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In constructive algebra one cannot in general decide the irreducibility of a polynomial over a field K.
This poses some problems to showing the existence of the algebraic closure of K. We give a possible
constructive interpretation of the existence of the algebraic closure of a field in characteristic 0 by
building, in a constructive metatheory, a suitable site model where there is such an algebraic closure.
One can then extract computational content from this model. We give examples of computation based
on this model.

1 Introduction

Since in general it is not decidable whether a given polynomial over a field is irreducible, even when
the field is given explicitly [6], the notion of algebraic field extension and consequently the notion of
algebraic closure becomes problematic from a constructive point of view. Even in situations where one
can constructively assert the existence of an algebraic closure of a field [14, Ch. 6] the computational
content of such assertions are not always clear. We present a constructive interpretation of the algebraic
closure of field K in characteristic O as a site model. Our approach is different from [[15] in that we do not
assume a polynomial over a field to be decomposable into irreducible factors. The model presented here
has a direct computational content and can be viewed as a model of dynamical evaluation in the sense of
Duval [5]] (see also [4]). The site, described in section [3] is given by the category of finitely presented
(von Neumann) regular algebras over K with the appropriate Grothendieck topology. In section f] we
prove that the topos & of sheaves on this site contains a model of an algebraically closed field extension
of K. An alternative approach using profinite Galois group is presented in [[8]. We also investigate some
of the properties of the topos &'. Theorem|[6.3|shows that the axiom of choice fails to hold in & whenever
K is not algebraically closed. Theorem [6.4] shows that when the base field K is the rationals the weaker
axiom of dependent choice fails to hold. We restrict ourselves to constructive metatheory throughout
the paper with the exception of section [§|in which we show that in a classical metatheory the topos &
is boolean (Theorem [8.6). As we will demonstrate by Theorem this cannot be shown to hold in an
intuitionistic metatheory.

2 Coverage, sheaves, and Kripke-Joyal semantics

In this section we recall some notions that we will use in the remainder the paper, mostly following
the presentation in [7]. A coverage on a category % is a function J assigning to each object C of € a
collection J(C) of families of morphisms with codomain C such that for any {f; : C; — C}ic; € J(C) and
morphism g : D — C of € there exist {/j: D; — D} jc; € J(D) such that for each j € J the morphism
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gh; factors through f; for some ¢ € I. A family S € J(C) is called elementary cover or elementary
covering family of C. A site is a category with coverage (¢,J). For a presheaf P : €°? — Set and family
S ={gi : A = A}ic; of morphisms of ¢ we say that a family {s; € P(A;) },s is compatible if for each
¢,j €I whenever wehave h: B— Ayand f: B— Aj such that goh = g f then s;h = s; f, where by s;h we
mean the restriction of sy along &, i.e. P(h)sy. A presheaf P is a sheaf on the site (¢, J) if for any object
Cand any {f;: C; — C}ier € J(C) if {s; € P(C;) }ies is compatible then there exist a unique s € P(C) such
that sf; = s;. We call such s the amalgamation of {s;};c;. Let J be a coverage on ¢ we define a closure
J* of J as follows: For all objects C of ¢ i. {C le, C} e J*(C),ii. If S € J(C) then S € J*(C), and, iii. If
{Ci i> C}iel € J*(C) and for each i € I, {C,'j gi) Cl'}jeji € J*(C,) then {C,'j &} C}iEl,jEJi S J*(C) A
family 7' € J*(C) is called cover or covering family of C.

We work with a typed language with equality £ [V}, ..., V,,] having the basic types Vi, ...,V, and type
formers — x —, (—)7, &(—). The language .Z[Vi, ..., V,] has typed constants and function symbols. For
any type Y one has a stock of variables y;,ys,... of type Y. Terms and formulas of the language are
defined as usual. We work within the proof theory of intuitionistic higher-order logic (IHOL). A detailed
description of this deduction system is given in [1]].

The language .Z[V}, ..., V,] along with deduction system IHOL can be interpreted in an elementary
topos in what is referred to as topos semantics. For a sheaf topos this interpretation takes a simpler form
reminiscent of Beth semantics, usually referred to as Kripke—Joyal sheaf semantics. We describe this
semantics here briefly following [[15].

Let & = Sh(%,J) be a sheaf topos. An interpretation of the language Z[Vy,...,V,] in the topos &
is given as follows: Associate to each basic type V; of .Z[V,...,V,] an object V; of &. If Y and Z are
types of .Z[V1,...,V,] interpreted by objects Y and Z, respectively, then the types Y x Z,Y%, 2 (Z) are
interpreted by Y x Z, Y%, QZ, respectively, where Q is the subobject classifier of &. A constant e of type
E is interpreted by an arrow 1 = E where E is the interpretation of E. For a term 7 and an object X of
&, we write 7:X to mean 7 has a type X interpreted by the object X.

Let ¢(xi,...,x,) be a formula with variables x; : X, ..., x,:X,,. Let ¢; € X;(C), ...,c, € X,,(C) for some
object C of €. We define the relation C forces ¢(xi,...,x,)[c1,...,cn] Written C I @ (xy,...,x,)[c1, ..., Cn]
by induction on the structure of ¢.

Definition 2.1 (Forcing). First we replace the constants in ¢ by variables of the same type as follows:
Lete;:Ey,...,e,: Ey be the constants in ¢ (xy,...,x,) then C - ¢ (xy,...,x,)[c1, ..., cp] iff

ClE@yi/er, .., ym/em)(V1s oy Yims X1 s ooy Xn) [€10 (%) 5 oo e (%), €1y oeny Ca)

where y;:E; and e; : 1 — E; is the interpretation of e;.
Now it suffices to define the forcing relation for formulas free of constants by induction as follows:

CIFT.
C I L iff the empty family is a cover of C.
[=] CIF (x1 =x2)[cr, 2] iff ¢ = 2.
CIE(@AY)(X1yeeyXn)[Clyeees ] ITECIE @ (x1,..cix0)[C1, .. cn) and CIF W(xy,...,x0)[c1y ..., Cn)-
ClF(¢Vy)(xi,...,xn)[c1,..., cn] iff there exist a cover {C; EIN C}ier € J*(C) such that
CilE @(x1y.ceyxn)[ctfiy-osenfi] or CilE WXy, ..., xy)[c1 fiy - cnfi] for each i € I.

ClF (¢ = y)(x1,....,xn)[c1, ..., cy] iff for every morphism f : D — C whenever
DIF ¢ (x1,....xn)[c1f,...,cnf] one has D IF y(xy,...,x,)[c1f, ..., cnf].
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Let y be a variable of the type Y interpreted by the object Y of &.

ClF (3yg(x1,....,xn,¥))[c1,-.., ¢y Iff there exist a cover {C; EIN C}ier € J*(C) such that for each
i €IonehasC;lF@(xi,...,x5,)[c1fis-..,cnfi,d] for some d € Y(C;).

CIF (Yyd(x1,....xn,¥))[c1, .., Cn] iff for every morphism f : D — C and for all d € Y(D) one has
DI @(x1,.,xn,y)[c1fy-esenf,d].

We have the following derivable local character and monotonicity laws:
If {C; 25 C}icy € J*(C) and for all i € 1, C; IF @ (x1, ..., Xa)[C1fis oo ufi] then CIF @ (X1, ..o ) [C1, ooes o]
IfCIF ¢(x1,....xn)[c1,..;cn] and £ : D — C then DIF ¢ (x1, ..., x,)[CLf-.rCnf].

3 The topos Sh(Z/¢F,))

Definition 3.1 (Regular ring). A commutative ring R is (von Neumann) regular if for every element a € R
there exist b € R such that aba = a and bab = b. This element b is called the quasi-inverse of a.

The quasi-inverse of an element « is unique for a [9, Ch. 4]. We thus use the notation a* to refer
to the quasi-inverse of a. A ring is regular iff it is zero-dimensional and reduced. To be regular is
equivalent to the fact that any principal ideal (consequently, any finitely generated ideal) is generated
by an idempotent. If R is regular and a € R then e = aa* is an idempotent such that (¢) = (a) and R is
isomorphic to Ry x Ry with Ry = R/{e) and R} = R/(1 — e). Furthermore a is 0 on the component R
and invertible on the component R;.

Definition 3.2 (Fundamental system of orthogonal idempotents). A family (e;);c; of idempotents in a
ring R is a fundamental system of orthogonal idempotents if ¥ ;c;e; = 1 and Vi, j[i # j = eje; = 0].

Lemma 3.3. Given a fundamental system of orthogonal idempotents (e;)ics in a ring A we have a de-
composition A = [1ic;A/(1 —e;).

Proof. Follows by induction from the fact that A =2 A/(e) x A/(1 — e) for an idempotent e € A. O

Definition 3.4 (Separable polynomial). Let R be aring. A polynomial p € R[X] is separable if there exist
r,s € R[X] such that rp+sp’ = 1, where p’ € R[X] is the derivative of p.

Definition 3.5. A ring R is a (strict) Bézout ring if for all a,b € R we can find g,a;,by,c,d € R such that
a=a1g, b=>bigand ca; +db; =1 [9, Ch. 4].

If R is a regular ring then R[X] is a strict Bézout ring (and the converse is true [9]). Intuitively we can
compute the ged as if R was a field, but we may need to split R when deciding if an element is invertible
or 0. Using this, we see that given a,b in R[X| we can find a decomposition Ry, ..., R, of R and for each
i we have g,a;,b;,c,d in R;[X] such thata = a; g, b = b1g and ca; +db; = 1 with g monic.

Lemma 3.6. If R is regular and p in R[X] is a separable polynomial then R[a] = R[X]/(p) is regular.
Proof. If ¢ = g(a) is an element of R[a] with ¢ in R[X| we compute the gcd g of p and ¢. If p = gp;, we

can find u and v in R[X] such that ug + vp; = 1 since p is separable. We then have g(a)pi(a) = 0 and
u(a)g(a)+v(a)pi(a) = 1. It follows that e = u(a)g(a) is idempotent and we have (e) = (g(a)). O
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An algebra A over a field K is finitely presented if it is of the form K[X,..,X,]/{f1,-.-, fm), i.€. the
quotient of the polynomial ring over K in finitely many variables by a finitely generated ideal.

In order to build the classifying topos of a coherent theory 7' it is customary in the literature to con-
sider the category of all finitely presented Ty algebras where T is an equational subtheory of 7. The
axioms of T then give rise to a coverage on the dual category [11, Ch. 9]. For our purpose consider
the category % of finitely presented K-algebras. Given an object R of ¥, the axiom schema of alge-
braic closure and the field axiom give rise to families (i.) R — R[X]/(p) where p € R[X] is monic and

R/(a)
e

(i.) R , for a € R. Dualized, these are elementary covering families of R in €°7. We
R[]

observe however that we can limit our consideration only to those finitely presented K-algebras that are
zero dimensional and reduced, i.e. regular. In this case we can assume a is an idempotent and we only
consider extensions R[X]/(p) where p is separable.

Let Z.<f k be the small category of finitely presented regular algebras over a fixed field K and K-
homomorphisms. First we fix an countable set of names S. An object of % .o/ ¢ is a regular algebra of the
form K[Xi,...,Xu]/(f1,..., fm) Where X; € S for all 1 <i < n. Note that for any object R, there is a unique
morphism K — R. A finitely presented regular K-algebra A is a finite dimensional K-algebra, i.e. A has
a finite dimension as a vector space over K [9, Ch 4, Theorem 8.16]. The trivial ring O is the terminal
object in the category Z.o7 ¢ and K is its initial object.

To specify a coverage J on the category Z.<73’, we define for each object A a collection J?7(A) of
families of morphisms of Z.o7 ¢ with domain A. We then take J(A) to be the dual of J°”(A) in the sense
that {@; : A; = A}ic; € J(A) if and only if {@;: A — A;}icr € J°P(A) where ¢; of Z.97k is the dual of
@; of Zo7/¥. We call J°P cocoverage. We call an element of J°?(A) an elementary cocover (cocovering
family) of A. We define J*°7 similarly. We call elements of J*°”(A) cocovers (cocovering families) of A.
By a separable extension of a ring R we mean a ring R[a] = R[X]/(p) where p € R[X] is non-constant,
monic and separable.

Definition 3.7 (Topology for Z.<73"). For an object A of 2.4/ k the cocovering families are given by:

(i.) If (e;)ies is a fundamental system of orthogonal idempotents of A, then {A R [{(1—ei)}ier €
J°P(A) where for each i € I, ¢; is the canonical homomorphism.

(ii.) LetAla] be a separable extension of A. We have {A 2, Ala]} € J°P(A) where ¥ is the canonical
embedding.

Note that in particular implies that the trivial algebra O is covered by the empty family of
morphisms since an empty family of elements in this ring form a fundamental system of orthogonal

idempotents. Also note that implies that {A 4, A} e JP(A).
Lemma 3.8. The function J of Definition |3.7|is a coverage on Z<7 3.

Proof. Let 1 : R — A be a morphism of Z.o/ ¢ and S € J°?(R). We show that there exist an elementary
cocover T € J°P(A) such that for each ¥ € T, 91 factors through some ¢ € S. By duality, this implies J
is a coverage on Z.</¢’. By case analysis on the clauses of Definition
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(1) S={¢;:R— R/(1—e;) }ici, where (e;);cs is a fundamental system of orthogonal idempotents
of R. In A, the family (7 (e;))ies is fundamental system of orthogonal idempotents. We have an
elementary cocover {3; : A — A/(1 —1n(e;)) }ier € JP(A). For each i € I, the homomorphism 7
induces a K-homomorphism 7, : R/(1 —e;) — A/(1 —n(e;)) where 0, (r+ (1 —e;)) =n(r) +
(1—mn(e;)). Since B;(n(r)) =n(r)+ (1 —n(e;)) we have that %;n = n,,¢;.

(ii.) If S={¢ : R — R[r]} with R[r] = R[X]/(p) and p € R[X]| monic, non-constant, and separable.

Since sp+1p' =1, we have 1(s)n(p) +n()n(p") = n(s)n(p) +n(6)n(p)’ = 1. Then g =n(p) €
A[X] is separable. Let A[a] = A[X]/{(g). We have an elementary cocover {0 : A — Ala]} € J°P(A)

where ¥ is the canonical embedding. Let { : R[r] — Ala] be the K-homomorphism such that
{lr =mn and {(r) = a. For b € R, we have ¥(1n(b)) = {(@(b)).

O
Lemma3.9. Let P: %o/ k — Set be a presheaf on Z#.<7 3 such that P(0) = 1. Let R be an object of .4/ k

and let (e;)ics be a fundamental system of orthogonal idempotents of R. For eachi €I, let R; =R /(1 —e;)
and let ; : R — R; be the canonical homomorphism. Any family {s; € P(R;)} is compatible.

Proof. Let B be an object and for some i, j € I let ¥ : R; — B and { : R; — B be such that 3¢; = {¢;.
We will show that P(9)(s;) =P({)(s;).

(i.) If i = j, then since ¢; is surjective we have ¥ = { and P(9) = P({).

(ii.) If i # j, then since e;e; =0, @;(e;) = 1 and @;(e;) = 1 we have @;(e;) = @;(e;e;) = 0. But then

I=9(1) = d(gi(e;) = E(@j(ei) = £(0) =0
Hence B is the trivial algebra 0. By assumption P(0) = 1, hence P(9)(s;) =P({)(s;) = *. O

Corollary 3.10. Let F be a sheaf on (Z/{’,J). Let R be an object of #. x and (e;)ic1 a fundamental
system of orthogonal idempotents of R. Let R; = R/(1 —e;) and @; : R — R; be the canonical homomor-
phism. The map f :F(R) — [1ic; F(R;) such that f(s) = (F(¢;)s)ics is an isomorphism.

Proof. Since F(0) = 1, by Lemma 3.9 any family {s; € F(R;)}:c; is compatible. Since F is a sheaf, the
family {s; € F(R;)}ic; has a unique amalgamation s € F(R) with restrictions s¢; = s;. The isomorphism
is given by f's = (s@;)ic;. We can then use the tuple notation (s;);cs to denote the element s in F(R). [

One say that a polynomial f € R[X] has a formal degree n if f can be written as f = a,X" + ... +ao
which is to express that for any m > n the coefficient of X™ is known to be 0.

Lemma 3.11. Let R be a regular ring and py, p; € R[X| be monic polynomials of degrees ny and n
respectively. Let R[a,b] = R[X,Y]/(p1(X),p2(Y)). Let q1,q2 € R[Z] be of formal degrees m) < n and
my < ny respectively. If q1(a) = q2(b) then q1 = q» =r € R.

Proof. The statement follows immediately since the R-basis a’,i > 0 and b/, j > 0 are linearly indepen-
dent. 0

Corollary 3.12. Let R be an object of Z</ k and p € R[X| separable and monic. Let Rla] = R[X]/{p)
and @ : R — R[a] the canonical morphism. Let R[b,c] = R[X,Y]/(p(X),p(Y)). The commuting diagram
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Rla] —2— R[b,c]
¢
%

<{ W Hr=Clr=1r ¥(a)=0b, {(a)=c
R

is a pushout diagram of . k. Moreover, @ is the equalizer of § and ©.

——  Rlq]

n
Proof. Let R[a] ? B be morphisms of Z.o7 k such that n¢ = p. Then for all » € R we have 1(r) =
)

p(r). Let v: R[b,c] — B be the homomorphism such that y(r) = n(r) = p(r) for all r € R while y(b) =
n(a),y(c) = p(a). Then v is the unique map such that Y% = 1 and y¢ = p.

Let A be an object of Z.«7 k and let € : A — R[a] be a map such that {€ = ¥€. By Lemma[3.11]if for
some f € R[a] one has {(f) = O(f) then f € R (i.e. f is of degree 0 as a polynomial in a over R). Thus
€(A) C R and we can factor € uniquely (since ¢ is injective) as € = @u with 4 : A — R. O

Let {¢ : R — R[a]} be a singleton elementary cocover. Since one can form the pushout of ¢
with itself, the compatibility condition on a singleton family {s € F(R[a])} can be simplified as: Let

n
rR—2 Rla] { A be a pushout diagram. A family {s € F(R[a])} is compatible if and only if s8 = s1).
o

Corollary 3.13. The coverage J is subcanonical, i.e. all representable presheaves in Set” 7k qre sheaves

on (ZAL ). O

4 The algebraically closed field extension

We define the presheaf F : Z.o/ k — Set to be the forgetful functor. That is, for an object A of Z.&/k,
F(A) = A and for a morphism ¢ : A — C of Zk, F(@) = ¢.

Lemma 4.1. F is a sheaf of sets on the site (Z<¢,J)

Proof. By case analysis on the clauses of Definition[3.7]

(i.) Let{R 2R /{1 —ei)}ier € J°P(R), where (e;);c; is fundamental system of orthogonal idempo-
tents of R. The presheaf F has the property F(0) = 1. By Lemma[3.9]a family {a; € R/(1 —¢;) }ic

is a compatible family. By the isomorphism R LIEN [Le/R/ (1 —e;) the element a = (a;)ic; € R

is the unique element such that ¢;(a) = a;.
(ii.) Let {R 2, Rla]} € J°P(R) where Rla] = R[X]/(p) with p € R[X] monic, non-constant and

)

separable polynomial. Let {r € R[a]} be a compatible family. Let R —? 4R [a] {R[b,c] be
¢

the pushout diagram of Corollary Compatibility then implies ¥(r) = {(r) which by the same

Corollary is true only if the element r is in R. We then have that r is the unique element restricting
to itself along the embedding ¢. O

We fix a field K of characteristic 0. Let Z[F,+,.] be a language with basic type F and function
symbols +,.: F x F — F. We extend .Z[F,+,.] by adding a constant symbol of type F for each element
a € K, to obtain Z[F,+,.]g. Define Diag(K) as : if ¢ is an atomic Z[F, +, .|g-formula or the negation
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of one such that K = ¢(ay,...,a,) then ¢(ay,...,a,) € Diag(K). The theory T equips the type F with
axioms of the geometric theory of algebraically closed field containing K

Definition 4.2. The theory T has the following sentences (with all the variables having the type F).
1. Diag(K).

2. The axioms of a commutative group: (a) Vx [0+x =x+0=x] (b) VaVyVz[x+ (y+2z) = (x+y) + 2]
(c) Vxdylx+y=0] (d) VaVy[x+y=y+4]

3. The axioms of a commutative ring: (a) Vx [x1 = x] (b) Vx [x0 = 0] (c) VxVy[xy = yx]
(d) VxVyWz[x(yz) = (xy)z] (€) VaVyVz[x(y +2) = xy +x7]

4. The field axioms: (a) 1 # 0. (b) Vx[x =0V Jy[xy = 1]].
5. The axiom schema for algebraic closure: Va; ...Va,3x[x" + ¥ x""ia; = 0].
6. F is algebraic over K: Vx[\/pe,qy] p(x) =0].

With these axioms the type F becomes the type of an algebraically closed field containing K. We
proceed to show that with the interpretation of the type F by the object F the topos Sh(Z«/{’.J) is a
model of 7, i.e. F is a model, in Kripke—Joyal semantics, of an algebraically closed field containing of
K. First note that since there is a unique map K — C for any object C of #Z.<7 ¢, an element a € K gives
rise to a unique map 1 % F, that is the map % — a € F(K). Every constant a € K of the language is then
interpreted by the corresponding unique arrow 1 - F. (we use the same symbol for constants and their
interpretation to avoid cumbersome notation). That F satisfies Diag(K) then follows directly.

Lemma 4.3. F is a ring object.
Proof. For an object C of Z./ ¢ the object F(C) is a commutative ring. O

Lemma 4.4. F is a field.

Proof. For any object R of Z .27 ¢ one has R I 1 # 0 since for any R 2, C such that CIF 1 = 0 one has that
C is trivial and thus C |- L. Next we show that for variables x and y of type F and any object R of Z.<7%"
we have R |- Vx [x =0V 3y [xy = 1]]. Let ¢ : A — R be a morphism of Z.<7%" and let a € A. We need
to show that A I @ = 0V Jy[ya = 1]. The element e = aa* is an idempotent and we have a cover {@; :
A/{e) A, A/(1—e) > A} € J'(A) withA/(e) IFap; =0and A/(1 —e) I (a@:)(a*¢2) = e@r = 1.
Hence by | 3| we have A/(1 —e) I Jy[(a@z)y = 1] and by [V], A/(1 —¢) IF a@, = 0V Fy[(aga)y = 1].
Similarly, A/{e) |- agp; =0V Iy[(ap;)y = 1]. By |V |we get RIF Vx [x =0V Jy [xy = 1]]. O

To show that A I Va; ...Va,3x [x"+ YL, x"'a; = 0] for every n, we need to be able to extend an
algebra R of Z.of x with the appropriate roots. We need the following lemma.

Lemma 4.5. Let L be a field and f € L[X] a monic polynomial. Let g = (f, f'), where f' is the derivative
of f. Writing f = hg we have that h is separable. We call h the separable associate of f.

Proof. Let a be the ged of hand /'. We have h = [ a. Let d be the ged of @ and a@’. We have a = l,d and
d = myd, with I, and m; coprime.

The polynomial a divides &’ = [ a’ + [ja and hence that a = l,d divides l1a’ = lymd. It follows that
I divides [ym; and since I, and m; are coprime, that [, divides ;.

Also, if a" divides p then p = ga” and p’ = ¢'a" 4+ nga’a"~'. Hence da"~" divides p’. Since I divides
11, this implies that " = L,da"~"! divides I, p’. So a"*! divides al;p’ = hp'.
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Since a divides f and f’, a divides g. We show that a" divides g for all n by induction on n. If a"
divides g we have just seen that ¢"*! divides g’h. Also a"*! divides /g since a divides #’. So a"*!
divides g’h+ H'g = f’. On the other hand, ¢"*! divides f = hg = lag. So a"*! divides g which is the
gcd of f and f’. This implies that a is a unit. O

Since F is a field, the previous lemma holds for polynomials over F. This means that for all objects
R of Z4/¢¥ we have R I+ Lemma[4.3] Thus we have the following Corollary.

Corollary 4.6. Let R be an object of #.</ ¢ and let f be a monic polynomial of degree n in R[X| and f'
its derivative. There is a cocover {@; : R — R;}ic; € J*°P(R) and for each R; we have h,g,q,r,s € R;[X]
such that ¢;(f) = hg, ¢;(f') = qg and rh+ sq = 1. Moreover, h is monic and separable. O

Note that in characteristic 0, if f is monic and non-constant the separable associate of f is non-
constant.

Lemma 4.7. The field object ¥ € Sh(Z /5 ,]) is algebraically closed.

Proof. We prove that for alln >0 and all (ay, ...,a,) € F"(R) = R", one has RI- Jx [x" + YL, x"~'a; = 0].
Let f=x"+Y" X" a;. By Corollarywe have a cover {8 : R; — R} je; € J*(R) such that in each R;
we have g = (f0;, f'0¥;) and f; = hg with h € R;[X] monic and separable. Note that if deg f > 1, h is
non-constant. For each R; we have a singleton cover {¢ : R;[b] — R; | Rj[b] =R;[X]/(h)} € J*(R;). That
is, we have R;[b] IF b" + Y1 " (a;0;9) = 0. By |3 | we get R;[b] IF Tx [x" + X1 ¥ 1(a;9,9) = 0]
and by we have R; |- 3x [x" + Y7, x"~1(a;9;) = 0]. Since this is true for each R;, j € J we have by
LC|RIF3x [+ Y 2" 1a; = 0). O

Lemma 4.8. F is algebraic over K.

Proof. We will show that for any object R of %/ and element r € R one has R I=\/ ,cxx p(r) = 0.
Since R is a finitely presented K-algebra we have that R is a finite integral extension of a polynomial ring
K[Yy,...,Y,] C R where Y1, ..,Y, are elements of R algebraically independent over K and that R has Krull
dimension n [9, Ch 13, Theorem 5.4]. Since R is zero-dimensional (i.e. has Krull dimension 0) we have
n =0 and R is integral over K, i.e. any element » € R is the zero of some monic polynomial over K. [J

5 Constant sheaves, natural numbers, and power series

Here we describe the object of natural numbers in the topos Sh(Z.<73,J) and the object of power series
over the field F. This will be used in section [6]to show that the axiom of dependent choice does not hold
when the base field K is the rationals and later in the example of Newton—Puiseux theorem (section [7)).

Let P: %Z.of k — Set be a constant presheaf associating to each object A of Z.o7 k a discrete set B. That
is, P(A)=Band P(A 2, R) = 15 for all objects A and all morphism @ of Z.o/ k. Let P : Z.o/ x — Set be
the presheaf such that l~’(A) is the set of elements of the form {(e;,b;) }ic; Where (e;);c; is a fundamental
system of orthogonal idempotents of A and for each i, b; € B. We express such an element as a formal sum
Y. eibi. Let @ : A — R be a morphism of Z.</ ., the restriction of ¥;c; e;b; € P(A) along @ is given by
(Licreibi)@ = Yics ©(e;)b; € P(R). In particular with canonical morphisms ; : A — A/(1 —e;), one has
forany j € Ithat (¥;c eibi)@j=b; € P(A/(1 —e;j)). Two elements Y ;c; e;b; € P(A) and Yjesdjcj € P(A)
are equal if and only if Vi € 1, j € J[b; # cj = e;d; = 0].

To prove that P is a sheaf we will need the following lemmas.
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Lemma 5.1. Let R be a regular ring and let (e;);c; be a fundamental system of orthogonal idempotents
of R. Let R = R/(1 —¢;) and (|d}]) jes, be a fundamental system of orthogonal idempotents of R;, where
[dj] =d;+ (1 —e;). The family (e;d;)ic1,jes; is a fundamental system of orthogonal idempotents of R.

Proof. In R one has Zje]l. eidj = eijGJidj = ei(l + <1 — e,~>) = ¢;. Hence, Z e,-dj = Zei = 1. For
iel,jel; icl

some i € [ and t,k € J; we have (e;d;)(eidy) = e;(0+ (1 —¢;)) =0inR. Thus fori,/ €1, j € Jyand s € J;

one has i # LV j# s = (eid;)(eeds) = 0. O

Lemma 5.2. Let R be a regular ring, f € R[Z] a polynomial of formal degree n and p € R|Z] a monic
polynomial of degree m > n. If in R[X,Y]| one has f(Y)(1—f(X)) =0 mod (p(X),p(Y)) then f =e €R
with e an idempotent.

Proof. Let f(Z) =Y ,r:Z". By the assumption, for some ¢,g € R[X,Y]
SO =f(X) =Y. ri(1 =Y, riX/)Y' = gp(X) +gp(Y)
i=0 =0

One has Yo ri(1 = Yi_or;X7)Y' = g(X,Y)p(Y) mod (p(X)). Since p(Y) is monic of Y-degree greater
than n, one has that r;(1 —}Y}_or;X’) =0 mod (p(X)) for all 0 <i < n. But this means that r;7, X" +
Firn_1 X"~ 4 ...+ rirg — 1y is divisible by p(X) for all 0 < i < n which because p(X) is monic of degree
m > n implies that all coefficients are equal to 0. In particular, for 1 < i < n one gets that r,-z =0 and
hence r; = 0 since R is reduced. For i = 0 we have rory — ro = 0 and thus r( is an idempotent of R. [

Lemma 5.3. The presheaf P described above is a sheaf on (R#AL)).

Proof. By case analysis on Definition 3.7}

(i.) Let{R Ny /{1 —e;)}ier € J°P(R) where (e;);c; be a fundamental system of orthogonal idem-
potents of an object R. Let R/(1 —e;) = R;. Since P(0) = 1 by Lemma any set {s; €
P(R;)}ic; is compatible. For each i, Let s; = ¥ jenldjlbj. By Lemma we have an element
s= Y (ed)bje P(R) the restriction of which along ¢; is the element Yjesldilbj € P(R)).

iel jel;
It remains to show that this is the only such element. Let there be an element Yy, cpas € ﬁ(R)
that restricts to u; = s; along ¢@;. We have u; = ¥ /s [c/]ag. One has that for any j € J; and ¢ € L,
bj # ag = [c¢dj] = 0in R;, hence, in R one has b; # a; = c¢d; = r(1 — ;). Multiplying both sides
of cydj = r(1 —e;) by e; we get b; # ay = c¢(e;d;) = 0. Thus proving s = Y s coay.

(ii.) Let {¢ : R — R[a] = R[X]/(p)} € J°P(R) where p € R[X] is monic non-constant and sepa-

rable. Let the singleton {s = Y.;c;e;b; € P(R[a])} be compatible. We can assume w.l.o.g. that

Vi,j € 1]i# j = b; # bj] since if by = by one has that (ex + e¢)by + X7, 7" ¢;b; = 5. (Note that

an idempotent e; of R[a] is a polynomial ¢;(a) in a of formal degree less than deg p). Let R[c,d] =

¢
R[X,Y]/(p(X),p(Y)), by Corollary [3.12] one has a pushout diagram R —— R|d] ! Rlc,d]
)

where §|g = O|gr = 1z, {(a) =d and ¥(a) = c. That the singleton {s} is compatible then
means s = Y crei(c)bi = s = Yicrei(d)b;, ie. Vi, j €l [b; # bj = ei(c)ej(d) =0]. By the
assumption that b; # b; whenever i # j we have in R[c,d| that e;(d)e;(c) = 0 for any i # j €
1. Thus e;(d) Y. ei(c) = ej(d)(1 —ej(c)) =0, i.e. in R[X,Y] one has e;(Y)(1 —e;(X)) =0
mod (p(X),p(Y)). By Lemma|5.2 we have that e;(X) = ¢;(Y) = e € R. We have thus shown s is
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equal to Y ;c;d;b; € P(R|d]) such that dj € Rfor jeJ. Thatis }jc;d;b; € P(R). Thus we have
found a unique (since P(¢) is injective) element in P(R) restricting to s along @. O

Lemma 5.4. Let P and P be as described above. Let T : P — P be the presheaf morphism such that
['r(b) = b € P(R) for any object R and b € B. If E is a sheaf and A : P — E is a morphism of presheaves,
then there exist a unique sheaf morphism A : P — E such that the following diagram, of Set” 7k com-

P—2 LE
mutes. lr That is to say, I : P — P is the shedfification of P.
A

P

Proof. Leta =Y, eib; € P(A) and let A; = A /(1 — ¢;) with canonical morphisms @; : A — A;.

Let E and A be as in the statement of the lemma. If there exist a sheaf morphism A : P> E,
then A being a natural transformation forces us to have for all i € I, E(¢;)A4s = Ay P(¢;). By Lemma
we know that the map d € E(A) — (E(¢;)d € E(A;));es is an isomorphism. Thus it must be that
An(a) = (A P(@)(a))icr = (Aa,(b7))ier. But Ay (b;) = Ay Ty (b;). To have AT = A we must have
A4, (b;) = Aa,(bi). Hence, we are forced to have A4(a) = (Aa,(bi))icr- Note that A is unique since its
value A4 (a) at any A and a is forced by the commuting diagram above. 0

The constant presheaf of natural numbers N is the natural numbers object in Set”“/x We associate
to N a sheaf N as described above. From Lemma one can easily show that N satisfy the axioms of a
natural numbers object in Sh(Z</ ¢, J).

Definition 5.5. Let F[[X]] be the presheaf mapping each object R of Z.o7 k to F[[X]](R) = R[[X]] = R
with the obvious restriction maps.

Lemma 5.6. F[[X]] is a sheaf.

Proof. The proof is immediate as a corollary of Lemma 1] O
Lemma 5.7. The sheaf ¥[[X]] is naturally isomorphic to the sheaf FN,

Proof. Let C be an object of Z.</’. Since FN(C) 2 yo x N — F, an element ac € FN(C) is a family
of elements of the form otc p : yc(D) x N(D) — F(D) where D is an object of Z./ . Define ® : FN —
F[[X]] as (®a)c(n) = atcc(1c,n). Define A : F[[X]] — FN as

(AB)cn(C 5 DY eini) = (8:9(Bc(ni)))ies € F(D)

icl

where D 2 D/(1 —¢;) is the canonical morphism. Note that by Lemma one indeed has that
(0i90(Bc(ni)))icr € [Lie; F(Di) =2 F(D). One can easily verify that @ and A are natural. It remains to
show the isomorphism. One one hand we have

(AOa)cp(@, Y eni) = (i0((O@a)c(m)))icr = (%ip(oc.c(le,mi)))ier

il
= ((acp;,(%ip,n:)))icr = (@,) emn)
iel
Thus showing A® = 1.5. On the other hand, (OA)c(n) = (AB)cc(lc,n) = lclc(Be(n)) = Be(n).
Thus @A = IF[[XH O
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Lemma 5.8. The power series object F|[X]] is a ring object.

Proof. A Corollary to Lemma4.3] O

6 Choice axioms

The (external) axiom of choice fails to hold (even in a classical metatheory) in the topos Sh(Z </ ?(p J)
whenever the field K is not algebraically closed. To show this we will show that there is an epimorphism
in Sh(Z</¢¥,J) with no section.

Fact 6.1. Let ® : P — G be a morphism of sheaves on a site (¢,J). Then © is an epimorphism if for
each object C of € and each element ¢ € G(C) there is a cover S of C such that for all f : D — C in the
cover S the element cf is in the image of ®p. [10, Ch. 3].

Lemma 6.2. Let K be a field of characteristic 0 not algebraically closed. There is an epimorphism in
Sh(#.</3¥,J) with no section.

Proof. Let f =X"+Y" ,r, X"~ be a non-constant polynomial for which no root in K exist. w.l.o.g.
we assume f separable. One can construct A : F — F defined by Ac(c) = "+ Zl | Tic " € C. Given
deF(C),letg=X"+Y"r,X"""—d. By Corollarythere is a cover {C; 2 Clyep € J*(C) with
he € Ci[X] a separable non-constant polynomial dividing g. Let Cylx¢] = C¢[X]/(h¢) one has a singleton

cover {Cylx/] LN C/} and thus a composne cover {Cylx(] Dedr, Clier € J¥(C). Since x; is a root of
hy | g we have A,y (x¢) = x} +ZL | rix;~" = d or more precisely Ac,[y,(x¢) = d@y¥. Thus, A is an
epimorphism (by Fact [6.1)) and it has no section, for if it had a section ¥ : F — F then one would have

Wk (—r,) = a € K such that a" + Y7, r;a"~ = 0 which is not true by assumption. O
Theorem 6.3. Let K be a field of characteristic 0 not algebraically closed. The axiom of choice fails to
hold in the topos Sh(Z</ 3!, J). O
We note that in Per Martin-Lof type theory one can show that (see [13])
HxGA ZyEB Zfe HxEA )(HxGA)C[x,f(x)]

As demonstrated in the topos Sh(Z.</3,J) we have an example of an intuitionistically valid formula of
the form Vx3y¢ (x,y) where no function f exist for which 3 fVx¢ (x, f(x)) holds.

We demonstrate further that when the base field is QQ the weaker axiom of dependent choice does not
hold (internally) in the topos Sh(Z.</ pr ,J). For a relation R C Y x Y the axiom of dependent choice is
stated as

Vx3yR(x,y) = Vx3g € YV[g(0) = x AVnR(g(n),g(n+1))] (ADC)

Theorem 6.4. Sh(%Z.</(},J) IF —ADC.

Proof. Consider the binary relation on the algebraically closed object F defined by the characteristic
function ¢ (x,y) := y* —x = 0. Assume C I ADC for some object C of Z./ . Since C I Vx3y[y* —x =
0] we have C |- Vx3g € Fﬁ[g(O) = xAVn|g(n)? = g(n+1)]]. That is for all morphisms C S A of
Kk and elements a € F(A) one has A |- 3g € Fﬁ[g(O) = aAVnlg(n)? = g(n+1)]]. Taking a =2
we have A |- 3g € FN [g(0) =2 AVn|g(n)? = g(n+1)]]. Which by | 3 |implies the existence of a cocover
{ni:A— A;| i€} and power series o; € FN(A,-) such that A; IF @;(0) = 2 AVa[a;(n)? = oi(n+1)]].
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By Lemma we have _FltI (A;) = A;[[X]] and thus the above forcing implies the existence of a series
o =2+2"2 4. +2/2 1. € A[[X]]. But this holds only if A; contains a root of X? —2 for all j
which implies A; is trivial as will shortly show after the following remark.

Consider an algebra R over Q. Assume R contains a root of X?' — 2 for some n. Then letting
Qx] = Q[X]/(X?* —2), one will have a homomorphism & : Q[x] — R. By Eisenstein’s criterion the
polynomial X% — 2 is irreducible over Q, making Q[x] a field of dimension 2" and & either an injection
with a trivial kernel or & = Q[x] — 0.

Now we continue with the proof. Until now we have shown that for all i € I, the algebra A; contains
a root of X% — 2 for all j. Foreach i € I, let A; be of dimension m; over (. We have that A; contains
a root of X2" — 2 and we have a homomorphism Q( 2%) — A; which since A; has dimension m; < 2™
means that A; is trivial for all i € 1. Hence, A; I L and consequently C |- L. We have shown that for any
object D of Z.27(7 if D |- ADC then D IF- L. Hence Sh(%Z.¢/y,J) IF ~ADC. O

As a consequence we get that the internal axiom of choice does not hold in Sh(Z.o/ ?Qp J).

7 Eliminating the algebraic closure assumption

Let K be a field of characteristic 0. We consider a typed language -Z [N, F|k of the form described in
Section [2] with two basic types N and F and the elements of the field K as its set of constants. Consider a
theory T in the language -Z [N, F|k, such that 7 has as an axiom every atomic formula or the negation of
one valid in the field K, T equips N with the (Peano) axioms of natural numbers and equips F with the
axioms of a field containing K. If we interpret the types N and F' by the objects NandF, respectively, in
the topos Sh(Z.<73",J) then we have, by the results proved earlier, a model of 7" in Sh(Z.<73,J). Let
AlgCl be the axiom schema of algebraic closure with quantification over the type F, then one has that
T + AlgCl has a model in Sh(Z .o/ (;(p ,J) with the same interpretation. Let ¢ be a sentence in the language
such that T + AlgCl I ¢ in IHOL deduction system. By soundness [1]] one has that Sh(Z.«7%",J) I ¢,
i.e. for all finite dimensional regular algebras R over K, R I ¢ which is then a constructive interpretation
of the existence of the algebraic closure of K.

This model can be implemented, e.g. in Haskell. In the paper [12] by the authors, an algorithm for
computing the Puiseux expansions of an algebraic curve based on this model is given. The statement
with the assumption of algebraic closure is:

“ Let K be a field of characteristic 0 and G(X,Y) =Y"+ Y bi(X)Y"" € K[[X]][Y] @ monic, non-
constant polynomial separable over K((X)). Let F be the algebraic closure of K, we have a positive
integer m and a factorization G(T™)Y) =1, (Y — o) with oy € F[[T]] ”

We can then extract the following computational content

“ Let K be a field of characteristic 0 and G(X,Y) = Y"+ Y1 bi(X)Y" " € K[[X]][Y] @ monic, non-
constant polynomial separable over K((X)). Then there exist a (von Neumann) regular algebra R over
K and a positive integer m such that G(T™,Y ) =[1}_, (Y — o) with o; € R[[T]] ”

For example applying the algorithm to G(X,Y) = Y* —3Y2 4+ XY + X2 € Q[X,Y] we get a regular
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algebra Q|[b, c] with b*> — 13/36 = 0 and ¢> — 3 = 0 and a factorization

G(X.,Y) =
1 31 3 1415 29 \v5
+(=b—5)X + (=356 162)X + (= 20670 — 1358)X° + )
31 3 1415 29 \v5
+(b— ) (351b—@)X + (710670 — 1455)X” + )
2 3, 185 y4 5
—c+ X+ 2CX +162X + 10368 <X +1458X +..)

2 3185 y4 5
Y+C+ X — CX “‘@X 0368 X +1458X +..)

¥

¥

¥

(

Another example of a possible application of this model is as follows: suppose one want to show that
“For discrete field K, if f € K[X,Y] is smooth, i.e. 1 € (f, fx, fr), then K[X,Y]|/(f) is a Priifer ring.“

To prove that a ring is Priifer one needs to prove that it is arithmetical, that is Vx,y3u,v,w]yu =
vx Ayw = (1 —u)x]. Proving that K[X,Y]/(f) is arithmetical is easier in the case where K is algebraically
closed [3]. Let F be the algebraic closure of K in Sh(Z.«7’,J). Now F[X,Y]/(f) being arithmetical
amounts to having a solution u,v, and w to a linear system yu = vx, yw = (1 — u)x. Having obtained
such solution, by Rouché—Capelli—Fontené theorem we can conclude that the system have a solution in

KX, Y]/{f).

8 The logic of Sh(Z.«/5".J)

In this section we will demonstrate that in a classical metatheory one can show that the topos Sh(Z.7 ¢, J)
is boolean. In fact we will show that, in a classical metatheory, the boolean algebra structure of the sub-
object classifier is the one specified by the boolean algebra of idempotents of the algebras in Z.o/k.
Except for Theorem the reasoning in this section is classical. Recall that the idempotents of a com-
mutative ring form a boolean algebra with the meaning of the logical operators givenby : T =1, 1 =0,
eitNexy=ejer,e1Vey=e1+ey—ejexand e=1—e. Wewritee); < ey iffe; Aexy =ejande; Ve, =ep

A sieve S on an object C is a set of morphisms with codomain C such that if g € S and cod(/) = dom(g)
then gh € S. A cosieve is defined dually to a sieve. A sieve S is said to cover a morphism f: D — C
if f*(S) ={g|cod(g) =D, fg € S} contains a cover of D. Dually, a cosieve M on C is said to cover a
morphism g : C — D if the sieve dual to M covers the morphism dual to g.

Definition 8.1 (Closed cosieve). A sieve M on an object C of % is closed if for all f with cod(f) = C if
M covers f then f € M. A closed cosieve on an object C of €7 is the dual of a closed sieve in 4.

Fact 8.2 (Subobject classifier). The subobject classifier in the category of sheaves on a site (¢,J) is
the presheaf Q where for an object C of € the set Q(C) is the set of closed sieves on C and for each
f D — C we have a restriction map M — {h | cod(h) = D, fh € M}.

Lemma 8.3. Let R be an object of Z<7 k. If R is a field the closed cosieves on R are the maximal cosieve
{f | dom(f) = R} and the minimal cosieve {R — 0}.

Proof. Let S be a closed cosieve on R and let ¢ : R — A € § and let I be a maximal ideal of A. If A
is nontrivial we have a field morphism R — A/I in S where A/I is a finite field extension of R. Let
A/I =Rlay,...,ay) . But then the morphism ¢ : R — R[ay,...,a,_1] is covered by S. Thus ¥ € S since S
is closed. By induction on n we get that a field automorphism 1 : R — R is in S but then by composition
of m with its inverse we get that 1z € S. Consequently, any morphism with domain R is in S. O

Corollary 8.4. For an object R of #</ k. If R is a field, then Q(R) is a 2-valued boolean algebra.
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Proof. This is a direct Corollary of Lemma The maximal cosieve (1g) correspond to the idempotent
1 of R, that is the idempotent e such that, ker Iz = (1 — e). Similarly the cosieve {R — 1} correspond to
the idempotent 0. U

Corollary 8.5. For an object A of Z/ k, Q(A) is isomorphic to the set of idempotents of A and the
Heyting algebra structure of Q(A) is the boolean algebra of idempotents of A.

Proof. Classically a finite dimension regular algebra over K is isomorphic to a product of field extensions
of K. Let A be an object of Z&/k, then A = F} x ... X F, where F; is a finite field extension of K. The
set of idempotents of A is {(dy,...,d,) | 1 < j<n,dj € F;,dj=0ord; = 1}. But this is exactly the set
Q(F)) X ... x Q(F,) =2 Q(A). It is obvious that since Q(A) is isomorphic to a product of boolean algebras,
it is a boolean algebra with the operators defined pointwise. O

Theorem 8.6. The topos Sh(Z.</{¥,J) is boolean.

true

Proof. The subobject classifier of Sh(Z.«/¢’,J) is 1 — Q where for an object A of Z</k one has
trues (%) = 1 € A. O

It is not possible to show that the topos Sh(Z.<7¢’,J) is boolean in an intuitionistic metatheory as we
shall demonstrate. First we recall the definition of the Limited principle of omniscience (LPO for short).
Definition 8.7 (LPO). For any binary sequence o the statement Vn[ct(n) = 0] V 3n[a(n) = 1] holds.

LPO cannot be shown to hold intuitionistically. One can, nevertheless, show that it is weaker than
the law of excluded middle [2].

Theorem 8.8. Intuitionistically, if Sh(Z</3,J) is boolean then LPO holds.

Proof. Let a € K[[X]] be a binary sequence. By Lemmaone has an isomorphism A : F[[X]] — FN.

Let Ag(o) = B € FN(K). Assume the topos Sh(Z.27%,J) is boolean. Then one has K I Vn[B(n) =
0]V 3n[B(n) = 1]. By |V |this holds only if there exist a cocover of K

{ﬂiiK—)Ai|l’€I}U{§j1K—>BJ‘|j€J}

such that B; I Vn[(B&;)(n) = 0] for all j € J and A; IF 3n[(B0;)(n) = 1] for all i € I. Note that at least
one of / or J is nonempty since K is not covered by the empty cover.

For each i € I there exist a cocover {1, : A; — Dy | £ € L} of A; such that for all £ € L, we have
Dy IF (BYmy)(m) = 1 for some m € N(Dp) Let m = Y, .7 e;n, then we have a cocover {& : Dy — C, =
Dy/{1—e¢;) |t €T} such that C; IF (Bne&)(n,) = 1 which implies &ny0;(a(n;)) = 1. For each r we
can check whether ot (n;) = 1. If ot(n,) = 1 then we have witness for In]a(n) = 1]. Otherwise, we have
a(n;) =0 and &ny1;(0) = 1. Thus the map &ny0; : K — C; from the field K cannot be injective, which
leaves us with the conclusion that C; is trivial. If for all r € T, C; is trivial then Dy is trivial as well.
Similarly, if for every ¢ € L, Dy is trivial then A; is trivial as well. At this point one either have either
(i) a natural number m such that a(m) = 1 in which case we have a witness for In[a(n) = 0]. Or (ii) we
have shown that for all i € I, A, is trivial in which case we have a cocover {§;: K — B; | j € J} such

that B; I- Vn[(B&;)(n) = 0] for all j € J. Which by means K |- Vn[B(n) = 0] which by |V | means
that for all arrows K — R and elements d € N(R), R IF B(d) = 0. In particular for the arrow K 1 g

and every natural number m one has K I B(m) = 0 which implies K IF a(m) = 0. By [=] we get that
Vm € N[o(m) = 0]. Thus we have shown that LPO holds. O

Corollary 8.9. It cannot be shown in an intuitionistic metatheory that the topos Sh(Z.</5 | J) is boolean.
O
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