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In constructive algebra one cannot in general decide the irreducibility of a polynomial over a field K.
This poses some problems to showing the existence of the algebraic closure of K. We give a possible
constructive interpretation of the existence of the algebraic closure of a field in characteristic 0 by
building, in a constructive metatheory, a suitable site model where there is such an algebraic closure.
One can then extract computational content from this model. We give examples of computation based
on this model.

1 Introduction

Since in general it is not decidable whether a given polynomial over a field is irreducible, even when
the field is given explicitly [6], the notion of algebraic field extension and consequently the notion of
algebraic closure becomes problematic from a constructive point of view. Even in situations where one
can constructively assert the existence of an algebraic closure of a field [14, Ch. 6] the computational
content of such assertions are not always clear. We present a constructive interpretation of the algebraic
closure of field K in characteristic 0 as a site model. Our approach is different from [15] in that we do not
assume a polynomial over a field to be decomposable into irreducible factors. The model presented here
has a direct computational content and can be viewed as a model of dynamical evaluation in the sense of
Duval [5] (see also [4]). The site, described in section 3, is given by the category of finitely presented
(von Neumann) regular algebras over K with the appropriate Grothendieck topology. In section 4 we
prove that the topos E of sheaves on this site contains a model of an algebraically closed field extension
of K. An alternative approach using profinite Galois group is presented in [8]. We also investigate some
of the properties of the topos E . Theorem 6.3 shows that the axiom of choice fails to hold in E whenever
K is not algebraically closed. Theorem 6.4 shows that when the base field K is the rationals the weaker
axiom of dependent choice fails to hold. We restrict ourselves to constructive metatheory throughout
the paper with the exception of section 8 in which we show that in a classical metatheory the topos E
is boolean (Theorem 8.6). As we will demonstrate by Theorem 8.8 this cannot be shown to hold in an
intuitionistic metatheory.

2 Coverage, sheaves, and Kripke–Joyal semantics

In this section we recall some notions that we will use in the remainder the paper, mostly following
the presentation in [7]. A coverage on a category C is a function J assigning to each object C of C a
collection J(C) of families of morphisms with codomain C such that for any { fi : Ci→C}i∈I ∈ J(C) and
morphism g : D→C of C there exist {h j : D j → D} j∈J ∈ J(D) such that for each j ∈ J the morphism
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gh j factors through f` for some ` ∈ I. A family S ∈ J(C) is called elementary cover or elementary
covering family of C. A site is a category with coverage (C ,J). For a presheaf P : C op→ Set and family
S = {gi : Ai→ A}i∈I of morphisms of C we say that a family {si ∈ P(Ai)}i∈I is compatible if for each
`, j ∈ I whenever we have h : B→ A` and f : B→ A j such that g`h = g j f then s`h = s j f , where by s`h we
mean the restriction of s` along h, i.e. P(h)s`. A presheaf P is a sheaf on the site (C ,J) if for any object
C and any { fi : Ci→C}i∈I ∈ J(C) if {si ∈ P(Ci)}i∈I is compatible then there exist a unique s∈ P(C) such
that s fi = si. We call such s the amalgamation of {si}i∈I . Let J be a coverage on C we define a closure

J∗ of J as follows: For all objects C of C i. {C 1C−→C} ∈ J∗(C), ii. If S ∈ J(C) then S ∈ J∗(C), and, iii. If

{Ci
fi−→ C}i∈I ∈ J∗(C) and for each i ∈ I, {Ci j

gi j−→Ci} j∈Ji ∈ J∗(Ci) then {Ci j
figi j−−→C}i∈I, j∈Ji ∈ J∗(C). A

family T ∈ J∗(C) is called cover or covering family of C.
We work with a typed language with equality L [V1, ...,Vn] having the basic types V1, ...,Vn and type

formers −×−,(−)−,P(−). The language L [V1, ...,Vn] has typed constants and function symbols. For
any type Y one has a stock of variables y1,y2, ... of type Y . Terms and formulas of the language are
defined as usual. We work within the proof theory of intuitionistic higher-order logic (IHOL). A detailed
description of this deduction system is given in [1].

The language L [V1, ...,Vn] along with deduction system IHOL can be interpreted in an elementary
topos in what is referred to as topos semantics. For a sheaf topos this interpretation takes a simpler form
reminiscent of Beth semantics, usually referred to as Kripke–Joyal sheaf semantics. We describe this
semantics here briefly following [15].

Let E = Sh(C ,J) be a sheaf topos. An interpretation of the language L [V1, ...,Vn] in the topos E
is given as follows: Associate to each basic type Vi of L [V1, ...,Vn] an object Vi of E . If Y and Z are
types of L [V1, ...,Vn] interpreted by objects Y and Z, respectively, then the types Y ×Z,Y Z,P(Z) are
interpreted by Y×Z,YZ,ΩZ, respectively, where Ω is the subobject classifier of E . A constant e of type
E is interpreted by an arrow 1 e−→ E where E is the interpretation of E. For a term τ and an object X of
E , we write τ :X to mean τ has a type X interpreted by the object X.

Let φ(x1, ...,xn) be a formula with variables x1 :X1, ...,xn :Xn. Let c1 ∈X j(C), ...,cn ∈Xn(C) for some
object C of C . We define the relation C forces φ(x1, ...,xn)[c1, ...,cn] written C 
 φ(x1, ...,xn)[c1, ...,cn]
by induction on the structure of φ .

Definition 2.1 (Forcing). First we replace the constants in φ by variables of the same type as follows:
Let e1 :E1, ...,em :Em be the constants in φ(x1, ...,xn) then C 
 φ(x1, ...,xn)[c1, ...,cn] iff

C 
 φ [y1/e1, ...,ym/em](y1, ...,ym,x1, ...,xn)[e1C(∗), ...,emC(∗),c1, ...,cn]

where yi :Ei and ei : 1→ Ei is the interpretation of ei.
Now it suffices to define the forcing relation for formulas free of constants by induction as follows:

> C 
>.

⊥ C 
⊥ iff the empty family is a cover of C.

= C 
 (x1 = x2)[c1,c2] iff c1 = c2.

∧ C 
 (φ ∧ψ)(x1, ...,xn)[c1, ...,cn] iff C 
 φ(x1, ...,xn)[c1, ...,cn] and C 
 ψ(x1, ...,xn)[c1, ...,cn].

∨ C 
 (φ ∨ψ)(x1, ...,xn)[c1, ...,cn] iff there exist a cover {Ci
fi−→C}i∈I ∈ J∗(C) such that

Ci 
 φ(x1, ...,xn)[c1 fi, ...,cn fi] or Ci 
 ψ(x1, ...,xn)[c1 fi, ...,cn fi] for each i ∈ I.

⇒ C 
 (φ ⇒ ψ)(x1, ...,xn)[c1, ...,cn] iff for every morphism f : D→C whenever
D 
 φ(x1, ...,xn)[c1 f , ...,cn f ] one has D 
 ψ(x1, ...,xn)[c1 f , ...,cn f ].
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Let y be a variable of the type Y interpreted by the object Y of E .

∃ C 
 (∃yφ(x1, ...,xn,y))[c1, ...,cn] iff there exist a cover {Ci
fi−→ C}i∈I ∈ J∗(C) such that for each

i ∈ I one has Ci 
 φ(x1, ...,xn,y)[c1 fi, ...,cn fi,d] for some d ∈ Y(Ci).

∀ C 
 (∀yφ(x1, ...,xn,y))[c1, ...,cn] iff for every morphism f : D→C and for all d ∈ Y(D) one has
D 
 φ(x1, ...,xn,y)[c1 f , ...,cn f ,d].

We have the following derivable local character and monotonicity laws:

LC If {Ci
fi−→C}i∈I ∈ J∗(C) and for all i∈ I, Ci 
 φ(x1, ...,xn)[c1 fi, ...,cn fi] then C 
 φ(x1, ...,xn)[c1, ...,cn].

M If C 
 φ(x1, ...,xn)[c1, ...,cn] and f : D→C then D 
 φ(x1, ...,xn)[c1 f , ...,cn f ].

3 The topos Sh(RA op
K ,J)

Definition 3.1 (Regular ring). A commutative ring R is (von Neumann) regular if for every element a∈ R
there exist b ∈ R such that aba = a and bab = b. This element b is called the quasi-inverse of a.

The quasi-inverse of an element a is unique for a [9, Ch. 4]. We thus use the notation a∗ to refer
to the quasi-inverse of a. A ring is regular iff it is zero-dimensional and reduced. To be regular is
equivalent to the fact that any principal ideal (consequently, any finitely generated ideal) is generated
by an idempotent. If R is regular and a ∈ R then e = aa∗ is an idempotent such that 〈e〉 = 〈a〉 and R is
isomorphic to R0×R1 with R0 = R/〈e〉 and R1 = R/〈1− e〉. Furthermore a is 0 on the component R0
and invertible on the component R1.

Definition 3.2 (Fundamental system of orthogonal idempotents). A family (ei)i∈I of idempotents in a
ring R is a fundamental system of orthogonal idempotents if ∑i∈I ei = 1 and ∀i, j[i 6= j⇒ eie j = 0].

Lemma 3.3. Given a fundamental system of orthogonal idempotents (ei)i∈I in a ring A we have a de-
composition A∼= ∏i∈I A/〈1− ei〉.

Proof. Follows by induction from the fact that A∼= A/〈e〉×A/〈1− e〉 for an idempotent e ∈ A.

Definition 3.4 (Separable polynomial). Let R be a ring. A polynomial p∈ R[X ] is separable if there exist
r,s ∈ R[X ] such that rp+ sp′ = 1, where p′ ∈ R[X ] is the derivative of p.

Definition 3.5. A ring R is a (strict) Bézout ring if for all a,b ∈ R we can find g,a1,b1,c,d ∈ R such that
a = a1g, b = b1g and ca1 +db1 = 1 [9, Ch. 4].

If R is a regular ring then R[X ] is a strict Bézout ring (and the converse is true [9]). Intuitively we can
compute the gcd as if R was a field, but we may need to split R when deciding if an element is invertible
or 0. Using this, we see that given a,b in R[X ] we can find a decomposition R1, . . . ,Rn of R and for each
i we have g,a1,b1,c,d in Ri[X ] such that a = a1g, b = b1g and ca1 +db1 = 1 with g monic.

Lemma 3.6. If R is regular and p in R[X ] is a separable polynomial then R[a] = R[X ]/〈p〉 is regular.

Proof. If c = q(a) is an element of R[a] with q in R[X ] we compute the gcd g of p and q. If p = gp1, we
can find u and v in R[X ] such that ug+ vp1 = 1 since p is separable. We then have g(a)p1(a) = 0 and
u(a)g(a)+ v(a)p1(a) = 1. It follows that e = u(a)g(a) is idempotent and we have 〈e〉= 〈g(a)〉.
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An algebra A over a field K is finitely presented if it is of the form K[X1, ..,Xn]/〈 f1, ..., fm〉, i.e. the
quotient of the polynomial ring over K in finitely many variables by a finitely generated ideal.

In order to build the classifying topos of a coherent theory T it is customary in the literature to con-
sider the category of all finitely presented T0 algebras where T0 is an equational subtheory of T . The
axioms of T then give rise to a coverage on the dual category [11, Ch. 9]. For our purpose consider
the category C of finitely presented K-algebras. Given an object R of C , the axiom schema of alge-
braic closure and the field axiom give rise to families (i.) R→ R[X ]/〈p〉 where p ∈ R[X ] is monic and

(ii.)

R/〈a〉

R

R[1
a ]

, for a ∈ R. Dualized, these are elementary covering families of R in C op. We

observe however that we can limit our consideration only to those finitely presented K-algebras that are
zero dimensional and reduced, i.e. regular. In this case we can assume a is an idempotent and we only
consider extensions R[X ]/〈p〉 where p is separable.

Let RA K be the small category of finitely presented regular algebras over a fixed field K and K-
homomorphisms. First we fix an countable set of names S. An object of RA K is a regular algebra of the
form K[X1, ...,Xn]/〈 f1, ..., fm〉 where Xi ∈ S for all 1≤ i≤ n. Note that for any object R, there is a unique
morphism K→ R. A finitely presented regular K-algebra A is a finite dimensional K-algebra, i.e. A has
a finite dimension as a vector space over K [9, Ch 4, Theorem 8.16]. The trivial ring 0 is the terminal
object in the category RA K and K is its initial object.

To specify a coverage J on the category RA op
K , we define for each object A a collection Jop(A) of

families of morphisms of RA K with domain A. We then take J(A) to be the dual of Jop(A) in the sense
that {ϕi : Ai → A}i∈I ∈ J(A) if and only if {ϕi : A→ Ai}i∈I ∈ Jop(A) where ϕi of RA K is the dual of
ϕ i of RA op

K . We call Jop cocoverage. We call an element of Jop(A) an elementary cocover (cocovering
family) of A. We define J∗op similarly. We call elements of J∗op(A) cocovers (cocovering families) of A.
By a separable extension of a ring R we mean a ring R[a] = R[X ]/〈p〉 where p ∈ R[X ] is non-constant,
monic and separable.

Definition 3.7 (Topology for RA op
K ). For an object A of RA K the cocovering families are given by:

(i.) If (ei)i∈I is a fundamental system of orthogonal idempotents of A, then {A ϕi−→ A/〈1−ei〉}i∈I ∈
Jop(A) where for each i ∈ I, ϕi is the canonical homomorphism.

(ii.) Let A[a] be a separable extension of A. We have {A ϑ−→ A[a]} ∈ Jop(A) where ϑ is the canonical
embedding.

Note that in particular 3.7.(i.) implies that the trivial algebra 0 is covered by the empty family of
morphisms since an empty family of elements in this ring form a fundamental system of orthogonal
idempotents. Also note that 3.7.(ii.) implies that {A 1A−−→ A} ∈ Jop(A).

Lemma 3.8. The function J of Definition 3.7 is a coverage on RA op
K .

Proof. Let η : R→ A be a morphism of RA K and S ∈ Jop(R). We show that there exist an elementary
cocover T ∈ Jop(A) such that for each ϑ ∈ T , ϑη factors through some ϕ ∈ S. By duality, this implies J
is a coverage on RA op

K . By case analysis on the clauses of Definition 3.7.
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(i.) If S= {ϕi : R→R/〈1−ei〉}i∈I , where (ei)i∈I is a fundamental system of orthogonal idempotents
of R. In A, the family (η(ei))i∈I is fundamental system of orthogonal idempotents. We have an
elementary cocover {ϑi : A→ A/〈1−η(ei)〉}i∈I ∈ Jop(A). For each i ∈ I, the homomorphism η
induces a K-homomorphism ηei : R/〈1− ei〉 → A/〈1−η(ei)〉 where ηei(r + 〈1− ei〉) = η(r)+
〈1−η(ei)〉. Since ϑi(η(r)) = η(r)+ 〈1−η(ei)〉 we have that ϑiη = ηeiϕi.

(ii.) If S = {ϕ : R→ R[r]} with R[r] = R[X ]/〈p〉 and p ∈ R[X ] monic, non-constant, and separable.
Since sp+t p′= 1, we have η(s)η(p)+η(t)η(p′) = η(s)η(p)+η(t)η(p)′= 1. Then q= η(p)∈
A[X ] is separable. Let A[a] = A[X ]/〈q〉. We have an elementary cocover {ϑ : A→ A[a]} ∈ Jop(A)
where ϑ is the canonical embedding. Let ζ : R[r]→ A[a] be the K-homomorphism such that
ζ |R = η and ζ (r) = a. For b ∈ R, we have ϑ(η(b)) = ζ (ϕ(b)).

Lemma 3.9. Let P : RA K→ Set be a presheaf on RA op
K such that P(0)= 1. Let R be an object of RA K

and let (ei)i∈I be a fundamental system of orthogonal idempotents of R. For each i∈ I, let Ri = R/〈1−ei〉
and let ϕi : R→ Ri be the canonical homomorphism. Any family {si ∈ P(Ri)} is compatible.

Proof. Let B be an object and for some i, j ∈ I let ϑ : Ri→ B and ζ : R j → B be such that ϑϕi = ζ ϕ j.
We will show that P(ϑ)(si) = P(ζ )(s j).

(i.) If i = j, then since ϕi is surjective we have ϑ = ζ and P(ϑ) = P(ζ ).

(ii.) If i 6= j, then since eie j = 0, ϕi(ei) = 1 and ϕ j(e j) = 1 we have ϕ j(ei) = ϕ j(eie j) = 0. But then

1 = ϑ(1) = ϑ(ϕi(ei)) = ζ (ϕ j(ei)) = ζ (0) = 0

Hence B is the trivial algebra 0. By assumption P(0) = 1, hence P(ϑ)(si) = P(ζ )(s j) = ∗.

Corollary 3.10. Let F be a sheaf on (RA op
K ,J). Let R be an object of RA K and (ei)i∈I a fundamental

system of orthogonal idempotents of R. Let Ri = R/〈1− ei〉 and ϕi : R→ Ri be the canonical homomor-
phism. The map f : F(R)→∏i∈I F(Ri) such that f (s) = (F(ϕi)s)i∈I is an isomorphism.

Proof. Since F(0) = 1, by Lemma 3.9 any family {si ∈ F(Ri)}i∈I is compatible. Since F is a sheaf, the
family {si ∈ F(Ri)}i∈I has a unique amalgamation s ∈ F(R) with restrictions sϕi = si. The isomorphism
is given by f s = (sϕi)i∈I . We can then use the tuple notation (si)i∈I to denote the element s in F(R).

One say that a polynomial f ∈ R[X ] has a formal degree n if f can be written as f = anXn + ...+a0
which is to express that for any m > n the coefficient of Xm is known to be 0.

Lemma 3.11. Let R be a regular ring and p1, p2 ∈ R[X ] be monic polynomials of degrees n1 and n2
respectively. Let R[a,b] = R[X ,Y ]/〈p1(X), p2(Y )〉. Let q1,q2 ∈ R[Z] be of formal degrees m1 < n1 and
m2 < n2 respectively. If q1(a) = q2(b) then q1 = q2 = r ∈ R.

Proof. The statement follows immediately since the R-basis ai, i > 0 and b j, j > 0 are linearly indepen-
dent.

Corollary 3.12. Let R be an object of RA K and p ∈ R[X ] separable and monic. Let R[a] = R[X ]/〈p〉
and ϕ : R→ R[a] the canonical morphism. Let R[b,c] = R[X ,Y ]/〈p(X), p(Y )〉. The commuting diagram
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R[a] R[b,c]

R R[a]

ϑ

ϕ

ϕ

ζ ϑ |R = ζ |R = 1R, ϑ(a) = b, ζ (a) = c

is a pushout diagram of RA K . Moreover, ϕ is the equalizer of ζ and ϑ .

Proof. Let R[a] B
η

ρ
be morphisms of RA K such that ηϕ = ρϕ . Then for all r ∈ R we have η(r) =

ρ(r). Let γ : R[b,c]→ B be the homomorphism such that γ(r) = η(r) = ρ(r) for all r ∈ R while γ(b) =
η(a),γ(c) = ρ(a). Then γ is the unique map such that γϑ = η and γζ = ρ .

Let A be an object of RA K and let ε : A→ R[a] be a map such that ζ ε = ϑε . By Lemma 3.11 if for
some f ∈ R[a] one has ζ ( f ) = ϑ( f ) then f ∈ R (i.e. f is of degree 0 as a polynomial in a over R). Thus
ε(A)⊂ R and we can factor ε uniquely (since ϕ is injective) as ε = ϕµ with µ : A→ R.

Let {ϕ : R → R[a]} be a singleton elementary cocover. Since one can form the pushout of ϕ
with itself, the compatibility condition on a singleton family {s ∈ F(R[a])} can be simplified as: Let

R R[a] A
ϕ η

ϑ
be a pushout diagram. A family {s∈F(R[a])} is compatible if and only if sϑ = sη .

Corollary 3.13. The coverage J is subcanonical, i.e. all representable presheaves in SetRA K are sheaves
on (RA op

K ,J).

4 The algebraically closed field extension

We define the presheaf F : RA K → Set to be the forgetful functor. That is, for an object A of RA K ,
F(A) = A and for a morphism ϕ : A→C of RA K , F(ϕ) = ϕ .

Lemma 4.1. F is a sheaf of sets on the site (RA op
K ,J)

Proof. By case analysis on the clauses of Definition 3.7.

(i.) Let {R ϕi−→ R/〈1− ei〉}i∈I ∈ Jop(R), where (ei)i∈I is fundamental system of orthogonal idempo-
tents of R. The presheaf F has the property F(0) = 1. By Lemma 3.9 a family {ai ∈ R/〈1−ei〉}i∈I

is a compatible family. By the isomorphism R
(ϕi)i∈I−−−→∏i∈I R/〈1− ei〉 the element a = (ai)i∈I ∈ R

is the unique element such that ϕi(a) = ai.

(ii.) Let {R ϕ−→ R[a]} ∈ Jop(R) where R[a] = R[X ]/〈p〉 with p ∈ R[X ] monic, non-constant and

separable polynomial. Let {r ∈ R[a]} be a compatible family. Let R R[a] R[b,c]
ϕ ϑ

ζ
be

the pushout diagram of Corollary 3.12. Compatibility then implies ϑ(r) = ζ (r) which by the same
Corollary is true only if the element r is in R. We then have that r is the unique element restricting
to itself along the embedding ϕ .

We fix a field K of characteristic 0. Let L [F,+, .] be a language with basic type F and function
symbols +, . : F×F→ F . We extend L [F,+, .] by adding a constant symbol of type F for each element
a ∈ K, to obtain L [F,+, .]K . Define Diag(K) as : if φ is an atomic L [F,+, .]K-formula or the negation
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of one such that K |= φ(a1, ...,an) then φ(a1, ...,an) ∈ Diag(K). The theory T equips the type F with
axioms of the geometric theory of algebraically closed field containing K

Definition 4.2. The theory T has the following sentences (with all the variables having the type F).

1. Diag(K).

2. The axioms of a commutative group: (a) ∀x [0+x = x+0 = x] (b) ∀x∀y∀z[x+(y+z) = (x+y)+z]
(c) ∀x∃y[x+ y = 0] (d) ∀x∀y[x+ y = y+ x]

3. The axioms of a commutative ring: (a) ∀x [x1 = x] (b) ∀x [x0 = 0] (c) ∀x∀y[xy = yx]
(d) ∀x∀y∀z[x(yz) = (xy)z] (e) ∀x∀y∀z[x(y+ z) = xy+ xz]

4. The field axioms: (a) 1 6= 0. (b) ∀x[x = 0∨∃y[xy = 1]].

5. The axiom schema for algebraic closure: ∀a1 . . .∀an∃x[xn +∑n
i=1 xn−iai = 0].

6. F is algebraic over K: ∀x[∨p∈K[Y ] p(x) = 0].

With these axioms the type F becomes the type of an algebraically closed field containing K. We
proceed to show that with the interpretation of the type F by the object F the topos Sh(RA op

K ,J) is a
model of T , i.e. F is a model, in Kripke–Joyal semantics, of an algebraically closed field containing of
K. First note that since there is a unique map K→C for any object C of RA K , an element a ∈ K gives
rise to a unique map 1 a−→ F, that is the map ∗ 7→ a ∈ F(K). Every constant a ∈ K of the language is then
interpreted by the corresponding unique arrow 1 a−→ F. (we use the same symbol for constants and their
interpretation to avoid cumbersome notation). That F satisfies Diag(K) then follows directly.

Lemma 4.3. F is a ring object.

Proof. For an object C of RA K the object F(C) is a commutative ring.

Lemma 4.4. F is a field.

Proof. For any object R of RA K one has R 
 1 6= 0 since for any R
ϕ−→C such that C 
 1 = 0 one has that

C is trivial and thus C 
⊥. Next we show that for variables x and y of type F and any object R of RA op
K

we have R 
 ∀x [x = 0∨∃y [xy = 1]]. Let ϕ : A→ R be a morphism of RA op
K and let a ∈ A. We need

to show that A 
 a = 0∨∃y[ya = 1]. The element e = aa∗ is an idempotent and we have a cover {ϕ1 :
A/〈e〉→ A,ϕ2 : A/〈1−e〉→ A} ∈ J∗(A) with A/〈e〉
 aϕ1 = 0 and A/〈1−e〉
 (aϕ2)(a∗ϕ2) = eϕ2 = 1.
Hence by ∃ we have A/〈1− e〉 
 ∃y[(aϕ2)y = 1] and by ∨ , A/〈1− e〉 
 aϕ2 = 0∨∃y[(aϕ2)y = 1].
Similarly, A/〈e〉 
 aϕ1 = 0∨∃y[(aϕ1)y = 1]. By ∀ we get R 
 ∀x [x = 0∨∃y [xy = 1]].

To show that A 
 ∀a1 . . .∀an∃x [xn +∑n
i=1 xn−iai = 0] for every n, we need to be able to extend an

algebra R of RA K with the appropriate roots. We need the following lemma.

Lemma 4.5. Let L be a field and f ∈ L[X ] a monic polynomial. Let g = 〈 f , f ′〉, where f ′ is the derivative
of f . Writing f = hg we have that h is separable. We call h the separable associate of f .

Proof. Let a be the gcd of h and h′. We have h = l1a. Let d be the gcd of a and a′. We have a = l2d and
a′ = m2d, with l2 and m2 coprime.

The polynomial a divides h′ = l1a′+ l′1a and hence that a = l2d divides l1a′ = l1m2d. It follows that
l2 divides l1m2 and since l2 and m2 are coprime, that l2 divides l1.

Also, if an divides p then p = qan and p′ = q′an+nqa′an−1. Hence dan−1 divides p′. Since l2 divides
l1, this implies that an = l2dan−1 divides l1 p′. So an+1 divides al1 p′ = hp′.
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Since a divides f and f ′, a divides g. We show that an divides g for all n by induction on n. If an

divides g we have just seen that an+1 divides g′h. Also an+1 divides h′g since a divides h′. So an+1

divides g′h+ h′g = f ′. On the other hand, an+1 divides f = hg = l1ag. So an+1 divides g which is the
gcd of f and f ′. This implies that a is a unit.

Since F is a field, the previous lemma holds for polynomials over F. This means that for all objects
R of RA op

K we have R 
 Lemma 4.5. Thus we have the following Corollary.

Corollary 4.6. Let R be an object of RA K and let f be a monic polynomial of degree n in R[X ] and f ′

its derivative. There is a cocover {ϕi : R→ Ri}i∈I ∈ J∗op(R) and for each Ri we have h,g,q,r,s ∈ Ri[X ]
such that ϕi( f ) = hg, ϕi( f ′) = qg and rh+ sq = 1. Moreover, h is monic and separable.

Note that in characteristic 0, if f is monic and non-constant the separable associate of f is non-
constant.

Lemma 4.7. The field object F ∈ Sh(RA op
K ,J) is algebraically closed.

Proof. We prove that for all n> 0 and all (a1, ...,an)∈ Fn(R) = Rn, one has R
 ∃x [xn+∑n
i=1 xn−iai = 0].

Let f = xn+∑n
i=1 xn−iai. By Corollary 4.6 we have a cover {ϑ j : R j→ R} j∈I ∈ J∗(R) such that in each R j

we have g = 〈 f ϑ j, f ′ϑ j〉 and f ϑ j = hg with h ∈ R j[X ] monic and separable. Note that if deg f ≥ 1, h is
non-constant. For each R j we have a singleton cover {ϕ : R j[b]→ R j | R j[b] =R j[X ]/〈h〉} ∈ J∗(R j). That
is, we have R j[b] 
 bn +∑n

i=1 bn−1(aiϑ jϕ) = 0. By ∃ we get R j[b] 
 ∃x [xn +∑n
i=1 xn−1(aiϑ jϕ) = 0]

and by LC we have R j 
 ∃x [xn +∑n
i=1 xn−1(aiϑ j) = 0]. Since this is true for each R j, j ∈ J we have by

LC R 
 ∃x [xn +∑n
i=1 xn−1ai = 0].

Lemma 4.8. F is algebraic over K.

Proof. We will show that for any object R of RA K and element r ∈ R one has R 

∨

p∈K[X ] p(r) = 0.
Since R is a finitely presented K-algebra we have that R is a finite integral extension of a polynomial ring
K[Y1, ...,Yn]⊂ R where Y1, ..,Yn are elements of R algebraically independent over K and that R has Krull
dimension n [9, Ch 13, Theorem 5.4]. Since R is zero-dimensional (i.e. has Krull dimension 0) we have
n = 0 and R is integral over K, i.e. any element r ∈ R is the zero of some monic polynomial over K.

5 Constant sheaves, natural numbers, and power series

Here we describe the object of natural numbers in the topos Sh(RA op
K ,J) and the object of power series

over the field F. This will be used in section 6 to show that the axiom of dependent choice does not hold
when the base field K is the rationals and later in the example of Newton–Puiseux theorem (section 7).

Let P : RA K→ Set be a constant presheaf associating to each object A of RA K a discrete set B. That
is, P(A) = B and P(A ϕ−→ R) = 1B for all objects A and all morphism ϕ of RA K . Let P̃ : RA K → Set be
the presheaf such that P̃(A) is the set of elements of the form {(ei,bi)}i∈I where (ei)i∈I is a fundamental
system of orthogonal idempotents of A and for each i, bi ∈B. We express such an element as a formal sum
∑i∈I eibi. Let ϕ : A→ R be a morphism of RA K , the restriction of ∑i∈I eibi ∈ P̃(A) along ϕ is given by
(∑i∈I eibi)ϕ = ∑i∈I ϕ(ei)bi ∈ P̃(R). In particular with canonical morphisms ϕi : A→ A/〈1− ei〉, one has
for any j ∈ I that (∑i∈I eibi)ϕ j = b j ∈ P̃(A/〈1−e j〉). Two elements ∑i∈I eibi ∈ P̃(A) and ∑ j∈J d jc j ∈ P̃(A)
are equal if and only if ∀i ∈ I, j ∈ J[bi 6= c j⇒ eid j = 0].

To prove that P̃ is a sheaf we will need the following lemmas.
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Lemma 5.1. Let R be a regular ring and let (ei)i∈I be a fundamental system of orthogonal idempotents
of R. Let Ri = R/〈1− ei〉 and ([d j]) j∈Ji be a fundamental system of orthogonal idempotents of Ri, where
[d j] = d j + 〈1− ei〉. The family (eid j)i∈I, j∈Ji is a fundamental system of orthogonal idempotents of R.

Proof. In R one has ∑ j∈Ji eid j = ei ∑ j∈Ji d j = ei(1+ 〈1− ei〉) = ei. Hence, ∑
i∈I, j∈Ji

eid j = ∑
i∈I

ei = 1. For

some i ∈ I and t,k ∈ Ji we have (eidt)(eidk) = ei(0+ 〈1−ei〉) = 0 in R. Thus for i, ` ∈ I, j ∈ Ji and s ∈ J`
one has i 6= `∨ j 6= s⇒ (eid j)(e`ds) = 0.

Lemma 5.2. Let R be a regular ring, f ∈ R[Z] a polynomial of formal degree n and p ∈ R[Z] a monic
polynomial of degree m > n. If in R[X ,Y ] one has f (Y )(1− f (X)) = 0 mod 〈p(X), p(Y )〉 then f = e∈ R
with e an idempotent.

Proof. Let f (Z) = ∑n
i=0 riZi. By the assumption, for some q,g ∈ R[X ,Y ]

f (Y )(1− f (X)) =
n

∑
i=0

ri(1−
n

∑
j=0

r jX j)Y i = qp(X)+gp(Y )

One has ∑n
i=0 ri(1−∑n

j=0 r jX j)Y i = g(X ,Y )p(Y ) mod 〈p(X)〉. Since p(Y ) is monic of Y -degree greater
than n, one has that ri(1−∑n

j=0 r jX j) = 0 mod 〈p(X)〉 for all 0 ≤ i ≤ n. But this means that rirnXn +

rirn−1Xn−1 + ...+ rir0− ri is divisible by p(X) for all 0≤ i≤ n which because p(X) is monic of degree
m > n implies that all coefficients are equal to 0. In particular, for 1 ≤ i ≤ n one gets that r2

i = 0 and
hence ri = 0 since R is reduced. For i = 0 we have r0r0− r0 = 0 and thus r0 is an idempotent of R.

Lemma 5.3. The presheaf P̃ described above is a sheaf on (RA op
K ,J).

Proof. By case analysis on Definition 3.7.

(i.) Let {R ϕi−→ R/〈1− ei〉}i∈I ∈ Jop(R) where (ei)i∈I be a fundamental system of orthogonal idem-
potents of an object R. Let R/〈1− ei〉 = Ri. Since P̃(0) = 1 by Lemma 3.9 any set {si ∈
P̃(Ri)}i∈I is compatible. For each i, Let si = ∑ j∈Ji [d j]b j. By Lemma 5.1 we have an element
s = ∑

i∈I, j∈Ji

(eid j)b j ∈ P̃(R) the restriction of which along ϕi is the element ∑ j∈Ji [d j]b j ∈ P̃(Ri).

It remains to show that this is the only such element. Let there be an element ∑`∈L c`a` ∈ P̃(R)
that restricts to ui = si along ϕi. We have ui = ∑`∈L[c`]a`. One has that for any j ∈ Ji and ` ∈ L,
b j 6= a`⇒ [c`d j] = 0 in Ri, hence, in R one has b j 6= a`⇒ c`d j = r(1−ei). Multiplying both sides
of c`d j = r(1− ei) by ei we get b j 6= a`⇒ c`(eid j) = 0. Thus proving s = ∑`∈L c`a`.

(ii.) Let {ϕ : R→ R[a] = R[X ]/〈p〉} ∈ Jop(R) where p ∈ R[X ] is monic non-constant and sepa-
rable. Let the singleton {s = ∑i∈I eibi ∈ P̃(R[a])} be compatible. We can assume w.l.o.g. that
∀i, j ∈ I [i 6= j⇒ bi 6= b j] since if bk = b` one has that (ek + e`)bl +∑ j 6=`, j 6=k

j∈I e jb j = s. (Note that
an idempotent ei of R[a] is a polynomial ei(a) in a of formal degree less than deg p). Let R[c,d] =

R[X ,Y ]/〈p(X), p(Y )〉, by Corollary 3.12, one has a pushout diagram R R[a] R[c,d]
ϕ ζ

ϑ
where ζ |R = ϑ |R = 1R, ζ (a) = d and ϑ(a) = c. That the singleton {s} is compatible then
means sϑ = ∑i∈I ei(c)bi = sζ = ∑i∈I ei(d)bi, i.e. ∀i, j ∈ I [bi 6= b j ⇒ ei(c)e j(d) = 0]. By the
assumption that bi 6= b j whenever i 6= j we have in R[c,d] that e j(d)ei(c) = 0 for any i 6= j ∈
I. Thus e j(d)∑i 6= j ei(c) = e j(d)(1− e j(c)) = 0, i.e. in R[X ,Y ] one has e j(Y )(1− e j(X)) = 0
mod 〈p(X), p(Y )〉. By Lemma 5.2 we have that e j(X) = e j(Y ) = e ∈ R. We have thus shown s is
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equal to ∑ j∈J d jb j ∈ P̃(R[a]) such that d j ∈ R for j ∈ J. That is ∑ j∈J d jb j ∈ P̃(R). Thus we have
found a unique (since P̃(ϕ) is injective) element in P̃(R) restricting to s along ϕ .

Lemma 5.4. Let P and P̃ be as described above. Let Γ : P→ P̃ be the presheaf morphism such that
ΓR(b) = b ∈ P̃(R) for any object R and b ∈ B. If E is a sheaf and Λ : P→ E is a morphism of presheaves,
then there exist a unique sheaf morphism ∆ : P̃→ E such that the following diagram, of SetRA K , com-

mutes.

P E

P̃

Λ

Γ
∆

That is to say, Γ : P→ P̃ is the sheafification of P.

Proof. Let a = ∑i∈I eibi ∈ P̃(A) and let Ai = A/〈1− ei〉 with canonical morphisms ϕi : A→ Ai.
Let E and Λ be as in the statement of the lemma. If there exist a sheaf morphism ∆ : P̃ → E,

then ∆ being a natural transformation forces us to have for all i ∈ I, E(ϕi)∆A = ∆AiP̃(ϕi). By Lemma
3.10, we know that the map d ∈ E(A) 7→ (E(ϕi)d ∈ E(Ai))i∈I is an isomorphism. Thus it must be that
∆A(a) = (∆AiP̃(ϕi)(a))i∈I = (∆Ai(bi))i∈I . But ∆Ai(bi) = ∆AiΓAi(bi). To have ∆Γ = Λ we must have
∆Ai(bi) = ΛAi(bi). Hence, we are forced to have ∆A(a) = (ΛAi(bi))i∈I . Note that ∆ is unique since its
value ∆A(a) at any A and a is forced by the commuting diagram above.

The constant presheaf of natural numbers N is the natural numbers object in SetRA K . We associate
to N a sheaf Ñ as described above. From Lemma 5.4 one can easily show that Ñ satisfy the axioms of a
natural numbers object in Sh(RA op

K ,J).
Definition 5.5. Let F[[X ]] be the presheaf mapping each object R of RA K to F[[X ]](R) = R[[X ]] = RN

with the obvious restriction maps.
Lemma 5.6. F[[X ]] is a sheaf.

Proof. The proof is immediate as a corollary of Lemma 4.1.

Lemma 5.7. The sheaf F[[X ]] is naturally isomorphic to the sheaf FÑ.

Proof. Let C be an object of RA op
K . Since FÑ(C) ∼= yC× Ñ→ F, an element αC ∈ FÑ(C) is a family

of elements of the form αC,D : yC(D)× Ñ(D)→ F(D) where D is an object of RA op
K . Define Θ : FÑ→

F[[X ]] as (Θα)C(n) = αC,C(1C,n). Define Λ : F[[X ]]→ FÑ as

(Λβ )C,D(C
ϕ−→ D,∑

i∈I
eini) = (ϑiϕ(βC(ni)))i∈I ∈ F(D)

where D ϑi−→ D/〈1− ei〉 is the canonical morphism. Note that by Lemma 3.10 one indeed has that
(ϑiϕ(βC(ni)))i∈I ∈ ∏i∈I F(Di) ∼= F(D). One can easily verify that Θ and Λ are natural. It remains to
show the isomorphism. One one hand we have

(ΛΘα)C,D(ϕ,∑
i∈I

eini) = (ϑiϕ((Θα)C(ni)))i∈I = (ϑiϕ(αC,C(1C,ni)))i∈I

= ((αC,Di(ϑiϕ,ni)))i∈I = αC,D(ϕ,∑
i∈I

eini)

Thus showing ΛΘ = 1FÑ . On the other hand, (ΘΛβ )C(n) = (Λβ )C,C(1C,n) = 1C1C(βC(n)) = βC(n).
Thus ΘΛ = 1F[[X ]].
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Lemma 5.8. The power series object F[[X ]] is a ring object.

Proof. A Corollary to Lemma 4.3.

6 Choice axioms

The (external) axiom of choice fails to hold (even in a classical metatheory) in the topos Sh(RA op
K ,J)

whenever the field K is not algebraically closed. To show this we will show that there is an epimorphism
in Sh(RA op

K ,J) with no section.

Fact 6.1. Let Θ : P→ G be a morphism of sheaves on a site (C ,J). Then Θ is an epimorphism if for
each object C of C and each element c ∈G(C) there is a cover S of C such that for all f : D→C in the
cover S the element c f is in the image of ΘD. [10, Ch. 3].

Lemma 6.2. Let K be a field of characteristic 0 not algebraically closed. There is an epimorphism in
Sh(RA op

K ,J) with no section.

Proof. Let f = Xn +∑n
i=1 riXn−i be a non-constant polynomial for which no root in K exist. w.l.o.g.

we assume f separable. One can construct Λ : F→ F defined by ΛC(c) = cn +∑n−1
i=1 ricn−i ∈C. Given

d ∈ F(C), let g = Xn +∑n−1
i=1 riXn−i− d. By Corollary 4.6 there is a cover {C`

ϕ`−−→C}`∈L ∈ J∗(C) with
h` ∈C`[X ] a separable non-constant polynomial dividing g. Let C`[x`] =C`[X ]/〈h`〉 one has a singleton

cover {C`[x`]
ϑ`−→ C`} and thus a composite cover {C`[x`]

ϑ`ϕ`−−→ C}`∈L ∈ J∗(C). Since x` is a root of
h` | g we have ΛC`[x`](x`) = xn

` +∑n−1
i=1 rixn−i

` = d or more precisely ΛC`[x`](x`) = dϕ`ϑ`. Thus, Λ is an
epimorphism (by Fact 6.1) and it has no section, for if it had a section Ψ : F→ F then one would have
ΨK(−rn) = a ∈ K such that an +∑n

i=1 rian−i = 0 which is not true by assumption.

Theorem 6.3. Let K be a field of characteristic 0 not algebraically closed. The axiom of choice fails to
hold in the topos Sh(RA op

K ,J).

We note that in Per Martin-Löf type theory one can show that (see [13])

(∏x ∈ A)(∑y ∈ B[x])C[x,y]⇒ (∑ f ∈ (∏x ∈ A)B[x])(∏x ∈ A)C[x, f (x)]

As demonstrated in the topos Sh(RA op
K ,J) we have an example of an intuitionistically valid formula of

the form ∀x∃yφ(x,y) where no function f exist for which ∃ f∀xφ(x, f (x)) holds.
We demonstrate further that when the base field is Q the weaker axiom of dependent choice does not

hold (internally) in the topos Sh(RA op
Q ,J). For a relation R ⊂ Y ×Y the axiom of dependent choice is

stated as
∀x∃yR(x,y)⇒∀x∃g ∈ Y N [g(0) = x∧∀nR(g(n),g(n+1))] (ADC)

Theorem 6.4. Sh(RA op
Q ,J) 
 ¬ADC.

Proof. Consider the binary relation on the algebraically closed object F defined by the characteristic
function φ(x,y) := y2− x = 0. Assume C 
 ADC for some object C of RA K . Since C 
 ∀x∃y[y2− x =

0] we have C 
 ∀x∃g ∈ FÑ[g(0) = x∧ ∀n[g(n)2 = g(n + 1)]]. That is for all morphisms C
ζ−→ A of

RA K and elements a ∈ F(A) one has A 
 ∃g ∈ FÑ[g(0) = a∧∀n[g(n)2 = g(n+ 1)]]. Taking a = 2
we have A 
 ∃g ∈ FÑ[g(0) = 2∧∀n[g(n)2 = g(n+1)]]. Which by ∃ implies the existence of a cocover
{ηi : A→ Ai | i ∈ I} and power series αi ∈ FÑ(Ai) such that Ai 
 αi(0) = 2∧∀n[αi(n)2 = αi(n+ 1)]].
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By Lemma 5.7 we have FÑ(Ai) ∼= Ai[[X ]] and thus the above forcing implies the existence of a series
αi = 2+ 21/2 + ...+ 21/2 j

+ ... ∈ Ai[[X ]]. But this holds only if Ai contains a root of X2 j − 2 for all j
which implies Ai is trivial as will shortly show after the following remark.

Consider an algebra R over Q. Assume R contains a root of X2n − 2 for some n. Then letting
Q[x] = Q[X ]/〈X2n − 2〉, one will have a homomorphism ξ : Q[x]→ R. By Eisenstein’s criterion the
polynomial X2n −2 is irreducible over Q, making Q[x] a field of dimension 2n and ξ either an injection
with a trivial kernel or ξ =Q[x]→ 0.

Now we continue with the proof. Until now we have shown that for all i ∈ I, the algebra Ai contains
a root of X2 j − 2 for all j. For each i ∈ I, let Ai be of dimension mi over Q. We have that Ai contains
a root of X2mi −2 and we have a homomorphism Q( 2mi√2)→ Ai which since Ai has dimension mi < 2mi

means that Ai is trivial for all i ∈ I. Hence, Ai 
⊥ and consequently C 
⊥. We have shown that for any
object D of RA op

Q if D 
 ADC then D 
⊥. Hence Sh(RA op
Q ,J) 
 ¬ADC.

As a consequence we get that the internal axiom of choice does not hold in Sh(RA op
Q ,J).

7 Eliminating the algebraic closure assumption

Let K be a field of characteristic 0. We consider a typed language L [N,F ]K of the form described in
Section 2 with two basic types N and F and the elements of the field K as its set of constants. Consider a
theory T in the language L [N,F ]K , such that T has as an axiom every atomic formula or the negation of
one valid in the field K, T equips N with the (Peano) axioms of natural numbers and equips F with the
axioms of a field containing K. If we interpret the types N and F by the objects Ñ and F, respectively, in
the topos Sh(RA op

K ,J) then we have, by the results proved earlier, a model of T in Sh(RA op
K ,J). Let

AlgCl be the axiom schema of algebraic closure with quantification over the type F , then one has that
T +AlgCl has a model in Sh(RA op

K ,J) with the same interpretation. Let φ be a sentence in the language
such that T +AlgCl ` φ in IHOL deduction system. By soundness [1] one has that Sh(RA op

K ,J) 
 φ ,
i.e. for all finite dimensional regular algebras R over K, R 
 φ which is then a constructive interpretation
of the existence of the algebraic closure of K.

This model can be implemented, e.g. in Haskell. In the paper [12] by the authors, an algorithm for
computing the Puiseux expansions of an algebraic curve based on this model is given. The statement
with the assumption of algebraic closure is:

“ Let K be a field of characteristic 0 and G(X ,Y ) = Y n +∑n
i=1 bi(X)Y n−i ∈ K[[X ]][Y ] a monic, non-

constant polynomial separable over K((X)). Let F be the algebraic closure of K, we have a positive
integer m and a factorization G(T m,Y ) = ∏n

i=1(Y −αi) with αi ∈ F [[T ]] ”

We can then extract the following computational content

“ Let K be a field of characteristic 0 and G(X ,Y ) = Y n +∑n
i=1 bi(X)Y n−i ∈ K[[X ]][Y ] a monic, non-

constant polynomial separable over K((X)). Then there exist a (von Neumann) regular algebra R over
K and a positive integer m such that G(T m,Y ) = ∏n

i=1(Y −αi) with αi ∈ R[[T ]] ”

For example applying the algorithm to G(X ,Y ) = Y 4− 3Y 2 +XY +X2 ∈ Q[X ,Y ] we get a regular
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algebra Q[b,c] with b2−13/36 = 0 and c2−3 = 0 and a factorization

G(X ,Y ) =

(Y +(−b− 1
6)X +(− 31

351 b− 7
162)X

3 +(− 1415
41067 b− 29

1458)X
5 + ...)

(Y +(b− 1
6)X +( 31

351 b− 7
162)X

3 +( 1415
41067 b− 29

1458)X
5 + ...)

(Y − c+ 1
6 X + 5

72 cX2 + 7
162 X3 + 185

10368 cX4 + 29
1458 X5 + ...)

(Y + c+ 1
6 X− 5

72 cX2 + 7
162 X3− 185

10368 cX4 + 29
1458 X5 + ...)

Another example of a possible application of this model is as follows: suppose one want to show that
“For discrete field K, if f ∈ K[X ,Y ] is smooth, i.e. 1 ∈ 〈 f , fx, fY 〉, then K[X ,Y ]/〈 f 〉 is a Prüfer ring.“
To prove that a ring is Prüfer one needs to prove that it is arithmetical, that is ∀x,y∃u,v,w[yu =

vx∧yw = (1−u)x]. Proving that K[X ,Y ]/〈 f 〉 is arithmetical is easier in the case where K is algebraically
closed [3]. Let F be the algebraic closure of K in Sh(RA op

K ,J). Now F[X ,Y ]/〈 f 〉 being arithmetical
amounts to having a solution u,v, and w to a linear system yu = vx, yw = (1− u)x. Having obtained
such solution, by Rouché–Capelli–Fontené theorem we can conclude that the system have a solution in
K[X ,Y ]/〈 f 〉.

8 The logic of Sh(RA op
K ,J)

In this section we will demonstrate that in a classical metatheory one can show that the topos Sh(RA op
K ,J)

is boolean. In fact we will show that, in a classical metatheory, the boolean algebra structure of the sub-
object classifier is the one specified by the boolean algebra of idempotents of the algebras in RA K .
Except for Theorem 8.8 the reasoning in this section is classical. Recall that the idempotents of a com-
mutative ring form a boolean algebra with the meaning of the logical operators given by : >= 1, ⊥= 0,
e1∧e2 = e1e2, e1∨e2 = e1 +e2−e1e2 and ¬e = 1−e. We write e1 ≤ e2 iff e1∧e2 = e1 and e1∨e2 = e2

A sieve S on an object C is a set of morphisms with codomain C such that if g∈ S and cod(h)= dom(g)
then gh ∈ S. A cosieve is defined dually to a sieve. A sieve S is said to cover a morphism f : D→ C
if f ∗(S) = {g | cod(g) = D, f g ∈ S} contains a cover of D. Dually, a cosieve M on C is said to cover a
morphism g : C→ D if the sieve dual to M covers the morphism dual to g.

Definition 8.1 (Closed cosieve). A sieve M on an object C of C is closed if for all f with cod( f ) =C if
M covers f then f ∈M. A closed cosieve on an object C of C op is the dual of a closed sieve in C .

Fact 8.2 (Subobject classifier). The subobject classifier in the category of sheaves on a site (C ,J) is
the presheaf Ω where for an object C of C the set Ω(C) is the set of closed sieves on C and for each
f : D→C we have a restriction map M 7→ {h | cod(h) = D, f h ∈M}.
Lemma 8.3. Let R be an object of RA K . If R is a field the closed cosieves on R are the maximal cosieve
{ f | dom( f ) = R} and the minimal cosieve {R→ 0}.

Proof. Let S be a closed cosieve on R and let ϕ : R→ A ∈ S and let I be a maximal ideal of A. If A
is nontrivial we have a field morphism R→ A/I in S where A/I is a finite field extension of R. Let
A/I = R[a1, ...,an] . But then the morphism ϑ : R→ R[a1, ...,an−1] is covered by S. Thus ϑ ∈ S since S
is closed. By induction on n we get that a field automorphism η : R→ R is in S but then by composition
of η with its inverse we get that 1R ∈ S. Consequently, any morphism with domain R is in S.

Corollary 8.4. For an object R of RA K . If R is a field, then Ω(R) is a 2-valued boolean algebra.
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Proof. This is a direct Corollary of Lemma 8.3. The maximal cosieve (1R) correspond to the idempotent
1 of R, that is the idempotent e such that, ker1R = 〈1− e〉. Similarly the cosieve {R→ 1} correspond to
the idempotent 0.

Corollary 8.5. For an object A of RA K , Ω(A) is isomorphic to the set of idempotents of A and the
Heyting algebra structure of Ω(A) is the boolean algebra of idempotents of A.

Proof. Classically a finite dimension regular algebra over K is isomorphic to a product of field extensions
of K. Let A be an object of RA K , then A ∼= F1× ...×Fn where Fi is a finite field extension of K. The
set of idempotents of A is {(d1, ...,dn) | 1 ≤ j ≤ n,d j ∈ Fj,d j = 0 or d j = 1}. But this is exactly the set
Ω(F1)× ...×Ω(Fn)∼= Ω(A). It is obvious that since Ω(A) is isomorphic to a product of boolean algebras,
it is a boolean algebra with the operators defined pointwise.

Theorem 8.6. The topos Sh(RA op
K ,J) is boolean.

Proof. The subobject classifier of Sh(RA op
K ,J) is 1 true−−→ Ω where for an object A of RA K one has

trueA(∗) = 1 ∈ A.

It is not possible to show that the topos Sh(RA op
K ,J) is boolean in an intuitionistic metatheory as we

shall demonstrate. First we recall the definition of the Limited principle of omniscience (LPO for short).
Definition 8.7 (LPO). For any binary sequence α the statement ∀n[α(n) = 0]∨∃n[α(n) = 1] holds.

LPO cannot be shown to hold intuitionistically. One can, nevertheless, show that it is weaker than
the law of excluded middle [2].
Theorem 8.8. Intuitionistically, if Sh(RA op

K ,J) is boolean then LPO holds.

Proof. Let α ∈ K[[X ]] be a binary sequence. By Lemma 5.7 one has an isomorphism Λ : F[[X ]]
∼−→ FÑ.

Let ΛK(α) = β ∈ FÑ(K). Assume the topos Sh(RA op
K ,J) is boolean. Then one has K 
 ∀n[β (n) =

0]∨∃n[β (n) = 1]. By ∨ this holds only if there exist a cocover of K

{ϑi : K→ Ai | i ∈ I}∪{ξ j : K→ B j | j ∈ J}
such that B j 
 ∀n[(βξ j)(n) = 0] for all j ∈ J and Ai 
 ∃n[(βϑi)(n) = 1] for all i ∈ I. Note that at least
one of I or J is nonempty since K is not covered by the empty cover.

For each i ∈ I there exist a cocover {η` : Ai → D` | ` ∈ L} of Ai such that for all ` ∈ L, we have
D` 
 (βϑiη`)(m) = 1 for some m ∈ Ñ(D`). Let m = ∑t∈T etnt then we have a cocover {ξt : D`→Ct =
D`/〈1− et〉 | t ∈ T} such that Ct 
 (βϑiη`ξt)(nt) = 1 which implies ξtη`ϑi(α(nt)) = 1. For each t we
can check whether α(nt) = 1. If α(nt) = 1 then we have witness for ∃n[α(n) = 1]. Otherwise, we have
α(nt) = 0 and ξtη`ϑi(0) = 1. Thus the map ξtη`ϑi : K→Ct from the field K cannot be injective, which
leaves us with the conclusion that Ct is trivial. If for all t ∈ T , Ct is trivial then D` is trivial as well.
Similarly, if for every ` ∈ L, D` is trivial then Ai is trivial as well. At this point one either have either
(i) a natural number m such that α(m) = 1 in which case we have a witness for ∃n[α(n) = 0]. Or (ii) we
have shown that for all i ∈ I, Ai is trivial in which case we have a cocover {ξ j : K → B j | j ∈ J} such
that B j 
 ∀n[(βξ j)(n) = 0] for all j ∈ J. Which by LC means K 
 ∀n[β (n) = 0] which by ∀ means

that for all arrows K → R and elements d ∈ Ñ(R), R 
 β (d) = 0. In particular for the arrow K 1K−→ K
and every natural number m one has K 
 β (m) = 0 which implies K 
 α(m) = 0. By = we get that
∀m ∈ N[α(m) = 0]. Thus we have shown that LPO holds.

Corollary 8.9. It cannot be shown in an intuitionistic metatheory that the topos Sh(RA op
K ,J) is boolean.
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