
U. de’Liguoro and A. Saurin (Eds.):
Control Operators and their Semantics 2013 (COS’13)
EPTCS 127, 2013, pp. 15–29, doi:10.4204/EPTCS.127.2

c© M. Biernacka, D. Biernacki, S. Lenglet & M. Materzok
This work is licensed under the
Creative Commons Attribution License.

Proving termination of evaluation
for System F with control operators

Małgorzata Biernacka
Institute of Computer Science

University of Wrocław

mabi@cs.uni.wroc.pl

Dariusz Biernacki
Institute of Computer Science

University of Wrocław

dabi@cs.uni.wroc.pl

Sergueı̈ Lenglet
LORIA

Université de Lorraine

serguei.lenglet@univ-lorraine.fr

Marek Materzok
Institute of Computer Science

University of Wrocław

marek.materzok@cs.uni.wroc.pl

We present new proofs of termination of evaluation in reduction semantics (i.e., a small-step opera-
tional semantics with explicit representation of evaluation contexts) for System F with control oper-
ators. We introduce a modified version of Girard’s proof method based on reducibility candidates,
where the reducibility predicates are defined on values and on evaluation contexts as prescribed by
the reduction semantics format. We address both abortive control operators (callcc) and delimited-
control operators (shift andreset) for which we introduce novel polymorphic type systems, andwe
consider both the call-by-value and call-by-name evaluation strategies.

1 Introduction

Termination of reductions is one of the crucial properties of typed λ -calculi. When considering aλ -
calculus as a deterministic programming language, one is usually interested in termination of reductions
according to a given evaluation strategy, such as call by value or call by name, rather than in more general
normalization properties. A convenient format to specify such strategies is reduction semantics, i.e., a
form of operational semantics with explicit representation of evaluation (reduction) contexts [14], where
the evaluation contexts represent continuations [10]. Reduction semantics is particularly convenient for
expressing non-local control effects and has been most successfully used to express the semantics of
control operators such ascallcc [14], or shift andreset [5].

For simply-typed languages with control operators, it is common to prove termination of evaluation
(and of normalization in general) by translating, in a reduction-preserving way, terms in the source
language to a target language for which the normalization property has been established before [16, 27].
Such indirect proofs in general can be cumbersome and, as argued by Ikeda and Nakazawa [19], they
can be error-prone.

In a previous work [3, 4], it has been shown that a context-based variant of Tait’s proof method based
on reducibility predicates [28, 29] allows for direct and concise proofs of termination of evaluation in
reduction semantics for the simply-typedλ -calculus with control operators, be they abortive or delimited.
Unlike translation-based proofs, the context-based proofmethod directly takes advantage of the format
of the reduction semantics, where the key role is played by evaluation contexts. So, for instance, in order
to prove termination of evaluation for the simply-typedλ -calculus under call by value using the context-
based method, one defines mutually inductively reducibility predicates on values (normal forms) as well
as on evaluation contexts. The termination result then follows by induction on well-typed terms, where
the reasoning is driven by the control flow of a typical evaluator in continuation-passing style [3, 4].

http://dx.doi.org/10.4204/EPTCS.127.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

16 Proving termination of evaluation for System F with controloperators

In this article, we show that the context-based method can begeneralized from reducibility predi-
cates to reducibility candidates, and therefore it provides simple proofs of termination of evaluation for
System F with control operators. Just as for the simply-typed λ -calculi, normalization for polymor-
phic λ -calculi with control operators has been mainly established indirectly, via translations to strongly
normalizing calculi: Harper and Lillibridge reduced termination of call-by-value evaluation forFω with
abort andcallcc to normalization inFω [18] by a CPS translation, Parigot reduced strong normalization
of the second-orderλ µ-calculus to strong normalization of the simply-typedλ -calculus [25], Danos et
al. reduced strong normalization of the second-order classical logic to strong normalization of linear
logic [8], and Kameyama and Asai reduced strong normalization of System F withshift andreset under
the standard semantics to strong normalization of System F [20].

On the other hand, Parigot directly proved strong normalization of the second-orderλ µ-calculus
using another variant of the reducibility candidates [25]—we discuss this result in Section 2.3. Later on,
further adaptations of Tait-Girard’s method have been proposed and applied to various flavors of second-
order logic [9, 21, 22, 24]. In particular, following Girard, the techniques of orthogonality have been
used as a framework in which the concepts of the original reducibility method can be phrased. The use
of orthogonality induces the notion of context which is understood as a sequence of terms—roughly cor-
responding to call-by-name contexts. Reducibility candidates are then defined in terms of TT-closed sets.
In contrast to this approach, we consider concrete evaluation strategies and our contexts come directly
from the reduction semantics (either call-by-name or call-by-value, and the contexts can be layered in
the delimited-control case), and in particular our reducibility candidates only contain values and are not
TT-closed. Another related work is the proof of strong normalization for Moggi’s computational calcu-
lus given by Lindley and Stark [23] who have introduced the operation of TT-lifting in order to interpret
computational types. This operation seems to correspond toour definition of reducibility for one layer
of (reduction) contexts (see Section 2.3). However, in strong normalization, the notion of context is to
be understood as a means of syntactically splitting a term rather than “the remaining computation.” In
particular, we do not analyze the reducibility of terms forming reduction contexts.

The calculi we consider are System F withcallcc under call by value and call by name as well
as System F withshift andreset under call by value and call by name, in each case with the standard
semantics, where, unlike in the ML-like semantics, evaluation does not proceed under polymorphic
abstraction [18]. The type system forcallcc is inspired by that of Harper and Lillibridge [18], whereas
the type systems forshift andreset (one for each evaluation strategy) are new and they generalize Asai and
Kameyama’s type system [2] in that they allow for polymorphic abstractions over arbitrary expressions,
not only pure ones. It is worth noting that, as in the simply-typed case [3, 4], the context-based proofs
we present in this article have the structure of an evaluatorin continuation-passing style.

We would like to stress that the semantics we consider in thisarticle are not instances of abstract
machines working on explicit decompositions of terms, where the process of decomposition is built in
the transitions of the system. Instead, we rely on the higher-level reduction semantics approach where
the operations of decomposition and recomposition of termsare left implicit. Consequently, the type
systems we consider are in the form of natural deduction rather than in sequent calculus [7].

The rest of this article is organized as follows. In Section 2, we present System F with abortive control
operators and we prove termination of evaluation under the call-by-value and call-by-name evaluation
strategies for this system. We also relate this result to Parigot’s work [25]. In Section 3, we present
System F with delimited-control operators and we prove termination of evaluation under call by value
and call by name. We also relate our type systems to Asai and Kameyama’s [2]. In Section 4, we
conclude.

M. Biernacka, D. Biernacki, S. Lenglet & M. Materzok 17

2 System F with abortive control operators

In this section, we present a context-based proof of termination for call-by-value evaluation in System F
extended with the control operatorcallcc. We use a variant of Girard’s method of reducibility candidates,
where in particular we define reducibility predicates for reduction contexts.

2.1 Syntax and Semantics

We consider the explicitly typed System F under the call-by-value reduction strategy, which we extend
with the binder version of thecallcc operator (denotedK) and with a construct to apply captured con-
tinuations ←֓ , similar to thethrow construct of SML/NJ [17]. We call this languageλ F

v .
The syntax of terms, term types, and call-by-value contextsof λ F

v is defined as follows:

Terms: t ::= x | λxS.t | t t | ΛX .t | t{S} | K k.t | k ←֓ t | pEq ←֓ t

Term types: S ::= X | S→ S | ∀X .S

CBV contexts: E ::= [] | (λxS.t) E | E t | E {S} | pEq ←֓ E

Values: v ::= λxS.t | ΛX .t

We letx range over term variables,k range over continuation variables, andX range over type variables,
and we assume the three sets of variables are pairwise disjoint. We use capital letters starting fromS to
denote term types. The termΛX .t quantifies over the type variableX , while the termt{S} instantiates
such quantification with typeS. The termK k.t denotes thecallcc operator that binds a captured context
(representing a continuation) to the variablek and makes it available in its bodyt. In turn, constructs of
the formk ←֓ t andpEq ←֓ t denote the operation ofthrowing the termt to a continuation variablek and
to the captured contextpEq, respectively. The use ofp·q indicates that a context is reified as a term, as
opposed to its role as the representation of the “rest of the program.”

Expressions of the formpEq ←֓ t are not allowed in source programs (because we do not let program-
mers handle contexts explicitly), but they may occur duringevaluation. In the sequel, it will be useful to
distinguish the subset ofplain terms, i.e., terms without any subterm of the formpEq ←֓ t.

An abstractionλxS.t (resp.,ΛX .t, K k.t) bindsx (resp.,X , k) in t, and a type∀X .S bindsX in S.
We write ftv (S) for the set of free type variables occurring in typeS, defined in the usual way. The
definitions of free term variables, free type variables, andfree continuation variables of a term are also
standard. A term isclosed if it does not have any free variable of any kind. We identify terms and types
up toα-conversion of their bound variables.

The syntax of reduction contexts encodes the reduction strategy, here—call by value. The contexts
can be seen as “terms with a hole”, and are represented inside-out. Informally, [] denotes the empty
context,(λxS.t) E representsE[(λxS.t) []] with the hole indicated by[], E t representsE[[] t], E {S}
representsE[[]{S}], andpE0q ←֓ E representsE[pE0q ←֓ []]. A reduction context is closed if and only if
all its components (terms, types, or contexts) are closed. We make the meaning of contexts precise by
defining a functionplug which maps a term and a context to the term which is obtained byputting the
term in the hole of the context:

plug (t, []) = t

plug (t0,(λxS.t) E) = plug ((λxS.t) t0,E)

plug (t0,E t1) = plug (t0 t1,E)

plug (t,E {S}) = plug (t{S},E)

plug (t,pE0q ←֓ E) = plug (pE0q ←֓ t,E)

18 Proving termination of evaluation for System F with controloperators

We writeE[t] for the result of pluggingt in the contextE (i.e., the result ofplug (t,E)).
A program p is a closed plain term. Whenp = E[t], we say thatp decomposes into termt in the

contextE. In general, a program can be decomposed into a term in a context in more than one way. For
example, the program(λxS.t0) t1 can be represented by termt1 in context(λxS.t0) [], or by term(λxS.t0)
in context[] t1, or by term(λxS.t0) t1 in context[].

The one-step reduction relation in the call-by-value strategy is defined on programs by the following
rules:

E[(λxS.t) v] →v E[t{v/x}] (βv)

E[(ΛX .t){S}] →v E[t{S/X}] (βT)

E[K k.t] →v E[t{pEq/k}] (callcc)

E1[pE0q ←֓ v] →v E0[v] (throwv)

wheret{v/x} (resp.,t{S/X}, t{pEq/k}) is the usual capture-avoiding substitution of valuev (resp., of
type S, of contextpEq) for variablex (resp., forX , for k) in t. The rules(βv) and (βT) are standard
in System F; in addition, we introduce the rule(callcc), where the current contextE is captured by
the callcc operator and bound to the continuation variablek, and the rule(throwv), where a previously
captured contextE0 is restored as the current context, and the contextE1 is discarded (the latter fact
shows the abortive character of thecallcc operator). The plugged terms on the left-hand side of the
arrow in the above rules are called redexes, and are ranged over byr. Note that the reduction relation is
not compatible, i.e., it only applies to entire programs (due to the context capture in the rule(callcc)).

We define the call-by-value evaluation relation as the reflexive and transitive closure of the relation
→v. The expected result of evaluation is a value.

The reduction relation→v is deterministic; this property is ensured by the unique-decomposition
lemma. We could state this lemma in a general version for all terms, but in order to consider only well-
behaved programs and simplify the statement of the lemma, wechoose to postpone it to the next section
where we define well-typed programs.

2.2 Type System

We define a type system forλ F
v that is an extension of the type system for the lambda calculus introduced

by Biernacka and Biernacki [3], where types are assigned to terms as well as to contexts. The syntax of
context types is¬S. Roughly, the type¬S of a contextE indicates that any well-typed term of typeS
can be plugged inE. The answer type of a context need not be specified, and it is often taken to be⊥ to
reflect the fact that continuations never return.1 The answer type of a closed evaluation contextE of type
¬S can be determined by typing the expressionE[x] for a fresh variablex of typeS.

We let Γ range over type environments for term variables (i.e., lists of pairs of the formx : S),
and we let∆ range over type environments for continuation variables (i.e., lists of pairs of the form
k :C). ForΓ = x1 :S1, . . ., xn : Sn and∆ = k1 :¬S1, . . ., kn : ¬Sn, we defineftv (Γ) := ∪i∈{1,...,n}ftv (Si) and
ftv (∆) := ∪i∈{1,...,n}ftv (Si). The typing rules for terms and contexts are shown in Figure 1.

We can now state the unique-decomposition lemma that ensures the determinism of the reduction
relation→v, and progress of reduction:

Lemma 1 (Unique decomposition). For all well-typed programs p, p either is a value, or it decomposes
uniquely into a context E and a redex r, i.e., p = E[r].

1This decision has more serious implications when a type system is studied from a logical perspective via the Curry-Howard
isomorphism (see for example [1]). However, we do not take this viewpoint in this article.

M. Biernacka, D. Biernacki, S. Lenglet & M. Materzok 19

Typing terms (S ::= X | S→ T | ∀X .S):

Γ, x : S;∆ ⊢ x : S

Γ, x : S;∆ ⊢ t : T

Γ;∆ ⊢ λxS.t : S→ T

Γ;∆ ⊢ t0 : S→ T Γ;∆ ⊢ t1 : S

Γ;∆ ⊢ t0 t1 : T

Γ;∆ ⊢ t : S X /∈ ftv (Γ)∪ ftv(∆)
Γ;∆ ⊢ ΛX .t : ∀X .S

Γ;∆ ⊢ t : ∀X .S

Γ;∆ ⊢ t{T} : S{T/X}

Γ;∆, k : ¬S ⊢ t : S

Γ;∆ ⊢ K k.t : S

Γ;∆, k : ¬S ⊢ t : S

Γ;∆, k : ¬S ⊢ k ←֓ t : T

Typing contexts (C ::= ¬S):

Γ;∆ ⊢ [] : ¬S

Γ;∆ ⊢ λxS.t : S→ T Γ;∆ ⊢ E : ¬T

Γ;∆ ⊢ (λxS.t) E : ¬S

Γ;∆ ⊢ t : S Γ;∆ ⊢ E : ¬T

Γ;∆ ⊢ E t : ¬(S→ T)

Γ;∆ ⊢ E : ¬(S{T/X})

Γ;∆ ⊢ E {T} : ¬(∀X .S)

Γ;∆ ⊢ E0 : ¬S Γ;∆ ⊢ E1 : ¬T

Γ;∆ ⊢ pE0q ←֓ E1 : ¬S

Figure 1: Typing rules for System F with abortive control operators

As for the subject reduction property, it is a more subtle issue. In the reduction rule(throwv), the
current evaluation contextE1 is replaced by another contextE0, where the answer types of the two
contexts do not have to be related in any way. Therefore, as observed before [3, 17, 30], in general
subject reduction does not hold for languages with reduction and typing rules for continuation invocation
similar to the ones presented in this work. However, if we assume that all reified contexts in a given term
have the same answer type as the type of the term itself—whichis the case for all terms in the reduction
sequence starting in a plain term—subject reduction will berecovered [3, 17, 30]. Such an assumption
can be made implicit [17] or explicit in a refined type system that controls the answer types of evaluation
contexts [3, 30]. It can be shown that from subject reductionof such a refined type system strong type
soundness for plain terms in the original type system follows [3, 30].

2.3 Termination

We now prove termination of the call-by-value evaluation for λ F
v , using a context variant of Girard’s

method of reducibility candidates [15]. Our definition of a reducibility candidate is simpler than in
Girard’s proof of strong normalization for system F, because we are interested only in the termination of
the call-by-value evaluation, not in strong normalization. Moreover, we exploit the structure of the call-
by-value continuation-passing style [16, 18, 26] that underlies the semantics of the language we consider,
and therefore the central role in the proof is played by predicates on evaluation contexts (representing
continuations) and on values, and not on arbitrary terms.

First, we define the normalization predicateN (p) as follows:

N (p) := ∃v. p→∗v v,

i.e., a programp normalizes (N (p) holds) if it reduces in several steps to a value.

20 Proving termination of evaluation for System F with controloperators

Definition 1 (Reducibility candidate). A reducibility candidateR of type S is any set of closed values of
type S.

We writeRC (S) for the set of reducibility candidates of typeS. For each reducibility candidateR
of typeS, we define the associated predicateCR on closed contexts of type¬S as follows:

CR(E) := ∀v.v ∈R→N (E[v])

As in the original proof, we introduce the notion of parametric reducibility candidates. However, we
base our definition on the CPS interpretation of terms ratherthan on the direct-style interpretation. LetS
be a type,ftv (S)⊆ ~X 2 , ~T be a sequence of types of the same size as~X , and ~R be such thatRi ∈RC (Ti).
We define the parametric reducibility candidateREDS[~R/~X] by induction onS:

v ∈ REDXi[
~R/~X] iff v ∈Ri

v0 ∈ REDS1→S2[
~R/~X] iff ∀v1.v1 ∈ REDS1[

~R/~X]→∀E.CREDS2[
~R/~X](E)→N (E[v0 v1])

v ∈ RED∀c.S[~R/~X] iff ∀U.∀S .S ∈RC (U)→∀E.CREDS[~R/~X ,S /c](E)→N (E[v{U}])

It is easy to see thatREDS[~R/~X] ∈ RC (S{~T/~X}). To prove the main result, we need a substitution
lemma.

Lemma 2. We have REDS{T/c}[~R/~X] = REDS[~R/~X ,REDT [~R/~X]/c].

Proof. By induction onS.
We are now ready to state the main lemma:

Lemma 3. Let t be a plain term such that Γ;∆ ⊢ t : S, Γ = x1 :T1, . . ., xn : Tn, and ∆ = k1 :¬U1, . . ., km :
¬Um. Let {X1, . . . ,Xp} = ftv (S)∪ ftv (Γ)∪ ftv (∆). Let ~V be a sequence of types of length p, and ~R be
reducibility candidates such that Ri ∈RC (Vi) for all i = 1, . . . , p. Let~v be closed values such that ·; · ⊢
vi : Ti{~V/~X} and vi ∈ REDTi[

~R/~X] for all i = 1, . . . ,n. Let~E be closed contexts such that ·; · ⊢ Ei : ¬Ui

and CREDUi [
~R/~X]

(Ei) for all i = 1, . . . ,m, and let E be such that ·; · ⊢ E : ¬S and CREDS[~R/~X]
(E). Then

N (E[t{~V/~X ,~v/~x, ~pEq/~k}]) holds.

Proof. By induction ont.

• In the caset = xi, we havet{~V/~X ,~v/~x, ~pEq/~k}= vi, as well asTi = S. Becausevi ∈ REDTi[
~R/~X],

by definition ofCREDTi [
~R/~X](E), we have the required result.

• In the caset = λxS1.s, we haveS = S1→ S2. Let s′ = s{~V/~X ,~v/~x, ~pEq/~k} andS′1 = S1{~V/~X};
thent{~V/~X ,~v/~x, ~pEq/~k} = λxS′1.s′. We now prove thatλxS′1.s′ ∈ REDS[~R/~X]; from that we can
deduce the required result by the definition ofCREDS[~R/~X]

(E). Let v be such thatv ∈ REDS1[
~R/~X],

and letE′ be such thatCREDS2[
~R/~X](E

′). We haveE′[(λxS′1.s′) v]→v E′[s′{v/x}]. By the induction

hypothesis, we haveN (E′[s′{v/x}]), thereforeN (E′[(λxS′1.s′)v]) holds. Consequently,λxS′1.s′ ∈
REDS[~R/~X] as required.

• In the caset = t0 t1, we haveΓ;∆ ⊢ t0 : S′ → S and Γ;∆ ⊢ t1 : S′ for someS′. Let t ′0 =

t0{~V/~X ,~v/~x, ~pEq/~k}, t ′1 = t1{~V/~X ,~v/~x, ~pEq/~k}; then t{~V/~X ,~v/~x, ~pEq/~k} = t ′0 t ′1. We then have
E[t ′0 t ′1] = E t ′1[t

′
0], and to conclude, we would like to apply the induction hypothesis tot0. To this

2Henceforth, for any metavariablem, we write~m to range over sequences of entities denoted bym.

M. Biernacka, D. Biernacki, S. Lenglet & M. Materzok 21

end, we have to prove thatCREDS′→S[
~R/~X](E t ′1) holds. Letv0 be such thatv0 ∈ REDS′→S[~R/~X].

We want to prove thatN (E t ′1[v0]) holds, which is equivalent to proving thatN ((v0 E)[t ′1])
holds. Again, we want to prove this fact by using the induction hypothesis ont1, but to do
this, we first have to prove thatCREDS′ [

~R/~X](v0 E) holds. Letv1 be such thatv1 ∈ REDS′[~R/~X].

Since we havev0 ∈ REDS′→S[~R/~X] and CREDS[~R/~X]
(E), thereforeN (E[v0 v1]) holds, i.e., we

have N ((v0 E)[v1]). Consequently,CREDS′ [
~R/~X](v0 E) holds. Therefore, we can use the in-

duction hypothesis ont1 to deduce thatN ((v0 E)[t ′1]) holds. As a result, we therefore have
CREDS′→S[

~R/~X](E t ′1) and we can prove the required fact by using the induction hypothesis ont0.

• In the caset = Λc.s, S = ∀c.S′ for someS′. Let s′ = s{~V/~X ,~v/~x, ~pEq/~k} andt{~V/~X ,~v/~x, ~pEq/~k}=
Λc.s′. We now prove thatΛc.s′ ∈ REDS[~R/~X]; the required result then holds by the definition of
CREDS[~R/~X](E). Let V ′ be a type and letR ′ ∈RC (V ′). Let E′ be such thatCREDS′ [

~R/~X ,R′/c](E
′)

holds. We haveE′[(Λc.s′){V ′}] →v E′[s′{V ′/c}]. By the induction hypothesis, we have that
N (E′[s′{V ′/c}]) holds, therefore we obtain thatN (E′[(Λc.s′){V ′}]) holds as required.

• In the caset = t0{V ′}, we haveΓ;∆ ⊢ t0 : ∀c.S′ with S = S′{V ′/c} for someS′. Let t ′0 =

t0{~V/~X ,~v/~x, ~pEq/~k} andV ′′ = V ′{~V/~X}; we havet{~V/~X ,~v/~x, ~pEq/~k} = t ′0{V
′′}, E[t ′0{V

′′}] =
E {V ′′}[t ′0]. To conclude, we want to apply the induction hypothesis tot0, but first we have to
prove thatCRED∀c.S′ [~R/~X]

(E {V ′′}) holds. Letv be such thatv ∈ RED∀c.S′[~R/~X]. By Lemma 2,

REDS′{V ′/c}[~R/~X] = REDS′[~R/~X ,REDV ′ [~R/~X]/c] and henceCREDS′ [
~R/~X ,REDV ′ [

~R/~X]/c](E) holds.

Besides, we have thatREDV ′ [~R/~X] ∈RC (V ′′) holds, so by the definition ofRED∀c.S′[~R/~X] we
obtainN (E[v{V ′′}]), i.e.,N (E {V ′′}[v]) holds. Therefore,CRED∀c.S′ [~R/~X](E {V

′′}) holds, hence
we have the required result by using the induction hypothesis ons.

• Supposet =K k.s. Let s′ = s{~V/~X ,~v/~x, ~pEq/~k}. We then have the equalityt{~V/~X ,~v/~x, ~pEq/~k}=
K k.s′. SinceE[K k.s′]→v E[s′{pEq/k}], we obtainN (E[s′{pEq/k}]) by the induction hypothe-
sis, and thereforeN (E[K k.s′]) holds.

• Supposet = ki ←֓ s. Let s′= s{~V/~X ,~v/~x, ~pEq/~k}. We then have the equalityt{~V/~X ,~v/~x, ~pEq/~k}=
pEiq ←֓ s′. The programE[pEiq ←֓ s′] is equivalent to(pEiq ←֓ E)[s′], so we need to prove that
N ((pEiq ←֓ E)[s′]) holds, applying the induction hypothesis tos. To this end, we first prove that
CREDUi[

~R/~X]
(pEiq ←֓ E) holds. Letv be such thatv ∈ REDUi[

~R/~X]. The program(pEiq ←֓ E)[v]

is equivalent toE[pEiq ←֓ v]. We haveE[pEiq ←֓ v]→v Ei[v], and sinceCREDUi [
~R/~X](Ei) holds, we

obtainN (Ei[v]). Consequently,N ((pEiq ←֓ E)[v]) holds.

Theorem 1. If p is a well-typed program, then N (p) holds.

Proof. We haveCR([]) for anyR, therefore we can use the previous lemma.
The proof of Theorem 1 is constructive and its computationalcontent is a call-by-value evaluator for

plain terms in the continuation-passing style that is an instance of normalization by evaluation [3, 4].

2.4 Call by name

The proof method can be adapted to the call-by-name strategy, again by using a corresponding conti-
nuation-passing style interpretation of terms [16, 18, 26]. In this case, the syntax of reduction contexts

22 Proving termination of evaluation for System F with controloperators

becomes:
CBN contexts: E ::= [] | E t | E {S}

and the reduction rules are modified in that a lambda abstraction and a throwing operation can be applied
to an arbitrary term instead of only to a value, in the rules(βn) and(thrown) below:

E[(λxS.t0) t1] →n E[t0{t1/x}] (βn)

E[(ΛX .t){S}] →n E[t{S/X}] (βT)

E[K k.t] →n E[t{pEq/k}] (callcc)

E1[pE0q ←֓ t] →n E0[t] (thrown)

The type system is as before, except there are fewer rules fortyping contexts. In the remainder of
this section we briefly point out the main differences in the proof of termination of evaluation between
the call-by-value and the call-by-name strategies.

A reducibility candidate of typeS in call by name is a set of values of typeS (where values are as in
call by value), and the definition of the associated predicate CR is the same as in call by value, except
that the predicateN (·) is defined using the call-by-name reduction relation→n.

However, parametric reducibility candidates are defined ina substantially different way, reflecting
the call-by-name strategy. LetS be a type,ftv (S) ⊆ ~X , ~T be a sequence of types of the same size as~X ,
and ~R be reducibility candidates such that eachRi is of typeTi. We define the parametric reducibility
candidateREDS[~R/~X] of typeS{~T/~X} as follows:

v ∈ REDXi[
~R/~X] iff v ∈Ri

v ∈ REDS1→S2[
~R/~X] iff ∀t.QREDS1[

~R/~X](t)→QREDS2[
~R/~X](v t)

v ∈ RED∀c.S[~R/~X] iff ∀U.∀S .S ∈RC (U)→∀E.CREDS[~R/~X ,S /c](E)→N (E[v{U}])

with
QR(t) = ∀E.CR(E)→N (E[t])

The predicateQ used in the second clause of this definition reflects the fact that a term given as argu-
ment to a function is not yet a value (whose reducibility is immediate), but it can be seen as a delayed
computation that may be forced later, by putting it in a context.

The main lemma is now formulated as follows:

Lemma 4. Let t be a plain term such that Γ;∆ ⊢ t : S, Γ = x1 :T1, . . ., xn : Tn, and ∆ = k1 :¬U1, . . ., km :
¬Um. Let {X1, . . . ,Xp} = ftv (S)∪ ftv (Γ)∪ ftv (∆). Let ~V be a sequence of types of length p, and let
~R be reducibility candidates such that Ri ∈ RC (Vi) for all i = 1, . . . , p. Let~t be closed terms such
that ·; · ⊢ ti : Ti{~V/~X} and QREDTi [

~R/~X](ti) for all i = 1, . . . ,n. Next, let ~E be closed contexts such

that ·; · ⊢ Ei : ¬Ui and CREDUi [
~R/~X](Ei) for all i = 1, . . . ,m, and let E be such that ·; · ⊢ E : ¬S and

CREDS[~R/~X](E). Then N (E[t{~V/~X ,~t/~x,~E/~k}]) holds.

The termination of call-by-name evaluation for well-typedprograms follows from Lemma 4. As
before, the computational content of the proof takes the form of an evaluator, only this time in the call-
by-name continuation-passing style.

In [25], Parigot gives a proof of strong normalization for the second-order (i.e., with the types of
System F)λ µ-calculus using a variant of Girard’s method of reducibility candidates. Parigot’s proof and
ours share some similarities, even though the results are quite different in nature (strong normalization

M. Biernacka, D. Biernacki, S. Lenglet & M. Materzok 23

vs. termination of a particular strategy) and Parigot’s proof is more general in that it can be applied to
the implicitly typed as well as to the explicitly typed language. The key point in Parigot’s proof is the
following reducibility candidates characterization result: for all reducibility candidatesR, there exists a
setS of (possibly empty) finite sequences of strongly normalizing terms such that we havet ∈R iff for
all ~s ∈S , t~s is strongly normalizing. The greatest such setS is denoted byR⊥. The characterization
result is then used to prove a lemma similar to Lemma 3.

The finite sequences of terms can be seen as (call-by-name) contexts in our setting. Moreover, we
notice that~s ∈ R⊥ iff for all t ∈ R, t~s is strongly normalizing; this resembles the definition of the
reducibility predicates on contextsCR in our proof. However, the terms in a sequence~s have to be
strongly normalizing in Parigot’s proof, while we do not have a similar requirement on contexts. This
fact will have consequences for program extraction; the program extracted from our proof would be an
evaluator in CPS style where contexts (continuations) are passed around without being deconstructed (as
in [3]).

3 System F with delimited control operators

In this section, we prove termination of the call-by-value evaluation in an extension of the explicitly
typed System F with the delimited control operatorsshift andreset of Danvy and Filinski [12]. While the
abortive control operators such ascallcc model jumps,shift andreset allow for delimited-control capture
and continuation composition.

3.1 Syntax and semantics

We extend the explicitly typed System F with the operatorsshift S , reset 〈·〉, andthrow ←֓ . We call the
languageλ F

S ,v. The syntax of terms, term types, contexts, and metacontexts of λ F
S ,v is given as follows:

Terms: t ::= x | λxS.t | t t | ΛX .t | t{S} | S k.t | 〈t〉 | k ←֓ t | pEq ←֓ t

Term types: S ::= X | S S→S S | ∀X .SS,S

CBV contexts: E ::= [] | (λxS.t) E | E t | E {S} | pEq ←֓ E

Metacontexts: F ::= • | E #F

The new term constructs are theshift operatorS k.t binding the continuation variablek in t, and a term
delimited byreset, denoted〈t〉. The remaining term constructs are as before. The (non-standard) syntax
of types is discussed in Section 3.2. The syntax of reductioncontexts is the same as in Section 2.1, and
terms are plugged in contexts using a functionplug, defined in a similar manner as before.

The new syntactic category is that of metacontexts. A metacontext can be understood as a stack
of contexts:• is the empty metacontext and the metacontextE #F is obtained by pushing the context
E on top ofF with each context in the stack separated from the rest by a delimiter. The meaning of
metacontexts is formalized through a functionplugm, defined below:

plugm (t,•) = t

plugm (t,E #F) = plugm (〈plug (t,E)〉,F)

The result ofplugm (t,F) is denoted byF[t].
Programs are closed plain terms delimited by areset. A programp is subject to decompositions into

a termt, a contextE and a metacontextF such thatp = F[〈E[t]〉].

24 Proving termination of evaluation for System F with controloperators

The call-by-value reduction relation on programs inλ F
S ,v is defined by the following rules:

F[〈E[(λxS.t) v]〉] →v F[〈E[t{v/x}]〉] (βv)

F[〈E[(ΛX .t){S}]〉] →v F[〈E[t{S/X}]〉] (βT)

F[〈E[S k.t]〉] →v F[〈t{pEq/k}〉] (shift)

F[〈E[pE′q ←֓ v]〉] →v E #F[〈E′[v]〉] (throwv)

F[〈E[〈v〉]〉] →v F[〈E[v]〉] (reset)

where values are defined as before. The first two reduction rules are standard (and insensitive to the
surrounding context and metacontext). The rule(shift) states that reducingS k.t consists in capturing
the contextE and substituting it for the continuation variablek in the bodyt (the current context is then
set to be empty). When a captured contextE′ is applied to a value (in the rule(throwv)), it is reinstated as
the current context, and the then-current contextE is pushed on the metacontextF. Finally, the last rule
states that when a value is enclosed in areset, it means that thereset can be discarded since no further
captures can occur inside it.

The evaluation relation→∗v is defined as before, where the expected result of evaluationis a program
value of the form〈v〉.

3.2 Type system

We add System F types to the type system of Biernacka and Biernacki [4], which is a slight modification
of the classical Danvy and Filinski’s type system forshift andreset [11]. The type system is presented in
Figure 2. In a type∀X .ST,U , the quantifier binds the occurrences ofX in S,T , andU . We define the set
of free type variablesftv (S) of a term typeS accordingly, and we defineftv (S⊲T) := ftv (S)∪ ftv(T).

In this system, contexts are assigned types of the formS⊲T , whereS is the type of the hole andT
is the answer type, and metacontexts are assigned types of the form¬S, whereS is the type of the hole.
A typing judgmentΓ;∆ | T ⊢ t : S |U roughly means that under the assumptionsΓ and∆, the termt
can be plugged into a context of typeS⊲T and a metacontext of type¬U (in general, the evaluation of
t may use the surrounding context of typeS⊲ T to produce a value of typeU , with T 6= U). Because
both abstractionsλxS.t andΛX .t denote “frozen” computations—waiting for a term and a type,resp.,
to activate them—the arrow type and the∀-type contain additional type annotations. Roughly, the type
SU →V T is assigned to a function that can be applied to an argument oftypeS within a context of type
T ⊲U and a metacontext of type¬V . Similarly, the type∀X .ST,U is assigned to a term that can be applied
to a typeV within a context of typeS{V/X}⊲T{V/X} and a metacontext of type¬U{V/X}. It can be
shown that closed well-typed terms either are values or decompose uniquely into a redex, a context and
a metacontext, and that the reduction rules preserve types.

The type system of Figure 2 is more liberal than the one definedfor λ s/r,Std
2 , a language defined by

Asai and Kameyama in [2], which is similar toλ F
S ,v. In [2], polymorphic abstraction types do not contain

any additional type annotations, and can only be assigned toabstractionsΛX .t wheret is a pure term,
i.e., a term such thatΓ;∆ |T ⊢ t : S |T is derivable for anyT . Pure terms are terms free from control
effects, such asx, λxS.t, 〈t〉, or ΛX .t. In contrast, we allow arbitrary abstractions of the formΛX .t, at
the cost of additional type annotations in the polymorphic abstraction types. As pointed out by Asai
and Kameyama, restricting∀-introduction to pure terms is not mandatory in a calculus with standard
call-by-value evaluation, such asλ s/r,Std

2 and our calculus. However, such restriction becomes necessary

M. Biernacka, D. Biernacki, S. Lenglet & M. Materzok 25

Typing terms (S ::= X | SU →V T | ∀X .ST,U):

Γ, x : S;∆ |T ⊢ x : S |T

Γ, x : S;∆ |U ⊢ t : T |V

Γ;∆ |W ⊢ λxS.t : SU →V T |W

Γ;∆ |X ⊢ t0 : SU →W T |V Γ;∆ |W ⊢ t1 : S |X

Γ;∆ |U ⊢ t0 t1 : T |V

Γ;∆ |T ⊢ t : S |U X /∈ ftv (Γ)∪ ftv(∆)
Γ;∆ |V ⊢ ΛX .t : ∀X .ST,U |V

Γ;∆ |U{V/X} ⊢ t : ∀X .ST,U |W

Γ;∆ |T{V/X} ⊢ t{V} : S{V/X} |W

Γ;∆ |U ⊢ t : U |S

Γ;∆ |T ⊢ 〈t〉 : S |T

Γ;∆, k : S⊲T |V ⊢ t : V |U

Γ;∆ |T ⊢ S k.t : S |U

Γ;∆, k : S⊲T |U ⊢ t : S |V

Γ;∆, k : S⊲T |U ⊢ k ←֓ t : T |V

Γ;∆ ⊢ E : S⊲T Γ;∆ |U ⊢ t : S |V

Γ;∆ |U ⊢ pEq ←֓ t : T |V

Typing contexts (C ::= S⊲T):

Γ;∆ ⊢ [] : S⊲S

Γ;∆ ⊢ E : T ⊲U Γ;∆ |V ⊢ t : S |W

Γ;∆ ⊢ E t : (SU →V T)⊲W

Γ;∆ |W ⊢ λxS.t : SU →V T |W Γ;∆ ⊢ E : T ⊲U

Γ;∆ ⊢ (λxS.t) E : S⊲V

Γ;∆ ⊢ E : S{V/X}⊲T{V/X}

Γ;∆ ⊢ E {V} : ∀X .ST,U
⊲U{V/X}

Γ;∆ ⊢ E′ : S⊲T Γ;∆ ⊢ E : T ⊲U

Γ;∆ ⊢ pE′q ←֓ E : S⊲U

Typing metacontexts (D ::= ¬S):

Γ;∆ ⊢ • : ¬S

Γ;∆ ⊢ E : S⊲T Γ;∆ ⊢ F : ¬T

Γ;∆ ⊢ E #F : ¬S

Figure 2: Typing rules for System F with delimited control operators under call by value

for the calculusλ s/r,ML
2 of [2] with ML-like call-by-value evaluation (where reduction is allowed under

Λ) for subject reduction to hold.

3.3 Termination

The proof of termination is very similar to that of Section 2.3, and here we only point out the main
differences. This time our development is based on the layered continuation-passing style forshift and
reset, where terms are passed two layers of continuations [12].

We define the normalization predicateN (p) as follows:

N (p) := ∃v. p→∗v 〈v〉

A reducibility candidate R of typeS is a set of closed values of typeS. We writeRC (S) for the set of
reducibility candidates of typeS. Let R, S be reducibility candidates of typesS andT , respectively.
We define the predicateCR,S (E) on closed contexts of typeS⊲T and the predicateMR(F) on closed

26 Proving termination of evaluation for System F with controloperators

metacontexts of type¬S as follows:

CR,S (E) := ∀v.v ∈R→∀F.MS (F)→N (F[〈E[v]〉])

MR(F) := ∀v.v ∈R→N (F[〈v〉])

Let S be a type,ftv (S)⊆ ~X , ~T be a sequence of types of the same size as~X , and ~R be reducibility candi-
dates such that eachRi is of typeTi. We now define the parametric reducibility candidateREDS[~R/~X]
of typeS{~T/~X} as follows:

v ∈ REDXi[
~R/~X] iff v ∈Ri

v0 ∈ REDS U→V T [~R/~X] iff ∀v1.v1 ∈ REDS[~R/~X]→∀E.CREDT [~R/~X],REDU [~R/~X](E)→

∀F.MREDV [~R/~X]
(F)→N (F[〈E[v0 v1]〉])

v ∈ RED∀c.ST,U [~R/~X] iff ∀V.∀S .S ∈RC (V)→∀E.CREDS[~R/~X ,S /c],REDT [~R/~X ,S /c](E)→

∀F.MREDU [~R/~X ,S /c](F)→N (F[〈E[v{V}]〉])

Using a substitution lemma similar to Lemma 2, we can prove the following result, from which the
termination theorem follows for closed plain terms:

Lemma 5. Let t be a plain term such that Γ;∆ |T ⊢ t : S |U, Γ = x1 :T1, . . ., xn : Tn, ∆ = k1 :C1, . . ., km :
Cm. Let {X1, . . . ,Xp} = ftv (S)∪ ftv (T)∪ ftv (U)∪ ftv (Γ)∪ ftv (∆). Let ~V be a sequence of types of
length p, and let ~R be reducibility candidates such that Ri ∈ RC (Vi). Let ~v be closed values such
that ·; · |W ⊢ vi : Ti{~V/~X} |W and vi ∈ REDTi[

~R/~X] for each i. Let ~E be closed contexts such that
·; · ⊢ Ei : Ci, Ci = W 1

i ⊲W 2
i , and CRED

W1
i
[~R/~X],RED

W2
i
[~R/~X](Ei) for each i. Let E be such that ·; · ⊢

E : S⊲ T and CREDS[~R/~X],REDT [~R/~X](E). Let F be such that ·; · ⊢ F : ¬U and MREDU [~R/~X](F). Then

N (F[〈E[t{~V/~X ,~v/~x,~E/~k}]〉]) holds.

Theorem 2. If p is a well-typed program, then N (p) holds.

Proof. We haveCR,R([]) for anyR andMR(•) for anyR, so we can use the previous lemma.
Again, the computational content of this proof takes the form of an evaluator in CPS, this time with

two layers of continuations [4].

3.4 Call by name

The developments of the previous section can be easily adapted to the call-by-name strategy. Follow-
ing [4], we modify the syntax of types to express the fact thatfunctions accept not values, but suspended
computations expecting a continuation:

Terms: t ::= x | λxSS,S
.t | . . .

Term types: S ::= X | SS,S
S→S S | ∀X .SS,S

The syntax of reduction contexts is modified:

CBN contexts: E ::= [] | E t | E {S}

M. Biernacka, D. Biernacki, S. Lenglet & M. Materzok 27

The reduction rules are modified as in Section 2.4:

F[〈E[(λxST,U
.t0) t1]〉] →n F[〈E[t0{t1/x}]〉] (βn)

F[〈E[(ΛX .t){S}]〉] →n F[〈E[t{S/X}]〉] (βT)

F[〈E[S k.t]〉] →n F[〈t{pEq/k}〉] (shift)

F[〈E[pE′q ←֓ t]〉] →n E #F[〈E′[t]〉] (thrown)

F[〈E[〈v〉]〉] →n F[〈E[v]〉] (reset)

The typing rules for abstractions, function applications and throwing are changed, as in [4]. The
modified rules for abstractions and function applications are as follows:

Γ, x : ST,U ;∆ |W ⊢ t : V |X

Γ;∆ |Y ⊢ λxST,U
.t : ST,U

W →X V |Y

Γ;∆ |X ⊢ t0 : ST,U
W →X V |Y Γ;∆ |T ⊢ t1 : S |U

Γ;∆ |W ⊢ t0 t1 : V |Y

We also modify the rules for typing contexts in a straightforward way.
We define reducibility candidates and the predicatesCR,S andMT as in call by value, the predicate

N (·) is defined using→n, the call by name reduction relation. The case for function types in the
definition of the parametric reducibility candidates is as in Section 2.4. The definition of theQS ,T

R
is

adapted to the language withshift andreset.

v ∈ REDXi[
~R/~X] iff v ∈Ri

v ∈ REDST,U
W→XV [~R/~X] iff ∀t.QREDT [~R/~X],REDU [~R/~X]

REDS[~R/~X]
(t)→Q

REDW [~R/~X],REDX [~R/~X]

REDV [~R/~X]
(v t)

v ∈ RED∀c.ST,U [~R/~X] iff ∀V.∀S .S ∈RC (V)→∀E.CREDS[~R/~X ,S /c],REDT [~R/~X ,S /c](E)→

∀F.MREDU [~R/~X ,S /c](F)→N (F[〈E[v{V}]〉])

with
Q

S ,T
R

(t) = ∀E.CR,S (E)→∀F.MT (F)→N (F[〈E[t]〉])

The main lemma is as follows:

Lemma 6. Let t be a plain term such that Γ;∆ | T ⊢ t : S |U, Γ = x1 :ST1,U1
1 , . . ., xn : STn,Un

n , ∆ =
k1 :C1, . . ., km : Cm. Let {X1, . . . ,Xp}= ftv (S)∪ ftv (T)∪ ftv(U)∪ ftv (Γ)∪ ftv (∆). Let ~V be a sequence of
types of length p, and let ~R be reducibility candidates such that Ri ∈RC (Vi). Let~r be closed terms such

that ·; · |Ti{~V/~X} ⊢ ri : Si{~V/~X} |Ui{~V/~X} and Q
REDTi [

~R/~X],REDUi [
~R/~X]

REDSi [
~R/~X]

(ri) for each i. Let ~E be closed

contexts such that ·; · ⊢ Ei : Ci, Ci =W 1
i ⊲W 2

i , and CREDW1
i
[~R/~X],REDW2

i
[~R/~X]

(Ei) for each i. Let E be such

that ·; · ⊢ E : S⊲T and CREDS[~R/~X],REDT [~R/~X](E). Let F be such that ·; · ⊢ F : ¬U and MREDU [~R/~X](F).

Then N (F[〈E[t{~V/~X ,~r/~x,~E/~k}]〉]) holds.

4 Conclusion and perspectives

We have shown that the context-based proof method developedby the first two authors for the simply-
typed lambda calculus with control operators, be they abortive or delimited, scales to much more expres-
sive type systems based on System F. The presented proofs arerather simple and elegant, and they do
not require a journey through an optimized CPS translation in order to show termination of evaluation

28 Proving termination of evaluation for System F with controloperators

for such calculi. Furthermore, if formalized in a logical framework equipped with program extraction
mechanism, they can lead to executable specifications of programming languages with control operators
and polymorphism—which is left as future work.

The proof method we have proposed is tailored towards characterization of termination in a wide
range of context-sensitive reduction semantics that account for arbitrary reduction strategies or advanced
control operators. For example, the proof of termination for delimited-control operators of Section 3 can
be straightforwardly generalized to a polymorphic versionof the CPS hierarchy of Danvy and Filinski [6,
12]. Similarly, we expect that one could consider a call-by-need version of System F, e.g., based on [13]
and readily apply the context-based method to it. Such results do not seem to be immediately obtainable
in other frameworks, e.g., using orthogonality techniques.

Acknowledgments: We thank the anonymous reviewers for detailed and insightful comments on
several versions of this article. This work has been partially supported by Polish NCN grant number
DEC-011/03/B/ST6/00348.

References

[1] Z. M. Ariola, H. Herbelin, and A. Sabry. A proof-theoretic foundation of abortive continuations.Higher-
Order and Symbolic Computation, 20(4):403–429, 2007. doi:10.1007/s10990-007-9007-z.

[2] K. Asai and Y. Kameyama. Polymorphic delimited continuations. 5th Asian Symposium on Programming
Languages and Systems, APLAS’07, number 4807 in LNCS, pages 239–254, Singapore, Dec. 2007. doi:10.
1007/978-3-540-76637-7_16.

[3] M. Biernacka and D. Biernacki. A context-based approachto proving termination of evaluation.25th Annual
Conference on Mathematical Foundations of Programming Semantics, Oxford, UK, Apr. 2009. doi:10.
1016/j.entcs.2009.07.090.

[4] M. Biernacka and D. Biernacki. Context-based proofs of termination for typed delimited-control opera-
tors.11th ACM-SIGPLAN International Conference on Principles and Practice of Declarative Programming
(PPDP’09), Coimbra, Portugal, Sept. 2009. doi:10.1145/1599410.1599446.

[5] M. Biernacka, D. Biernacki, and O. Danvy. An operationalfoundation for delimited continuations in the
CPS hierarchy.Logical Methods in Computer Science, 1(2:5):1–39, Nov. 2005. doi:10.2168/LMCS-1(2:
5)2005.

[6] M. Biernacka, D. Biernacki, and S. Lenglet. Typing control operators in the CPS hierarchy.13th ACM-
SIGPLAN International Conference on Principles and Practice of Declarative Programming (PPDP’11),
Odense, Denmark, July 2011. doi:10.1145/2003476.2003498.

[7] P.-L. Curien and H. Herbelin. The duality of computation. 2000 ACM SIGPLAN International Conference on
Functional Programming (ICFP’00), SIGPLAN Notices, Vol. 35, No. 9, pages 233–243, Montréal,Canada,
Sept. 2000. ACM Press. doi:10.1145/351240.351262.

[8] V. Danos, J.-B. Joinet, and H. Schellinx. A new deconstructive logic: Linear logic. Journal of Symbolic
Logic, 62(3):755–807, 1997. doi:10.2307/2275572.

[9] V. Danos and J.-L. Krivine. Disjunctive tautologies as synchronisation schemes.Computer Science
Logic, 14th Annual Conference of the EACSL, Fischbachau, Germany, August 21-26, 2000, Proceed-
ings, volume 1862 ofLecture Notes in Computer Science, pages 292–301. Springer, 2000. doi:10.1007/
3-540-44622-2_19.

[10] O. Danvy. Defunctionalized interpreters for programming languages.2008 ACM SIGPLAN International
Conference on Functional Programming (ICFP’08), SIGPLAN Notices, Vol. 43, No. 9, Victoria, British
Columbia, Sept. 2008. doi:10.1145/1411203.1411206.

[11] O. Danvy and A. Filinski. A functional abstraction of typed contexts. DIKU Rapport 89/12, DIKU, Computer
Science Department, University of Copenhagen, Copenhagen, Denmark, July 1989.

http://dx.doi.org/10.1007/s10990-007-9007-z
http://dx.doi.org/10.1007/978-3-540-76637-7_16
http://dx.doi.org/10.1007/978-3-540-76637-7_16
http://dx.doi.org/10.1016/j.entcs.2009.07.090
http://dx.doi.org/10.1016/j.entcs.2009.07.090
http://dx.doi.org/10.1145/1599410.1599446
http://dx.doi.org/10.2168/LMCS-1(2:5)2005
http://dx.doi.org/10.2168/LMCS-1(2:5)2005
http://dx.doi.org/10.1145/2003476.2003498
http://dx.doi.org/10.1145/351240.351262
http://dx.doi.org/10.2307/2275572
http://dx.doi.org/10.1007/3-540-44622-2_19
http://dx.doi.org/10.1007/3-540-44622-2_19
http://dx.doi.org/10.1145/1411203.1411206

M. Biernacka, D. Biernacki, S. Lenglet & M. Materzok 29

[12] O. Danvy and A. Filinski. Abstracting control.1990 ACM Conference on Lisp and Functional Programming,
pages 151–160, Nice, France, June 1990. doi:10.1145/91556.91622.

[13] O. Danvy, K. Millikin, J. Munk, and I. Zerny. Defunctionalized interpreters for call-by-need evaluation.
Functional and Logic Programming, 10th International Symposium, FLOPS 2010, number 6009 in LNCS,
pages 240–256, Sendai, Japan, Apr. 2010. doi:10.1007/978-3-642-12251-4_18.

[14] M. Felleisen and D. P. Friedman. Control operators, theSECD machine, and theλ -calculus. Formal De-
scription of Programming Concepts III, pages 193–217. Elsevier Science Publishers B.V. (North-Holland),
Amsterdam, 1986.

[15] J.-Y. Girard, Y. Lafont, and P. Taylor.Proofs and Types, volume 7 ofCambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1989.

[16] T. G. Griffin. A formulae-as-types notion of control.17th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 47–58, San Francisco, California, Jan. 1990. doi:10.1145/96709.96714.

[17] R. Harper, B. F. Duba, and D. MacQueen. Typing first-class continuations in ML.Journal of Functional
Programming, 3(4):465–484, Oct. 1993. doi:10.1017/S095679680000085X.

[18] R. Harper and M. Lillibridge. Operational interpretations of an extension of Fω with control operators.
Journal of Functional Programming, 6(3):393–418, 1996. doi:10.1017/S0956796800001775.

[19] S. Ikeda and K. Nakazawa. Strong normalization proofs by CPS-translations.Information Processing Letters,
99(4):163–170, 2006. doi:10.1016/j.ipl.2006.03.009.

[20] Y. Kameyama and K. Asai. Strong normalization of polymorphic calculus for delimited continuations.The
Austrian-Japanese Workshop on Symbolic Computation in Software Science (SCSS 2008), RISC-Linz Report
Series No. 08-08, pages 96–108, Hagenberg, Austria, July 2008.

[21] J.-L. Krivine. Realizability in classical logic.Interactive models of computation and program behaviour,
27:197–229, 2009.

[22] S. Lengrand and A. Miquel. Classical Fω , orthogonality and symmetric candidates.Annals of Pure Applied
Logic, 153(1-3):3–20, 2008. doi:10.1016/j.apal.2008.01.005.

[23] S. Lindley and I. Stark. Reducibility and TT-lifting for computation types:.Typed Lambda Calculi and
Applications, 7th International Conference, TLCA 2005, volume 3461 ofLecture Notes in Computer Science,
pages 262–277. Springer, 2005. doi:10.1007/11417170_20.

[24] P.-A. Melliès and J. Vouillon. Recursive polymorphictypes and parametricity in an operational framework.
20th Annual IEEE Symposium on Logic in Computer Science, pages 82–91, Chicago, IL, June 2005. IEEE
Computer Society Press. doi:10.1109/LICS.2005.42.

[25] M. Parigot. Proofs of strong normalisation for second order classical natural deduction.Journal of Symbolic
Logic, 62(4):1461–1479, 1997. doi:10.2307/2275652.

[26] G. D. Plotkin. Call-by-name, call-by-value and theλ -calculus.Theoretical Computer Science, 1:125–159,
1975. doi:10.1016/0304-3975(75)90017-1.

[27] H. Schwichtenberg. Proofs, lambda terms and control operators.Logic of Computation, volume 157 of Series
F: Computer and Systems Sciences, NATO ASI Series, Marktoberdorf, Germany, July 25 - August 6, 1995,
pages 309–347, 1997. doi:10.1007/978-3-642-59048-1_9.

[28] W. W. Tait. Intensional interpretation of functionalsof finite type I. Journal of Symbolic Logic, 32:198–212,
1967. doi:10.2307/2271658.

[29] A. S. Troelstra, editor.Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, volume 344
of Lecture Notes in Mathematics. Springer-Verlag, 1973. doi:10.1007/BFb0066739.

[30] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.Information and Computation,
115:38–94, 1994. doi:10.1006/inco.1994.1093.

http://dx.doi.org/10.1145/91556.91622
http://dx.doi.org/10.1007/978-3-642-12251-4_18
http://dx.doi.org/10.1145/96709.96714
http://dx.doi.org/10.1017/S095679680000085X
http://dx.doi.org/10.1017/S0956796800001775
http://dx.doi.org/10.1016/j.ipl.2006.03.009
http://dx.doi.org/10.1016/j.apal.2008.01.005
http://dx.doi.org/10.1007/11417170_20
http://dx.doi.org/10.1109/LICS.2005.42
http://dx.doi.org/10.2307/2275652
http://dx.doi.org/10.1016/0304-3975(75)90017-1
http://dx.doi.org/10.1007/978-3-642-59048-1_9
http://dx.doi.org/10.2307/2271658
http://dx.doi.org/10.1007/BFb0066739
http://dx.doi.org/10.1006/inco.1994.1093

	1 Introduction
	2 System F with abortive control operators
	2.1 Syntax and Semantics
	2.2 Type System
	2.3 Termination
	2.4 Call by name

	3 System F with delimited control operators
	3.1 Syntax and semantics
	3.2 Type system
	3.3 Termination
	3.4 Call by name

	4 Conclusion and perspectives

