}$ divides l_1p' . So a^{n+1} divides $al_1p' = hp'$.

Since *a* divides *f* and *f'*, *a* divides *g*. We show that a^n divides *g* for all *n* by induction on *n*. If a^n divides *g* we have just seen that a^{n+1} divides *g'h*. Also a^{n+1} divides *h'g* since *a* divides *h'*. So a^{n+1} divides g'h + h'g = f'. On the other hand, a^{n+1} divides $f = hg = l_1ag$. So a^{n+1} divides *g* which is the gcd of *f* and *f'*. This implies that *a* is a unit.

Since **F** is a field, the previous lemma holds for polynomials over **F**. This means that for all objects R of \mathscr{RA}_{K}^{op} we have $R \Vdash$ Lemma 4.5. Thus we have the following Corollary.

Corollary 4.6. Let *R* be an object of \mathscr{RA}_K and let *f* be a monic polynomial of degree *n* in *R*[X] and *f'* its derivative. There is a cocover $\{\varphi_i : R \to R_i\}_{i \in I} \in \mathbf{J}^{*op}(R)$ and for each R_i we have $h, g, q, r, s \in R_i[X]$ such that $\varphi_i(f) = hg, \varphi_i(f') = qg$ and rh + sq = 1. Moreover, *h* is monic and separable.

Note that in characteristic 0, if f is monic and non-constant the separable associate of f is non-constant.

Lemma 4.7. The field object $\mathbf{F} \in \operatorname{Sh}(\mathscr{RA}_{K}^{op}, \mathbf{J})$ is algebraically closed.

Proof. We prove that for all n > 0 and all $(a_1, ..., a_n) \in \mathbf{F}^n(R) = R^n$, one has $R \Vdash \exists x [x^n + \sum_{i=1}^n x^{n-i}a_i = 0]$. Let $f = x^n + \sum_{i=1}^n x^{n-i}a_i$. By Corollary 4.6 we have a cover $\{\vartheta_j : R_j \to R\}_{j \in I} \in \mathbf{J}^*(R)$ such that in each R_j we have $g = \langle f \vartheta_j, f' \vartheta_j \rangle$ and $f \vartheta_j = hg$ with $h \in R_j[X]$ monic and separable. Note that if deg $f \ge 1$, h is non-constant. For each R_j we have a singleton cover $\{\varphi : R_j[b] \to R_j \mid R_j[b] = R_j[X]/\langle h \rangle\} \in \mathbf{J}^*(R_j)$. That is, we have $R_j[b] \Vdash b^n + \sum_{i=1}^n b^{n-1}(a_i\vartheta_j\varphi) = 0$. By \exists we get $R_j[b] \Vdash \exists x [x^n + \sum_{i=1}^n x^{n-1}(a_i\vartheta_j\varphi) = 0]$ and by $\boxed{\mathrm{LC}}$ we have $R_j \Vdash \exists x [x^n + \sum_{i=1}^n x^{n-1}(a_i\vartheta_j) = 0]$. Since this is true for each $R_j, j \in J$ we have by $\boxed{\mathrm{LC}} R \Vdash \exists x [x^n + \sum_{i=1}^n x^{n-1}a_i = 0]$.

Lemma 4.8. F is algebraic over K.

Proof. We will show that for any object *R* of \mathscr{RA}_K and element $r \in R$ one has $R \Vdash \bigvee_{p \in K[X]} p(r) = 0$. Since *R* is a finitely presented *K*-algebra we have that *R* is a finite integral extension of a polynomial ring $K[Y_1, ..., Y_n] \subset R$ where $Y_1, ..., Y_n$ are elements of *R* algebraically independent over *K* and that *R* has Krull dimension *n* [9, Ch 13, Theorem 5.4]. Since *R* is zero-dimensional (i.e. has Krull dimension 0) we have n = 0 and *R* is integral over *K*, i.e. any element $r \in R$ is the zero of some monic polynomial over *K*. \Box

5 Constant sheaves, natural numbers, and power series

Here we describe the object of natural numbers in the topos $\operatorname{Sh}(\mathscr{RA}_{K}^{op}, \mathbf{J})$ and the object of power series over the field **F**. This will be used in section 6 to show that the axiom of dependent choice does not hold when the base field *K* is the rationals and later in the example of Newton–Puiseux theorem (section 7).

Let $\mathbf{P}: \mathscr{RA}_K \to \mathbf{Set}$ be a constant presheaf associating to each object A of \mathscr{RA}_K a discrete set B. That is, $\mathbf{P}(A) = B$ and $\mathbf{P}(A \xrightarrow{\varphi} R) = 1_B$ for all objects A and all morphism φ of \mathscr{RA}_K . Let $\widetilde{\mathbf{P}}: \mathscr{RA}_K \to \mathbf{Set}$ be the presheaf such that $\widetilde{\mathbf{P}}(A)$ is the set of elements of the form $\{(e_i, b_i)\}_{i \in I}$ where $(e_i)_{i \in I}$ is a fundamental system of orthogonal idempotents of A and for each $i, b_i \in B$. We express such an element as a formal sum $\sum_{i \in I} e_i b_i$. Let $\varphi: A \to R$ be a morphism of \mathscr{RA}_K , the restriction of $\sum_{i \in I} e_i b_i \in \widetilde{\mathbf{P}}(A)$ along φ is given by $(\sum_{i \in I} e_i b_i)\varphi = \sum_{i \in I} \varphi(e_i)b_i \in \widetilde{\mathbf{P}}(R)$. In particular with canonical morphisms $\varphi_i: A \to A/\langle 1 - e_i \rangle$, one has for any $j \in I$ that $(\sum_{i \in I} e_i b_i)\varphi_j = b_j \in \widetilde{\mathbf{P}}(A/\langle 1 - e_j \rangle)$. Two elements $\sum_{i \in I} e_i b_i \in \widetilde{\mathbf{P}}(A)$ and $\sum_{j \in J} d_j c_j \in \widetilde{\mathbf{P}}(A)$ are equal if and only if $\forall i \in I, j \in J[b_i \neq c_j \Rightarrow e_i d_j = 0]$.

To prove that \mathbf{P} is a sheaf we will need the following lemmas.

Lemma 5.1. Let *R* be a regular ring and let $(e_i)_{i \in I}$ be a fundamental system of orthogonal idempotents of *R*. Let $R_i = R/\langle 1 - e_i \rangle$ and $([d_j])_{j \in J_i}$ be a fundamental system of orthogonal idempotents of R_i , where $[d_j] = d_j + \langle 1 - e_i \rangle$. The family $(e_i d_j)_{i \in I, j \in J_i}$ is a fundamental system of orthogonal idempotents of *R*.

Proof. In *R* one has $\sum_{j \in J_i} e_i d_j = e_i \sum_{j \in J_i} d_j = e_i (1 + \langle 1 - e_i \rangle) = e_i$. Hence, $\sum_{i \in I, j \in J_i} e_i d_j = \sum_{i \in I} e_i = 1$. For some $i \in I$ and $t, k \in J_i$ we have $(e_i d_t)(e_i d_k) = e_i (0 + \langle 1 - e_i \rangle) = 0$ in *R*. Thus for $i, \ell \in I$, $j \in J_i$ and $s \in J_\ell$ one has $i \neq \ell \lor j \neq s \Rightarrow (e_i d_j)(e_\ell d_s) = 0$.

Lemma 5.2. Let *R* be a regular ring, $f \in R[Z]$ a polynomial of formal degree *n* and $p \in R[Z]$ a monic polynomial of degree m > n. If in R[X, Y] one has $f(Y)(1 - f(X)) = 0 \mod \langle p(X), p(Y) \rangle$ then $f = e \in R$ with *e* an idempotent.

Proof. Let $f(Z) = \sum_{i=0}^{n} r_i Z^i$. By the assumption, for some $q, g \in R[X, Y]$

$$f(Y)(1 - f(X)) = \sum_{i=0}^{n} r_i (1 - \sum_{j=0}^{n} r_j X^j) Y^i = q p(X) + g p(Y)$$

One has $\sum_{i=0}^{n} r_i(1-\sum_{j=0}^{n} r_j X^j)Y^i = g(X,Y)p(Y) \mod \langle p(X) \rangle$. Since p(Y) is monic of *Y*-degree greater than *n*, one has that $r_i(1-\sum_{j=0}^{n} r_j X^j) = 0 \mod \langle p(X) \rangle$ for all $0 \le i \le n$. But this means that $r_i r_n X^n + r_i r_{n-1} X^{n-1} + \ldots + r_i r_0 - r_i$ is divisible by p(X) for all $0 \le i \le n$ which because p(X) is monic of degree m > n implies that all coefficients are equal to 0. In particular, for $1 \le i \le n$ one gets that $r_i^2 = 0$ and hence $r_i = 0$ since *R* is reduced. For i = 0 we have $r_0 r_0 - r_0 = 0$ and thus r_0 is an idempotent of *R*.

Lemma 5.3. The presheaf $\widetilde{\mathbf{P}}$ described above is a sheaf on $(\mathscr{R}\mathscr{A}_{K}^{op}, \mathbf{J})$.

Proof. By case analysis on Definition 3.7.

(i.) Let $\{R \xrightarrow{\varphi_i} R/\langle 1-e_i \rangle\}_{i \in I} \in \mathbf{J}^{op}(R)$ where $(e_i)_{i \in I}$ be a fundamental system of orthogonal idempotents of an object R. Let $R/\langle 1-e_i \rangle = R_i$. Since $\widetilde{\mathbf{P}}(0) = 1$ by Lemma 3.9 any set $\{s_i \in \widetilde{\mathbf{P}}(R_i)\}_{i \in I}$ is compatible. For each i, Let $s_i = \sum_{j \in J_i} [d_j]b_j$. By Lemma 5.1 we have an element $s = \sum_{i \in I, j \in J_i} (e_i d_j)b_j \in \widetilde{\mathbf{P}}(R)$ the restriction of which along φ_i is the element $\sum_{j \in J_i} [d_j]b_j \in \widetilde{\mathbf{P}}(R_i)$.

It remains to show that this is the only such element. Let there be an element $\sum_{\ell \in L} c_\ell a_\ell \in \widetilde{\mathbf{P}}(R)$ that restricts to $u_i = s_i$ along φ_i . We have $u_i = \sum_{\ell \in L} [c_\ell] a_\ell$. One has that for any $j \in J_i$ and $\ell \in L$, $b_j \neq a_\ell \Rightarrow [c_\ell d_j] = 0$ in R_i , hence, in R one has $b_j \neq a_\ell \Rightarrow c_\ell d_j = r(1 - e_i)$. Multiplying both sides of $c_\ell d_j = r(1 - e_i)$ by e_i we get $b_j \neq a_\ell \Rightarrow c_\ell (e_i d_j) = 0$. Thus proving $s = \sum_{\ell \in L} c_\ell a_\ell$.

(ii.) Let $\{\varphi : R \to R[a] = R[X]/\langle p \rangle\} \in \mathbf{J}^{op}(R)$ where $p \in R[X]$ is monic non-constant and separable. Let the singleton $\{s = \sum_{i \in I} e_i b_i \in \widetilde{\mathbf{P}}(R[a])\}$ be compatible. We can assume w.l.o.g. that $\forall i, j \in I \ [i \neq j \Rightarrow b_i \neq b_j]$ since if $b_k = b_\ell$ one has that $(e_k + e_\ell)b_l + \sum_{j \in I}^{j \neq \ell, j \neq k} e_j b_j = s$. (Note that an idempotent e_i of R[a] is a polynomial $e_i(a)$ in a of formal degree less than deg p). Let $R[c,d] = R[X,Y]/\langle p(X), p(Y) \rangle$, by Corollary 3.12, one has a pushout diagram $R \xrightarrow{\varphi} R[a] \xrightarrow{\zeta} R[c,d]$ where $\zeta|_R = \vartheta|_R = 1_R$, $\zeta(a) = d$ and $\vartheta(a) = c$. That the singleton $\{s\}$ is compatible then means $s\vartheta = \sum_{i \in I} e_i(c)b_i = s\zeta = \sum_{i \in I} e_i(d)b_i$, i.e. $\forall i, j \in I \ [b_i \neq b_j \Rightarrow e_i(c)e_j(d) = 0]$. By the assumption that $b_i \neq b_j$ whenever $i \neq j$ we have in R[c,d] that $e_j(d)e_i(c) = 0$ for any $i \neq j \in I$. Thus $e_j(d)\sum_{i\neq j} e_i(c) = e_j(d)(1 - e_j(c)) = 0$, i.e. in R[X,Y] one has $e_j(Y)(1 - e_j(X)) = 0$ mod $\langle p(X), p(Y) \rangle$. By Lemma 5.2 we have that $e_j(X) = e_j(Y) = e \in R$. We have thus shown s is

equal to $\sum_{j\in J} d_j b_j \in \widetilde{\mathbf{P}}(R[a])$ such that $d_j \in R$ for $j \in J$. That is $\sum_{j\in J} d_j b_j \in \widetilde{\mathbf{P}}(R)$. Thus we have found a unique (since $\widetilde{\mathbf{P}}(\varphi)$ is injective) element in $\widetilde{\mathbf{P}}(R)$ restricting to *s* along φ .

Lemma 5.4. Let \mathbf{P} and $\widetilde{\mathbf{P}}$ be as described above. Let $\Gamma : \mathbf{P} \to \widetilde{\mathbf{P}}$ be the presheaf morphism such that $\Gamma_R(b) = b \in \widetilde{\mathbf{P}}(R)$ for any object R and $b \in B$. If \mathbf{E} is a sheaf and $\Lambda : \mathbf{P} \to \mathbf{E}$ is a morphism of presheaves, then there exist a unique sheaf morphism $\Delta : \widetilde{\mathbf{P}} \to \mathbf{E}$ such that the following diagram, of $\mathbf{Set}^{\mathcal{RA}_K}$, com-

P $\xrightarrow{\Lambda}$ *E mutes.* $\downarrow^{\Gamma} \qquad \stackrel{\Lambda}{\xrightarrow{\Lambda}}$ *That is to say,* $\Gamma : \mathbf{P} \to \widetilde{\mathbf{P}}$ *is the sheafification of* **P**. $\widetilde{\mathbf{P}}$

Proof. Let $a = \sum_{i \in I} e_i b_i \in \widetilde{\mathbf{P}}(A)$ and let $A_i = A/\langle 1 - e_i \rangle$ with canonical morphisms $\varphi_i : A \to A_i$.

Let **E** and Λ be as in the statement of the lemma. If there exist a sheaf morphism $\Delta : \mathbf{P} \to \mathbf{E}$, then Δ being a natural transformation forces us to have for all $i \in I$, $\mathbf{E}(\varphi_i)\Delta_A = \Delta_{A_i}\widetilde{\mathbf{P}}(\varphi_i)$. By Lemma 3.10, we know that the map $d \in \mathbf{E}(A) \mapsto (\mathbf{E}(\varphi_i)d \in \mathbf{E}(A_i))_{i \in I}$ is an isomorphism. Thus it must be that $\Delta_A(a) = (\Delta_{A_i}\widetilde{\mathbf{P}}(\varphi_i)(a))_{i \in I} = (\Delta_{A_i}(b_i))_{i \in I}$. But $\Delta_{A_i}(b_i) = \Delta_{A_i}\Gamma_{A_i}(b_i)$. To have $\Delta\Gamma = \Lambda$ we must have $\Delta_{A_i}(b_i) = \Lambda_{A_i}(b_i)$. Hence, we are forced to have $\Delta_A(a) = (\Lambda_{A_i}(b_i))_{i \in I}$. Note that Δ is unique since its value $\Delta_A(a)$ at any A and a is forced by the commuting diagram above.

The constant presheaf of natural numbers **N** is the natural numbers object in $\mathbf{Set}^{\mathcal{RA}_K}$. We associate to **N** a sheaf $\widetilde{\mathbf{N}}$ as described above. From Lemma 5.4 one can easily show that $\widetilde{\mathbf{N}}$ satisfy the axioms of a natural numbers object in $\mathbf{Sh}(\mathcal{RA}_K^{op}, \mathbf{J})$.

Definition 5.5. Let $\mathbf{F}[[X]]$ be the presheaf mapping each object R of \mathscr{RA}_K to $\mathbf{F}[[X]](R) = R[[X]] = R^{\mathbb{N}}$ with the obvious restriction maps.

Lemma 5.6. $\mathbf{F}[[X]]$ is a sheaf.

Proof. The proof is immediate as a corollary of Lemma 4.1.

Lemma 5.7. The sheaf $\mathbf{F}[[X]]$ is naturally isomorphic to the sheaf $\mathbf{F}^{\mathbf{N}}$.

Proof. Let *C* be an object of $\mathscr{R}\mathscr{A}_{K}^{op}$. Since $\mathbf{F}^{\widetilde{\mathbf{N}}}(C) \cong \mathbf{y}_{C} \times \widetilde{\mathbf{N}} \to \mathbf{F}$, an element $\alpha_{C} \in \mathbf{F}^{\widetilde{\mathbf{N}}}(C)$ is a family of elements of the form $\alpha_{C,D} : \mathbf{y}_{C}(D) \times \widetilde{\mathbf{N}}(D) \to \mathbf{F}(D)$ where *D* is an object of $\mathscr{R}\mathscr{A}_{K}^{op}$. Define $\Theta : \mathbf{F}^{\widetilde{\mathbf{N}}} \to \mathbf{F}[[X]]$ as $(\Theta \alpha)_{C}(n) = \alpha_{C,C}(1_{C}, n)$. Define $\Lambda : \mathbf{F}[[X]] \to \mathbf{F}^{\widetilde{\mathbf{N}}}$ as

$$(\Lambda\beta)_{C,D}(C \xrightarrow{\varphi} D, \sum_{i \in I} e_i n_i) = (\vartheta_i \varphi(\beta_C(n_i)))_{i \in I} \in \mathbf{F}(D)$$

where $D \xrightarrow{\vartheta_i} D/\langle 1 - e_i \rangle$ is the canonical morphism. Note that by Lemma 3.10 one indeed has that $(\vartheta_i \varphi(\beta_C(n_i)))_{i \in I} \in \prod_{i \in I} \mathbf{F}(D_i) \cong \mathbf{F}(D)$. One can easily verify that Θ and Λ are natural. It remains to show the isomorphism. One one hand we have

$$(\Lambda \Theta \alpha)_{C,D}(\varphi, \sum_{i \in I} e_i n_i) = (\vartheta_i \varphi((\Theta \alpha)_C(n_i)))_{i \in I} = (\vartheta_i \varphi(\alpha_{C,C}(1_C, n_i)))_{i \in I}$$
$$= ((\alpha_{C,D_i}(\vartheta_i \varphi, n_i)))_{i \in I} = \alpha_{C,D}(\varphi, \sum_{i \in I} e_i n_i)$$

Thus showing $\Lambda \Theta = 1_{\mathbf{F}^{\tilde{N}}}$. On the other hand, $(\Theta \Lambda \beta)_C(n) = (\Lambda \beta)_{C,C}(1_C, n) = 1_C 1_C(\beta_C(n)) = \beta_C(n)$. Thus $\Theta \Lambda = 1_{\mathbf{F}[[X]]}$.

Lemma 5.8. The power series object $\mathbf{F}[[X]]$ is a ring object.

Proof. A Corollary to Lemma 4.3.

6 Choice axioms

The (*external*) axiom of choice fails to hold (even in a classical metatheory) in the topos $Sh(\mathscr{RA}_{K}^{op}, \mathbf{J})$ whenever the field *K* is not algebraically closed. To show this we will show that there is an epimorphism in $Sh(\mathscr{RA}_{K}^{op}, \mathbf{J})$ with no section.

Fact 6.1. Let Θ : $\mathbf{P} \to \mathbf{G}$ be a morphism of sheaves on a site $(\mathcal{C}, \mathbf{J})$. Then Θ is an epimorphism if for each object C of \mathcal{C} and each element $c \in \mathbf{G}(C)$ there is a cover S of C such that for all $f : D \to C$ in the cover S the element cf is in the image of Θ_D . [10, Ch. 3].

Lemma 6.2. Let K be a field of characteristic 0 not algebraically closed. There is an epimorphism in $\operatorname{Sh}(\mathscr{RA}^{op}_{K}, \mathbf{J})$ with no section.

Proof. Let $f = X^n + \sum_{i=1}^n r_i X^{n-i}$ be a non-constant polynomial for which no root in K exist. w.l.o.g. we assume f separable. One can construct $\Lambda : \mathbf{F} \to \mathbf{F}$ defined by $\Lambda_C(c) = c^n + \sum_{i=1}^{n-1} r_i c^{n-i} \in C$. Given $d \in \mathbf{F}(C)$, let $g = X^n + \sum_{i=1}^{n-1} r_i X^{n-i} - d$. By Corollary 4.6 there is a cover $\{C_\ell \xrightarrow{\varphi_\ell} C\}_{\ell \in L} \in \mathbf{J}^*(C)$ with $h_\ell \in C_\ell[X]$ a separable non-constant polynomial dividing g. Let $C_\ell[x_\ell] = C_\ell[X]/\langle h_\ell \rangle$ one has a singleton cover $\{C_\ell[x_\ell] \xrightarrow{\vartheta_\ell} C_\ell\}$ and thus a composite cover $\{C_\ell[x_\ell] \xrightarrow{\vartheta_\ell \varphi_\ell} C\}_{\ell \in L} \in \mathbf{J}^*(C)$. Since x_ℓ is a root of $h_\ell \mid g$ we have $\Lambda_{C_\ell[x_\ell]}(x_\ell) = x_\ell^n + \sum_{i=1}^{n-1} r_i x_\ell^{n-i} = d$ or more precisely $\Lambda_{C_\ell[x_\ell]}(x_\ell) = d\varphi_\ell \vartheta_\ell$. Thus, Λ is an epimorphism (by Fact 6.1) and it has no section, for if it had a section $\Psi : \mathbf{F} \to \mathbf{F}$ then one would have $\Psi_K(-r_n) = a \in K$ such that $a^n + \sum_{i=1}^n r_i a^{n-i} = 0$ which is not true by assumption.

Theorem 6.3. Let *K* be a field of characteristic 0 not algebraically closed. The axiom of choice fails to hold in the topos $\operatorname{Sh}(\mathscr{RA}_{K}^{op}, \mathbf{J})$.

We note that in Per Martin-Löf type theory one can show that (see [13])

$$(\prod x \in A)(\sum y \in B[x])C[x,y] \Rightarrow (\sum f \in (\prod x \in A)B[x])(\prod x \in A)C[x,f(x)]$$

As demonstrated in the topos Sh(\mathscr{RA}_{K}^{op} , **J**) we have an example of an intuitionistically valid formula of the form $\forall x \exists y \phi(x, y)$ where no function f exist for which $\exists f \forall x \phi(x, f(x))$ holds.

We demonstrate further that when the base field is \mathbb{Q} the weaker axiom of *dependent choice* does not hold (internally) in the topos Sh($\mathscr{RA}^{op}_{\mathbb{Q}}, \mathbf{J}$). For a relation $R \subset Y \times Y$ the axiom of dependent choice is stated as

$$\forall x \exists y R(x, y) \Rightarrow \forall x \exists g \in Y^{N}[g(0) = x \land \forall n R(g(n), g(n+1))]$$
(ADC)

Theorem 6.4. Sh($\mathscr{RA}^{op}_{\mathbb{O}}, \mathbf{J}$) $\vdash \neg$ ADC.

Proof. Consider the binary relation on the algebraically closed object \mathbf{F} defined by the characteristic function $\phi(x,y) := y^2 - x = 0$. Assume $C \Vdash ADC$ for some object C of \mathscr{RA}_K . Since $C \Vdash \forall x \exists y [y^2 - x = 0]$ we have $C \Vdash \forall x \exists g \in \mathbf{F}^{\tilde{N}}[g(0) = x \land \forall n[g(n)^2 = g(n+1)]]$. That is for all morphisms $C \xrightarrow{\zeta} A$ of \mathscr{RA}_K and elements $a \in \mathbf{F}(A)$ one has $A \Vdash \exists g \in \mathbf{F}^{\tilde{N}}[g(0) = a \land \forall n[g(n)^2 = g(n+1)]]$. Taking a = 2 we have $A \Vdash \exists g \in \mathbf{F}^{\tilde{N}}[g(0) = 2 \land \forall n[g(n)^2 = g(n+1)]]$. Which by \exists implies the existence of a cocover $\{\eta_i : A \to A_i \mid i \in I\}$ and power series $\alpha_i \in \mathbf{F}^{\tilde{N}}(A_i)$ such that $A_i \Vdash \alpha_i(0) = 2 \land \forall n[\alpha_i(n)^2 = \alpha_i(n+1)]]$.

By Lemma 5.7 we have $\mathbf{F}^{\widetilde{N}}(A_i) \cong A_i[[X]]$ and thus the above forcing implies the existence of a series $\alpha_i = 2 + 2^{1/2} + ... + 2^{1/2^j} + ... \in A_i[[X]]$. But this holds only if A_i contains a root of $X^{2^j} - 2$ for all j which implies A_i is trivial as will shortly show after the following remark.

Consider an algebra *R* over \mathbb{Q} . Assume *R* contains a root of $X^{2^n} - 2$ for some *n*. Then letting $\mathbb{Q}[x] = \mathbb{Q}[X]/\langle X^{2^n} - 2 \rangle$, one will have a homomorphism $\xi : \mathbb{Q}[x] \to R$. By Eisenstein's criterion the polynomial $X^{2^n} - 2$ is irreducible over \mathbb{Q} , making $\mathbb{Q}[x]$ a field of dimension 2^n and ξ either an injection with a trivial kernel or $\xi = \mathbb{Q}[x] \to 0$.

Now we continue with the proof. Until now we have shown that for all $i \in I$, the algebra A_i contains a root of $X^{2^j} - 2$ for all j. For each $i \in I$, let A_i be of dimension m_i over \mathbb{Q} . We have that A_i contains a root of $X^{2^{m_i}} - 2$ and we have a homomorphism $\mathbb{Q}(\sqrt[2^{m_i}]2) \to A_i$ which since A_i has dimension $m_i < 2^{m_i}$ means that A_i is trivial for all $i \in I$. Hence, $A_i \Vdash \bot$ and consequently $C \Vdash \bot$. We have shown that for any object D of $\mathscr{R}\mathscr{A}^{op}_{\mathbb{Q}}$ if $D \Vdash$ ADC then $D \Vdash \bot$. Hence $\operatorname{Sh}(\mathscr{R}\mathscr{A}^{op}_{\mathbb{Q}}, \mathbf{J}) \Vdash \neg$ ADC. \Box

As a consequence we get that the *internal* axiom of choice does not hold in $Sh(\mathscr{RA}^{op}_{\mathbb{O}}, \mathbf{J})$.

7 Eliminating the algebraic closure assumption

Let *K* be a field of characteristic 0. We consider a typed language $\mathscr{L}[N, F]_K$ of the form described in Section 2 with two basic types *N* and *F* and the elements of the field *K* as its set of constants. Consider a theory *T* in the language $\mathscr{L}[N, F]_K$, such that *T* has as an axiom every atomic formula or the negation of one valid in the field *K*, *T* equips *N* with the (Peano) axioms of natural numbers and equips *F* with the axioms of a field containing *K*. If we interpret the types *N* and *F* by the objects \widetilde{N} and **F**, respectively, in the topos $\operatorname{Sh}(\mathscr{R}\mathscr{A}_K^{op}, \mathbf{J})$ then we have, by the results proved earlier, a model of *T* in $\operatorname{Sh}(\mathscr{R}\mathscr{A}_K^{op}, \mathbf{J})$. Let AlgCl be the axiom schema of algebraic closure with quantification over the type *F*, then one has that $T + \operatorname{AlgCl}$ has a model in $\operatorname{Sh}(\mathscr{R}\mathscr{A}_K^{op}, \mathbf{J})$ with the same interpretation. Let ϕ be a sentence in the language such that $T + \operatorname{AlgCl} \vdash \phi$ in IHOL deduction system. By soundness [1] one has that $\operatorname{Sh}(\mathscr{R}\mathscr{A}_K^{op}, \mathbf{J}) \Vdash \phi$, i.e. for all finite dimensional regular algebras *R* over *K*, $R \Vdash \phi$ which is then a constructive interpretation of the existence of the algebraic closure of *K*.

This model can be implemented, e.g. in Haskell. In the paper [12] by the authors, an algorithm for computing the Puiseux expansions of an algebraic curve based on this model is given. The statement with the assumption of algebraic closure is:

"Let K be a field of characteristic 0 and $G(X,Y) = Y^n + \sum_{i=1}^n b_i(X)Y^{n-i} \in K[[X]][Y]$ a monic, nonconstant polynomial separable over K((X)). Let F be the algebraic closure of K, we have a positive integer m and a factorization $G(T^m,Y) = \prod_{i=1}^n (Y - \alpha_i)$ with $\alpha_i \in F[[T]]$ "

We can then extract the following computational content

"Let K be a field of characteristic 0 and $G(X,Y) = Y^n + \sum_{i=1}^n b_i(X)Y^{n-i} \in K[[X]][Y]$ a monic, nonconstant polynomial separable over K((X)). Then there exist a (von Neumann) regular algebra R over K and a positive integer m such that $G(T^m,Y) = \prod_{i=1}^n (Y - \alpha_i)$ with $\alpha_i \in R[[T]]$ "

For example applying the algorithm to $G(X,Y) = Y^4 - 3Y^2 + XY + X^2 \in \mathbb{Q}[X,Y]$ we get a regular

algebra $\mathbb{Q}[b,c]$ with $b^2 - 13/36 = 0$ and $c^2 - 3 = 0$ and a factorization

$$\begin{split} G(X,Y) &= \\ (Y + (-b - \frac{1}{6})X + (-\frac{31}{351}b - \frac{7}{162})X^3 + (-\frac{1415}{41067}b - \frac{29}{1458})X^5 + \ldots) \\ (Y + (b - \frac{1}{6})X + (\frac{31}{351}b - \frac{7}{162})X^3 + (\frac{1415}{41067}b - \frac{29}{1458})X^5 + \ldots) \\ (Y - c + \frac{1}{6}X + \frac{5}{72}cX^2 + \frac{7}{162}X^3 + \frac{185}{10368}cX^4 + \frac{29}{1458}X^5 + \ldots) \\ (Y + c + \frac{1}{6}X - \frac{5}{72}cX^2 + \frac{7}{162}X^3 - \frac{185}{10368}cX^4 + \frac{29}{1458}X^5 + \ldots) \end{split}$$

Another example of a possible application of this model is as follows: suppose one want to show that *"For discrete field K, if* $f \in K[X,Y]$ *is smooth, i.e.* $1 \in \langle f, f_x, f_Y \rangle$, *then* $K[X,Y]/\langle f \rangle$ *is a Prüfer ring."*

To prove that a ring is Prüfer one needs to prove that it is arithmetical, that is $\forall x, y \exists u, v, w [yu = vx \land yw = (1-u)x]$. Proving that $K[X,Y]/\langle f \rangle$ is arithmetical is easier in the case where K is algebraically closed [3]. Let **F** be the algebraic closure of K in Sh($\mathscr{R}\mathscr{A}_{K}^{op}$, **J**). Now **F**[X,Y]/ $\langle f \rangle$ being arithmetical amounts to having a solution *u*,*v*, and *w* to a linear system yu = vx, yw = (1-u)x. Having obtained such solution, by Rouché–Capelli–Fontené theorem we can conclude that the system have a solution in $K[X,Y]/\langle f \rangle$.

8 The logic of $\operatorname{Sh}(\mathscr{RA}_{K}^{op}, \mathbf{J})$

In this section we will demonstrate that in a *classical metatheory* one can show that the topos Sh(\mathscr{RA}_{K}^{op} , **J**) is boolean. In fact we will show that, in a classical metatheory, the boolean algebra structure of the subobject classifier is the one specified by the boolean algebra of idempotents of the algebras in \mathscr{RA}_{K} . Except for Theorem 8.8 the reasoning in this section is classical. Recall that the idempotents of a commutative ring form a boolean algebra with the meaning of the logical operators given by : $\top = 1$, $\bot = 0$, $e_1 \land e_2 = e_1e_2$, $e_1 \lor e_2 = e_1 + e_2 - e_1e_2$ and $\neg e = 1 - e$. We write $e_1 \le e_2$ iff $e_1 \land e_2 = e_1$ and $e_1 \lor e_2 = e_2$

A sieve *S* on an object *C* is a set of morphisms with codomain *C* such that if $g \in S$ and cod(h) = dom(g)then $gh \in S$. A cosieve is defined dually to a sieve. A sieve *S* is said to cover a morphism $f : D \to C$ if $f^*(S) = \{g \mid cod(g) = D, fg \in S\}$ contains a cover of *D*. Dually, a cosieve *M* on *C* is said to cover a morphism $g : C \to D$ if the sieve dual to *M* covers the morphism dual to *g*.

Definition 8.1 (Closed cosieve). A sieve *M* on an object *C* of \mathscr{C} is closed if for all *f* with $\operatorname{cod}(f) = C$ if *M* covers *f* then $f \in M$. A closed cosieve on an object *C* of \mathscr{C}^{op} is the dual of a closed sieve in \mathscr{C} .

Fact 8.2 (Subobject classifier). The subobject classifier in the category of sheaves on a site $(\mathcal{C}, \mathbf{J})$ is the presheaf Ω where for an object C of \mathcal{C} the set $\Omega(C)$ is the set of closed sieves on C and for each $f: D \to C$ we have a restriction map $M \mapsto \{h \mid \operatorname{cod}(h) = D, fh \in M\}$.

Lemma 8.3. Let *R* be an object of \mathscr{RA}_K . If *R* is a field the closed cosieves on *R* are the maximal cosieve $\{f \mid \operatorname{dom}(f) = R\}$ and the minimal cosieve $\{R \to 0\}$.

Proof. Let *S* be a closed cosieve on *R* and let $\varphi : R \to A \in S$ and let *I* be a maximal ideal of *A*. If *A* is nontrivial we have a field morphism $R \to A/I$ in *S* where A/I is a finite field extension of *R*. Let $A/I = R[a_1, ..., a_n]$. But then the morphism $\vartheta : R \to R[a_1, ..., a_{n-1}]$ is covered by *S*. Thus $\vartheta \in S$ since *S* is closed. By induction on *n* we get that a field automorphism $\eta : R \to R$ is in *S* but then by composition of η with its inverse we get that $1_R \in S$. Consequently, any morphism with domain *R* is in *S*.

Corollary 8.4. For an object R of \mathcal{RA}_K . If R is a field, then $\Omega(R)$ is a 2-valued boolean algebra.

Proof. This is a direct Corollary of Lemma 8.3. The maximal cosieve (1_R) correspond to the idempotent 1 of *R*, that is the idempotent *e* such that, ker $1_R = \langle 1 - e \rangle$. Similarly the cosieve $\{R \to 1\}$ correspond to the idempotent 0.

Corollary 8.5. For an object A of \mathscr{RA}_K , $\Omega(A)$ is isomorphic to the set of idempotents of A and the Heyting algebra structure of $\Omega(A)$ is the boolean algebra of idempotents of A.

Proof. Classically a finite dimension regular algebra over *K* is isomorphic to a product of field extensions of *K*. Let *A* be an object of \mathscr{RA}_K , then $A \cong F_1 \times ... \times F_n$ where F_i is a finite field extension of *K*. The set of idempotents of *A* is $\{(d_1, ..., d_n) \mid 1 \le j \le n, d_j \in F_j, d_j = 0 \text{ or } d_j = 1\}$. But this is exactly the set $\Omega(F_1) \times ... \times \Omega(F_n) \cong \Omega(A)$. It is obvious that since $\Omega(A)$ is isomorphic to a product of boolean algebras, it is a boolean algebra with the operators defined pointwise.

Theorem 8.6. The topos $\operatorname{Sh}(\mathscr{RA}_{K}^{op}, \mathbf{J})$ is boolean.

Proof. The subobject classifier of $\operatorname{Sh}(\mathscr{RA}_{K}^{op}, \mathbf{J})$ is $1 \xrightarrow{\operatorname{true}} \Omega$ where for an object A of \mathscr{RA}_{K} one has $\operatorname{true}_{A}(*) = 1 \in A$.

It is not possible to show that the topos $\operatorname{Sh}(\mathscr{RA}_{K}^{op}, \mathbf{J})$ is boolean in an intuitionistic metatheory as we shall demonstrate. First we recall the definition of the *Limited principle of omniscience* (LPO for short). **Definition 8.7** (LPO). For any binary sequence α the statement $\forall n[\alpha(n) = 0] \lor \exists n[\alpha(n) = 1]$ holds.

LPO cannot be shown to hold intuitionistically. One can, nevertheless, show that it is weaker than the law of excluded middle [2].

Theorem 8.8. Intuitionistically, if $\operatorname{Sh}(\mathscr{RA}_{K}^{op}, \mathbf{J})$ is boolean then LPO holds.

Proof. Let $\alpha \in K[[X]]$ be a binary sequence. By Lemma 5.7 one has an isomorphism $\Lambda : \mathbf{F}[[X]] \xrightarrow{\sim} \mathbf{F}^{\mathbf{N}}$. Let $\Lambda_K(\alpha) = \beta \in \mathbf{F}^{\widetilde{\mathbf{N}}}(K)$. Assume the topos $\operatorname{Sh}(\mathscr{R}\mathscr{A}_K^{op}, \mathbf{J})$ is boolean. Then one has $K \Vdash \forall n[\beta(n) = 0] \lor \exists n[\beta(n) = 1]$. By $[\lor]$ this holds only if there exist a cocover of K

$$\{\vartheta_i: K \to A_i \mid i \in I\} \cup \{\xi_j: K \to B_j \mid j \in J\}$$

such that $B_j \Vdash \forall n[(\beta \xi_j)(n) = 0]$ for all $j \in J$ and $A_i \Vdash \exists n[(\beta \vartheta_i)(n) = 1]$ for all $i \in I$. Note that at least one of *I* or *J* is nonempty since *K* is not covered by the empty cover.

For each $i \in I$ there exist a cocover $\{\eta_{\ell} : A_i \to D_{\ell} \mid \ell \in L\}$ of A_i such that for all $\ell \in L$, we have $D_{\ell} \Vdash (\beta \vartheta_i \eta_{\ell})(m) = 1$ for some $m \in \widetilde{N}(D_{\ell})$. Let $m = \sum_{t \in T} e_t n_t$ then we have a cocover $\{\xi_t : D_{\ell} \to C_t = D_{\ell}/\langle 1 - e_t \rangle \mid t \in T\}$ such that $C_t \Vdash (\beta \vartheta_i \eta_{\ell} \xi_t)(n_t) = 1$ which implies $\xi_t \eta_{\ell} \vartheta_i(\alpha(n_t)) = 1$. For each t we can check whether $\alpha(n_t) = 1$. If $\alpha(n_t) = 1$ then we have witness for $\exists n[\alpha(n) = 1]$. Otherwise, we have $\alpha(n_t) = 0$ and $\xi_t \eta_{\ell} \vartheta_i(0) = 1$. Thus the map $\xi_t \eta_{\ell} \vartheta_i : K \to C_t$ from the field K cannot be injective, which leaves us with the conclusion that C_t is trivial. If for all $t \in T$, C_t is trivial then D_{ℓ} is trivial as well. Similarly, if for every $\ell \in L$, D_{ℓ} is trivial then A_i is trivial as well. At this point one either have either (i) a natural number m such that $\alpha(m) = 1$ in which case we have a witness for $\exists n[\alpha(n) = 0]$. Or (ii) we have shown that for all $i \in I$, A_i is trivial in which case we have a cocover $\{\xi_j : K \to B_j \mid j \in J\}$ such that $B_j \Vdash \forall n[(\beta\xi_j)(n) = 0]$ for all $j \in J$. Which by $\boxed{\text{LC}}$ means $K \Vdash \forall n[\beta(n) = 0]$ which by $\fbox{\forall}$ means that for all arrows $K \to R$ and elements $d \in \widetilde{N}(R)$, $R \Vdash \beta(d) = 0$. In particular for the arrow $K \xrightarrow{1_K} K$ and every natural number m one has $K \Vdash \beta(m) = 0$ which implies $K \Vdash \alpha(m) = 0$. By $\fbox{\forall}$ we get that $\forall m \in \mathbb{N}[\alpha(m) = 0]$. Thus we have shown that LPO holds. \Box

Corollary 8.9. It cannot be shown in an intuitionistic metatheory that the topos $Sh(\mathscr{RA}_{K}^{op}, \mathbf{J})$ is boolean.

References

- [1] Steven Awodey (1997): Logic in topoi: Functorial Semantics for Higher-Order Logic. Ph.D. thesis, The University of Chicago.
- [2] Douglas Bridges & Fred Richman (1987): Varieties of Constructive Mathematics. Lecture note series, Cambridge University Press, doi:10.1017/cbo9780511565663.
- [3] Thierry Coquand, Henri Lombardi & Claude Quitté (2010): Curves and coherent Prüfer rings. J. Symb. Comput. 45(12), pp. 1378–1390, doi:10.1016/j.jsc.2010.06.016.
- [4] Michel Coste, Henri Lombardi & Marie-Françoise Roy (2001): Dynamical method in algebra: effective Nullstellensätze. Annals of Pure and Applied Logic 111(3), pp. 203 – 256, doi:10.1016/S0168-0072(01)00026-4.
- [5] Jean Della Dora, Claire Dicrescenzo & Dominique Duval (1985): About a new method for computing in algebraic number fields. In Bob Caviness, editor: EUROCAL '85, Lecture Notes in Computer Science 204, Springer Berlin / Heidelberg, pp. 289–290, doi:10.1007/3-540-15984-3_279.
- [6] A. Fröhlich & J. C. Shepherdson (1956): Effective Procedures in Field Theory. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 248(950), pp. 407–432, doi:10.1098/rsta.1956.0003.
- [7] Peter T. Johnstone (2002): Sketches of an Elephant: A Topos Theory Compendium Volume 2. Oxford Logic Guides 44, Oxford University Press.
- [8] John F. Kennison (1982): *Separable algebraic closure in a topos*. Journal of Pure and Applied Algebra 24(1), pp. 7 24, doi:10.1016/0022-4049(82)90055-X.
- [9] Henri Lombardi & Claude Quitté (2011): *Algèbre Commutative, Méthodes Constructives*. Mathématiques en devenir, Calvage et Mounet.
- [10] Saunders MacLane & Ieke Moerdijk (1992): *Sheaves in Geometry and Logic: A First Introduction to Topos Theory*, corrected edition. Springer, doi:10.1007/978-1-4612-0927-0.
- [11] Michael Makkai & Gonzalo E. Reyes (1977): First order categorical logic: model-theoretical methods in the theory of topoi and related categories. Lecture notes in mathematics 611, Springer-Verlag, doi:10.1007/BFb0066201.
- [12] Bassel Mannaa & Thierry Coquand (2013): Dynamic Newton-Puiseux theorem. J. Logic & Analysis 5, doi:10.4115/jla.2013.5.5.
- [13] Per Martin-Löf (1972): An intuitionistic theory of types. Reprinted in Twenty-five years of constructive type theory, Oxford University Press, 1998, 127–172.
- [14] Ray Mines, Fred Richman & Wim Ruitenburg (1988): A course in constructive algebra. Universitext (1979), Springer-Verlag, doi:10.1007/978-1-4419-8640-5.
- [15] Andrej Ščedrov (1984): Forcing and classifying topoi. Memoirs of the AMS 48, American Mathematical Society (AMS), doi:10.1090/memo/0295.