
U. de’Liguoro and A. Saurin (Eds.):
Control Operators and their Semantics 2013 (COS’13)
EPTCS 127, 2013, pp. 101–112, doi:10.4204/EPTCS.127.7

c© Y. Kakutani and D. Kimura

Induction by Coinduction and Control Operators
in Call-by-Name

Yoshihiko Kakutani
Department of Information Science, University of Tokyo, Japan

kakutani@is.s.u-tokyo.ac.jp

Daisuke Kimura
National Institute of Informatics, Japan

kmr@nii.ac.jp

This paper studies emulation of induction by coinduction ina call-by-name language with control
operators. Since it is known that call-by-name programminglanguages with control operators cannot
have general initial algebras, interaction of induction and control operators is often restricted to
effect-free functions. We show that some class of such restricted inductive types can be derived from
full coinductive types by the power of control operators. Asa typical example of our results, the type
of natural numbers is represented by the type of streams. Theunderlying idea is a counterpart of the
fact that some coinductive types can be expressed by inductive types in call-by-name pure language
without side-effects.

1 Introduction

In programming languages, natural numbers are one of the most important data types. There are many
studies on natural numbers both in the theoretic field and in the practical field. An important feature of
natural numbers is the induction principle. In a set-theoretic approach, the set of natural numbersN is
defined inductively. It means that a functionH from N to a setA is defined by two equations

H0= M

H(n+1) = F(Hn)

whereM ∈ A andF : A→ A. A type of natural numbers can be introduced to the simply typed call-
by-nameλ -calculus, which is core of functional programming languages, in a similar way. Such a
characterization can be regarded as an initial algebra. Forexample, [9] is a typical study of this approach.

In a cartesian closed category with coproducts, which is a model of theλ -calculus, it is known that
a data type of infinite streams is the dual of the data type of natural numbers though streams are less
useful than natural numbers. Intuitively, a stream is an infinite sequence indexed by natural numbers.
This intuition is formalized as an isomorphism of the type ofstreams and the function type from natural
numbers to some data type.

The type of natural numbers can be generalized to inductive types and the type of streams can be
generalized to coinductive types. Semantically, an inductive type is characterized as an initial algebra.
The universality of an initial algebra enables us to define a function on the data type inductively. Coin-
ductive types corresponds to final coalgebras, the dual notion of initial algebras. In the call-by-name
λ -calculus without side-effects, a coinductive type in someclass can be expressed as a function type
from an inductive type. The construction of streams from natural numbers is an example of this method.

The λ µ-calculus, an extension of theλ -calculus with first-class continuations, was introduced by
Parigot in [10]. Selinger has provided a categorical model of the call-by-nameλ µ-calculus in [12].
It has been shown in [13] that control operators cannot coexist with an initial object. Since an initial

http://dx.doi.org/10.4204/EPTCS.127.7

102 Induction by Coinduction and Control Operators in Call-by-Name

object is a special case of initial algebras, existence of general initial algebras is not allowed in theλ µ-
calculus. In such a situation, effect-free functions looksimportant. In the second-orderλ µ-calculus, the
parametricity restricted to focal functions was proposed by [4]. Focal functions are a kind of effect-free
functions and their detailed analyses are found in [12]. In this paper, we propose a reasoning about focal
restriction of initial algebras.

Unlike the case of the pureλ -calculus, theλ µ-calculus may not have general initial algebras. Hence,
coinductive types are not expressed by inductive types. Instead, general coinductive types can exist in
the λ µ-calculus and focally-restricted inductive types can be expressed by function types from coin-
ductive types. This is the main result of this work. Such contravariance between theλ µ-calculus and
the λ -calculus derived from the CPS semantics. Selinger’s CPS transformation from the call-by-name
λ µ-calculus to the simply typedλ -calculus sends product types to coproduct types and premonoidal
disjunction types to product types. This CPS transformation is based on the categorical semantics of the
λ µ-calculus and slightly different from Plotkin’s original CPS transformation [11]. Barthe and Uustalu
have studied a CPS transformation with inductive types and coinductive types in [2], but their transfor-
mation does not deal with the universality.

The construction of this paper is the following. In Section 2, we prepare the target calculus. We
discuss natural numbers and streams in Section 3. In Section4, results given in Section 3 are generalized.
We show some instances of our results in Section 5.

2 CBN Calculus with First-Class Continuations

First, we introduce the base calculus, the call-by-nameλ µ-calculus. Our version of theλ µ-calculus is
based on Selinger’s [12].

Definition 1. TypesA, termsM of the call-by-nameλ µ-calculus are defined by

A ::= τ | A→A | ⊤ | A×A | ⊥ | A∨A

M ::= c | x | λxA.M | MM | 〈〉 | 〈M,M〉 | π1M | π2M | µaA.M | aM | µ(aA,aA).M | [a,a]M

whereτ , c, x, anda range over type constants, constants, variables and control variables, respectively.
The constructorsλ and µ binds variables in the usual way. Superscripted types may beomitted. A
judgment has the form

x1 :B1, . . . ,xn : Bn ⊢ M : A | a1 : A1, . . . ,am : Am

with two kinds of typing environments. Typing rules are given in Table 1, where the exchange rule on
environments is implicitly assumed. The equality is the smallest congruence relation including axioms
in Table 2, where an axiomM = N means thatΓ ⊢ M : A | ∆ andΓ ⊢ N : A | ∆ are equal when both
judgments are deducible. A substitution{C/a−} means a recursive replacement ofaM byC[M{C/a−}]
and[a1,a2]M byC[µa. [a1,a2]M{C/a−}] whena is eithera1 or a2.

Any well-typed term of the simply typedλ -calculus without disjunction types can be derived straight-
forwardly in theλ µ-calculus if we forget the right-hand side typing environments. In fact, while the
λ -calculus corresponds to the intuitionistic logic,λ µ-calculus corresponds to the classical logic. In such
Curry-Howard correspondence, types in a left-hand side environment combine conjunctively and types
in a right-hand side environment combine disjunctively.

Y. Kakutani and D. Kimura 103

Table 1: Typing rules ofλ µ

Γ ⊢ cA : A | ∆ Γ,x: A ⊢ x : A | ∆ Γ ⊢ 〈〉 : ⊤ | ∆

Γ,x: B ⊢ M : A | ∆
Γ ⊢ λxB.M : B→A | ∆

Γ ⊢ M : B→A | ∆ Γ ⊢ N : B | ∆
Γ ⊢ MN : A | ∆

Γ ⊢ M1 : A1 | ∆ Γ ⊢ M2 : A2 | ∆
Γ ⊢ 〈M1,M2〉 : A1×A2 | ∆

Γ ⊢ M : A1×A2 | ∆
Γ ⊢ π jM : A j | ∆

Γ ⊢ M : ⊥ | a: A,∆
Γ ⊢ µaA.M : A | ∆

Γ ⊢ M : A | a: A,∆
Γ ⊢ aM : ⊥ | a: A,∆

Γ ⊢ M : ⊥ | a1 : A1,a2 : A2,∆
Γ ⊢ µ(aA1

1 ,aA2
2).M : A1∨A2 | ∆

Γ ⊢ M : A1∨A2 | a1 : A1,a2 : A2,∆
Γ ⊢ [a1,a2]M : ⊥ | a1 : A1,a2 : A2,∆

An equational extension of the call-by-nameλ µ-calculus is called aλ µ-theory. (We also call an
extension of the simply typedλ -calculus aλ -theory.) A λ µ-theory is needed for considering natural
numbers or other structures, but we do not strictly distinguish a calculus from its theory in this paper.

A λ -theory can be regarded as a category in the usual manner: a type is an object and a function is a
morphism. In this sense, the type⊤ is a terminal object in anyλ -theory. However, in aλ µ-theory, the
type⊥ is not an initial object. In this paper, we may use the terminology of the category theory via such
translations.

For readability,A→⊥ is denoted by¬A. We also writeA1⊕A2 for ¬¬A1∨¬¬A2. As mentioned in
Selinger’s note [13],A1⊕A2 is more convenient for realistic programs. We use the syntaxsugar

ι jM ≡ µ(a¬¬A1
1 ,a¬¬A2

2).a j(λk¬A j.kM)

[F1,F2]≡ λxB1⊕B2.µaA.(µb¬¬B2
2 .(µb¬¬B1

1 . [b1,b2]x)(λxB1
1 .a(F1x1)))(λxB2

2 .a(F2x2))

where all introduced variables are fresh. Then, the typing derivations

Γ ⊢ M : A j | ∆
Γ ⊢ ι jM : A1⊕A2 | ∆

Γ ⊢ F1 : B1→A | ∆ Γ ⊢ F2 : B2→A | ∆
Γ ⊢ [F1,F2] : B1⊕B2→A | ∆

are admissible. Theβ -like equality

[F1,F2](ι jM) = FjM

holds but theη-like equality[λx1.F(ι1x1),λx2.F(ι2x2)] = F does not hold in general. It follows that⊕
does not give coproducts. WhenF is afocal function as defined below, theη-like equality holds.

Definition 2. A term F : B→A is focal if F(µa.M) = µb.M{b(F−)/a−} holds for any termM and a
fresh control variableb.

A focal function can be considered an effect-free term-context in the call-by-nameλ µ-calculus. We
define focal term-contextsE as

E ::=− | EM | λx.E | π1E | π2E | µaA.E | aE | µ(aA,aA).E | [a,a]E

104 Induction by Coinduction and Control Operators in Call-by-Name

Table 2: Equality ofλ µ
(λx.M)N = M{N/x}

λx.Mx= M if x 6∈ FV(M)

π j〈M1,M2〉= M j

〈π1M,π2M〉= M

〈〉= M

b(µa.M) = M{b/a}

µa.aM = M if a 6∈ FV(M)

[b1,b2](µ(a1,a2).M) = M{b1,b2/a1,a2}

µ(a1,a2). [a1,a2]M = M if a1,a2 6∈ FV(M)

b⊥M = M

(µa.M)N = µb.M{b(−N)/a−} if b 6∈ FV(M)∪FV(N)

π j(µa.M) = µb.M{b(π j−)/a−} if b 6∈ FV(M)

[a1,a2](µa.M) = M{[a1,a2]−/a−}

like evaluation contexts. Note that a focal context is not necessarily an evaluation context becauseλx.E
is not an evaluation context in the usual sense. When free variables ofM are not captured inE, we can
see that

E[µa.M] = µb.M{bE/a−}

holds. In later sections, we often use the following fact: for an arbitrary functionF : B→A,

¬F ≡ λk¬A.λxB.k(Fx) : ¬A→¬B

is focal.
Categorical characterization of focal functions can be found in [12]. In aλ µ-theory, the notion of

focal functions coincides with the notion of central functions with respect to∨: a functionF is focal if
and only ifa(F(µb.a′(G(µb′. [b,b′]x)))) = a′(G(µb′.a(F(µb. [b,b′]x)))) for any functionG.

The notion of focal functions plays an important role in our formulation of inductive types. Focal
functions are related to normal functions as follows. For any termF : B→A,

F# ≡ λx¬¬B.µaA.x(λyB.a(Fy)) : ¬¬B→A

is focal. Moreover, this correspondence provides bijection between functions and focal functions. We
use the notation

F♭ ≡ λxB.F(λk¬B.kx)

for the inverse transformation.
In this paper, a functor means a composition-preserving syntactic transformation on functions of

a calculus. We assume a functor has the same codomain as its domain, that is, a functor means an
endofunctor on a calculus. In aλ µ-theory, we also assume that a functor preserves focal functions. We
call a functor defined on focal functions a focus functor. We may call also a focus functor just a functor.

Y. Kakutani and D. Kimura 105

3 Natural Numbers and Streams

Types of natural numbers in programming languages are studied in various ways. A category theoretic
approach is one of the most popular characterizations of natural numbers.

In equational extensions of the simply typedλ -calculus without side-effects, the type of natural
numbersN with zero : ⊤→N and suc : N→N can be defined as follows: for anyG : ⊤→A and
F : A→A, there exists a unique functionH : N→A such that each small diagram of

⊤
zero // N

H
��

N
sucoo

H
��

⊤
G // A AFoo

commutes. SuchH is denoted byfold
N
[G,F]. This natural numbers type can be considered an initial

F -algebra, whereF is a functor satisfyingFA=⊤+A, if a coproduct structure+ exists in the calculus.
It is known that a model of theλ µ-calculus becomes trivial when it has general initial algebras.

Hence, it is not obvious that a natural numbers object can be added to theλ µ-calculus consistently.
On the other hand, there exists a consistent model with general final coalgebras. We start from adding

a stream type to theλ µ-calculus. The type of streamsS with head andtail is defined as the dual of
natural numbers: for anyG : A→⊥ andF : A→A, there exists a unique functionH : A→S such that
each small diagram of

⊥ S
headoo tail // S

⊥ AGoo F //

H

OO

A

H

OO

commutes. We writeunfold
S
〈G,F〉 for this H. The type of codomain ofhead is not ⊥ in usual

programming, but here⊥ is enough for simulating natural numbers.
We show that¬S behaves likeN in a λ µ-theory. We definezero : ⊤→¬S andsuc : ¬S→¬S as

zero ≡ λu⊤. head

suc ≡ λy¬S.λxS.y(tailx)

and writen for sucn(zero〈〉). Note thatn= head ◦ tailn holds. LetH : ¬S→A be

λy¬S.µaA.y((unfold
S
〈λh¬A.h(G〈〉),λk¬A.λxA.k(Fx)〉)(λz.az))

for anyG : ⊤→A andF : A→A. By the equations aboutfold
S
, equations

H0= µa. head((unfold
S
〈λh.h(G〈〉),λk.λx.k(Fx)〉)(λz.az))

= µa. (λh.h(G〈〉))(λz.az)

= µa.a(G〈〉) = G〈〉

and

H(n+1) = µa.n(tail((unfold
S
〈λh.h(G〈〉),λk.λx.k(Fx)〉)(λz.az)))

= µa.n((unfold
S
〈λh.h(G〈〉),λk.λx.k(Fx)〉)((λk.λx.k(Fx))(λz.az)))

= · · ·= Fn+1(G〈〉)

106 Induction by Coinduction and Control Operators in Call-by-Name

hold. Since control operators are essential for the derivation, such construction is not possible in the pure
λ -calculus without side-effects.

Unfortunately, the above¬S does not satisfy the property ofN of theλ -calculus becauseH(sucN)=
F(HN) does not necessarily hold for arbitraryF andN. Instead, ifF is focal,H(sucN)=F(HN) always
holds. This fact suggests a possibility that¬S may be an initial algebra for focal functions. Since any
term of the type⊤→A is never focal, we replace⊤ with ¬¬⊤. One can remember that functions of the
type⊤→A and focal functions of¬¬⊤→A are in bijective correspondence. Hence, whenF : A→A is
focal,

¬¬⊤
zero

#
// ¬S

H
��

¬S
sucoo

H
��

¬¬⊤
G#

// A AFoo

commutes. Note that all functions in the diagram except forF are focal without assumption andG# can
range over all focal functions from¬¬⊤ to A. Because the uniqueness ofH in focal functions follows
from the uniqueness ofunfold

S
〈λh.h(G〈〉),λk.λx.k(Fx)〉, the pair ofzero# andsuc is initial in pairs

of focal functions with the above types.
If we use the bijection−#, we can define another type of natural numbers. A modified typeof streams

S
′ is defined as follows: for anyG : A→⊥ andF : A→¬¬A, the mediating functionH = unfold

S′
〈G,F〉

satisfies

⊥ S
′head

′
oo tail

′
// ¬¬S′

⊥ AGoo F //

H

OO

¬¬A

¬¬H

OO

where¬¬H is λy.λk.y(λx.k(Hx)). We can define

zero
′ ≡ λu⊤. head ′ : ⊤→¬S′

suc
′ ≡ λy¬S

′
.λxS

′
.(tail ′x)y : ¬S′→¬S′

for a new type of natural numbers¬S′. For a functionF : B→A, let ¬F : ¬B→¬A be syntax sugar
of λk.λx.k(Fx). For arbitrary functionsG : ⊤→A andF : A→A, there exist vertical focal functions
making each small diagram of

¬¬⊤
∼= // ¬⊥

¬head ′
// ¬S′

��

¬¬¬S′
¬tail ′
oo

��
¬¬⊤

∼= // ¬⊥
∼= // ¬¬⊤

¬¬G // ¬¬A

��

¬¬¬¬A¬¬F#
oo

��
¬¬⊤ ¬¬⊤

G#
// A ¬¬AF#

oo

commute. Since(zero ′)# = ¬head′ ◦∼= and(suc ′)# = ¬tail ′ hold, we can get a focal functionH

Y. Kakutani and D. Kimura 107

such that the diagram

⊤
zero

′
// ¬S′

H
��

¬S′
suc

′
oo

H
��

⊤
G // A AFoo

commutes. ThisH is not unique in general but unique in focal functions. Whilethe equality for¬S
requires thatF : A→A is focal, the equality for¬S′ does not.

4 Induction by Coinduction

We generalize the construction of natural numbers from streams shown in the previous section.
First, we reformulate natural numbers as an initial algebrain focal functions. For fixing the termi-

nology, we give formal definitions about algebras and coalgebras.

Definition 3. Let F be a functor on aλ -theory. A finalF -coalgebra is a typeC with a function
X : C→FC satisfying the condition: for any functionF : A→FA, there is a unique functionH : A→C
such that

FC CXoo

FA

FH

OO

AFoo

H

OO

commutes. We writeνα .Fα for C andunfoldF for H. An initial F -algebra is the dual of a final
F -coalgebra.

LetF be a focus functor on aλ µ-theory. A focally initialF -algebra is a typeC with a focal function
X : FC→C satisfying the condition: for any focal functionF : FA→A, there is a focal functionH :
C→A such that

FC X //

FH
��

C

H
��

FA F // A

commutes and suchH is unique in focal functions. We writeµ ′α .Fα for C andfoldF for H.

The symbolµ is used in two meanings for the compatibility of other studies. We can easily classify
occurrences ofµ : µ in a term means a control operator whileµ in a type means a least fixed-point
operator.

A focally initial F -algebra means an initialF -algebra in the category of focal functions. Our
definition of focally initial algebras is a slightly weaker notion of the definition in Hasegawa’s [4]: in
that paper,H exists for non-focalF.

Let F be a functor such thatFA= ¬¬⊤∨A. The function

λx¬¬⊤∨¬S.µa¬S.a(suc(µb2.a(zero
#(µb1.[b1,b2]x)))) : F (¬S)→¬S

108 Induction by Coinduction and Control Operators in Call-by-Name

is a focally initialF -algebra. We can remark that∨ is not a coproduct structure in all functions but is
a coproduct structure in focal functions. Since⊤∨A is isomorphic to⊤ in the λ µ-calculus, replacing
¬¬⊤ with ⊤ is meaningless unlike the pureλ -calculus.

Let G be a functor such thatG A=⊥×A. The function

λxS.〈headx, tailx〉 : S→G S

is a finalG -coalgebra in the usual sense. It is the main theme of this work to investigate when¬(να .G α)
can beµ ′α .Fα .

In order to generalize the construction, we consider the CPStransformation. CPS semantics of the
call-by-nameλ µ-calculus is provided by Selinger [12] based on Hofmann and Streicher’s transforma-
tion [5]. The target language of the CPS transformation is the simply typedλ -calculus with products and
coproducts. Let[[−]] be the transformation on terms and− be the transformation on types. A judgment

x1 :B1, . . . ,xn : Bn ⊢ M : A | a1 : A1, . . . ,am : Am

is transformed to a judgment

x1 : B1→ r, . . . ,xn : Bn→ r,a1 : A1, . . . ,am : Am ⊢ [[M]] : A→ r

for a distinguished typer. We do not show the details of the transformation[[−]] in this paper. The type
transformation is given by

τ ≡ τ
B→A≡ (B→ r)×A

⊤≡⊥

A1×A2 ≡ A1+A2

⊥≡⊤

A1∨A2 ≡ A1×A2

when we assume the same constant types exist in the target calculus.
In the type transformation, products in the source calculusare translated to coproducts and pre-

monoidal disjunctions are translated to products. It suggests that inductive types should be translated to
coinductive types and coinductive types should be translated to inductive types by the CPS transforma-
tion. Indeed,S= να .⊥×α can be translated toµα .⊤+α , which is the type of natural numbers in the
λ -calculus.

In a λ -theory, it is known that(µα .⊤+α)→ r is isomorphic toνα . r×α . It means intuitively
that a stream is an infinite set of elements indexed by naturalnumbers. In fact, for the previousG and
F , ¬(να .G α)∼= µ ′α .Fα in the source calculus is derived from this construction in the target calculus
becauseG A=⊤+A andFA∼= r×A hold.

The above construction of a coinductive type from an inductive type in the target calculus can be
generalized as follows. IfG α → r is naturally isomorphic toF (α → r) on α , then

(µα .G α)→ r ∼= να .Fα

holds. We lift this fact to the source calculus.
We can remark that the following property holds for the CPS transformation: aλ µ-termλx.C[x] is

focal if there exists a termF such that[[C[x]]] = λy.x(Fy) holds. This property gives a reasoning about
focal functions, and is helpful for understanding the following theorem.

Y. Kakutani and D. Kimura 109

Theorem 1. In a λ µ-theory, letF be a focus functor andG be a functor such that there exists a natural
isomorphism¬G α ∼= F (¬α). For a finalG -coalgebra X: (να .G α)→G (να .G α), if X is focal,

F (¬(να .G α))
∼= // ¬G (να .G α)

¬X // ¬(να .G α)

is a focally initial F -algebra.

The proof of the theorem is as follows. Given a focal functionF : FA→A. SinceX is a final
G -coalgebra, there existsH such that

G (να .G α) να .G αXoo

G (¬A)

G H

OO

¬¬G (¬A)
MG (¬A)oo ¬F (¬¬A)

∼=oo ¬FA
¬FMAoo ¬A¬Foo

H

OO

commutes, whereMA is λx¬¬A.µaA.x(λz.az). Let D : ¬FA→G (¬A) be the function occurring in the
bottom-line of the above diagram. Then, the diagram

F (¬(να .G α))
∼= //

F (¬H)
��

¬G (να .G α)
¬X //

¬G H
��

¬(να .G α)

¬H
��

F (¬¬A)
∼= //

FMA
��

¬G (¬A) ¬D // ¬¬FA ¬¬F //

MFA

��

¬¬A

MA

��
FA FA F // A

commutes. The right upper square is derived from the diagramof the finalG -coalgebra. The left upper
square comes from the naturality of the isomorphism and the right lower square means thatF is focal.
Though it is not trivial that the left lower square commutes,the commuting diagram

¬G (¬A)
¬MG (¬A)//

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

¬¬¬G (¬A)
∼= //

M¬G (¬A)

��

¬¬F (¬¬A)
¬¬FMA//

M¬¬FA

��

¬¬FA

MFA

��
¬G (¬A)

∼= // F (¬¬A)
FMA // FA

gives a proof. Note thatFMA is focal becauseMA is focal andF is a focus functor.
For a proof of the uniqueness of the mediating function, we assume that there exists a focal function

H ′ : ¬(να .G α)→A satisfying the condition. We can haveH ′′ ≡ λx.µa.x(H ′(λz.az)) : ¬A→ (να .G α)
such that the diagram forX commutes. The proof of its commutativity requires thatX is focal. Hence,
H ′′ = H andH ′ = MA◦¬H hold.

In the rest of the paper, we show some examples of this construction.

5 Examples

We have already shown that the type of streamsS is the most typical example. Construction of natural
numbers from another type of streamsS

′ is also an example of our result. If we apply the theorem for

Fα =⊤⊕α ≡ ¬¬⊤∨¬¬α
G α = ¬⊤×¬¬α

110 Induction by Coinduction and Control Operators in Call-by-Name

Table 3: Pairs of Functors

Fα = ¬¬α G α = ¬¬α
Fα = ¬B∨α G α = B×α
Fα = α ∨α G α = α ×α
Fα = ¬¬(B×α) G α = ¬B∨¬¬α
Fα = ¬¬(α ×α) G α = α ⊕α

¬S′ ∼= ¬(να .¬⊤×¬¬α) behaves asµ ′α .⊤⊕α. Due to the syntax sugar,¬S′ is more likely natural
numbers type than¬S. For arbitrary functionsG andF, [G,F] is essentially the coproduct arrow ofG#

andF# in the category of focal functions. Hence, in derivations ofequations

(fold [G,F])(zero ′〈〉) = (fold [G,F])([zero ′, suc ′](ι1〈〉))

= [G,F]([λx. ι1x, ι2◦fold [G,F]](ι1〈〉))

= G〈〉

and

(fold [G,F])(suc ′N) = (fold [G,F])([zero ′, suc ′](ι2N))

= [G,F]([λx. ι1x, ι2◦fold [G,F]](ι2N))

= F((fold [G,F])N)

focality conditions are implicit.⊕ is also useful for a list-like data type and a tree-like data type.
Before considering a list-like data type, we consider composition of functors. If we find two pairs

of functors satisfying the condition of Theorem 1, also the pair of composition functors satisfies the
condition of Theorem 1.

Lemma 2. In a λ µ-theory, if natural isomorphisms¬G1α ∼= F1(¬α) and¬G2α ∼= F2(¬α) exist, then
there exists a natural isomorphism¬G2G1α ∼= F2F1(¬α).

In Table 3, we show some pairs of primitive functors satisfying the condition of Theorem 1. It is
important that the connective× in the left column is under¬¬. We do not have a general idea for
treating a functor likeB×−.

In theλ -calculus without side-effects, a type ofB-lists is usually defined asµα .⊤+(B×α). Though
it is not possible to apply the theorem toµα .⊤∨ (B×α) in the λ µ-calculus,µα .⊤⊕ (B×α) can be
used. By the lemma for compositions, the pair of functors

Fα =⊤⊕ (B×α)

G α = ¬⊤× (¬B∨¬¬α)

satisfies¬G α ∼= F (¬α). Hence, we can get a data type of lists from a coinductive type. If B has a form
¬C, the type ofB-lists can be expressed by¬(να .¬⊤× (C⊕α)).

There is another difficulty caused by the fact that∨ is not monoidal but premonoidal. Since we
cannot define a full functorG so thatG α = α ∨α , α ∨α cannot appear in the right column of the table.
On the other hand,Fα = α ∨α is permitted in the left column because a focus functor is required to

Y. Kakutani and D. Kimura 111

be defined only on focal functions. Whileα ∨α is not functorial, it can be seen thatα ⊕α is functorial.
Therefore, we can define a tree-like data type with a coinductive type. The functors

Fα = B⊕ (α ×α)

G α = ¬B× (α ⊕α)

induce¬(να .¬B× (α ⊕α)) ∼= µ ′α .B⊕ (α ×α). It means that¬(να .¬B× (α ⊕α)) behaves like a
type of binary trees. LetST beνα .¬B× (α ⊕α) and

headT : ST→¬B

tailT : ST→ST⊕ST

be functions such thatλx. 〈headTx, tailTx〉 is a finalG -coalgebra. For the typeT= ¬ST,

leaf ≡ λyB.λxST. (headTx)y : B→T

node ≡ λyT×T.λxST.(µa2. (µa1. [a1,a2](tailTx))(π1y))(π2y) : T×T→T

can be defined. For any functionsG : B→A andF : A×A→A, fold [G,F] is defined as

λyT.µaA.y((unfold(λk¬A.〈λxB.k(Gx),µb¬A⊕¬A.kF′
b〉))(λz.az))

whereF ′
b is F〈µbA

1.b(ι1(λz.b1z)),µbA
2.b(ι2(λz.b2z))〉. Then, we can see that two equations

(fold [G,F])(leaf l) = Gl

(fold [G,F])(node〈t1, t2〉) = F〈(fold [G,F])t1,(fold [G,F])t2〉

hold. Indeed, these equations mean thatT is a data type of binary trees.

6 Concluding Remarks

We have investigated that natural numbers can be expressed by streams in a call-by-name language with
control operators. This is a counterpart of the fact that a stream can be expressed by a function from
natural numbers in a pure language without side-effects. Wehave generalized such method and shown
construction of inductive types from coinductive types with control operators. As examples of the result,
a type of lists and a type of binary trees are expressed by coinductive types.

In our study, while a coinductive type is characterized as a final coalgebra, an inductive type is
characterized as an initial algebra in focal functions. In the λ µ-calculus, control operators does not
permit existence of general initial algebras. We can say that our results give a reasoning about focal
restriction of inductive types.

Our work has a possibility to connect the duality between call-by-name and call-by-value [3]. In
[12], it is shown that the call-by-valueλ µ-calculus is the dual of the call-by-nameλ µ-calculus. Since
control operators related to the classical logic, the aboveduality corresponds to de Morgan’s duality. The
authors have studied the duality with recursive structures[6, 7], and the second author has provided an
extension of the dual calculus with inductive and coinductive types [8]. We are preparing another paper
for the duality extended with inductive/coinductive structures and focal restrictions.

Our construction is restricted to some class of functors. Generalization to more complex structure
with nested recursion remains to be studied. In the pureλ -calculus, [1] studies a method for more general
functors with higher-order functors. It is not obvious to apply this method to theλ µ-calculus but may
be helpful for generalization of our work.

112 Induction by Coinduction and Control Operators in Call-by-Name

Acknowledgment

We would like to thank Kazuyuki Asada for discussing the generalization part of this work.

References

[1] T. Altenkirch (2001): Representation of First Order Function Types as Terminal Coalgebras. In: Typed
Lambda Calculi and Applications, LNCS 2044, Springer-Verlag, pp. 8–21, doi:10.1007/3-540-45413-6_

5.

[2] G. Barthe & T. Uustalu (2002):CPS Translating Inductive and Coinductive Types. In: Partial Evaluation and
Program Manipulation, ACM Press, pp. 131–142, doi:10.1145/503032.503043.

[3] A. Filinski (1989): Declarative Continuations and Categorical Duality. Master’s thesis, Computer Science
Department, University of Copenhagen.

[4] M. Hasegawa (2006):Relational Parametricity and Control. Logical Methods in Computer Science2(3), pp.
1–22, doi:10.2168/LMCS-2(3:3)2006.

[5] M. Hofmann & T. Streicher (1997):Continuation Models are Universal forλ µ-Calculus. In: Logic in
Computer Science, IEEE Computer Society, pp. 387–397, doi:10.1109/LICS.1997.614964.

[6] Y. Kakutani (2002):Duality between Call-by-Name Recursion and Call-by-ValueIteration. In: Computer
Science Logic, LNCS 2471, Springer-Verlag, pp. 506–521, doi:10.1007/3-540-45793-3_34.

[7] D. Kimura (2007):Call-by-Value is Dual to Call-by-Name, Extended. In: Asian Symposium on Programming
Languages and Systems, LNCS 4807, Springer-Verlag, pp. 415–430, doi:10.1007/978-3-540-76637-7_

28.

[8] D. Kimura & M. Tatsuta (2013):Call-by-Value and Call-by-Name Dual Calculi with Inductive and Coinduc-
tive Types. Logical Methods in Computer Science9(1:14), pp. 1–38, doi:10.2168/LMCS-9(1:14)2013.

[9] J. Lambek & P. J. Scott (1986):Introduction to Higher-Order Categorical Logic. Cambridge University
Press.

[10] M. Parigot (1992): λ µ-Calculus: an algorithmic interpretation of classical natural deduction. In:
Logic Programming and Automated Reasoning, LNCS 624, Springer-Verlag, pp. 190–201, doi:10.1007/

BFb0013061.

[11] G. D. Plotkin (1975):Call-by-Name, Call-by-Value and the Lambda Calculus. Theoretical Computer Science
1(2), pp. 125–159, doi:10.1016/0304-3975(75)90017-1.

[12] P. Selinger (2001):Control Categories and Duality: on the categorical semantics of the lambda-mu calculus.
Mathematical Structures in Computer Science11(2), pp. 207–260, doi:10.1017/S096012950000311X.

[13] P. Selinger (2003):Some Remarks on Control Categories. Manuscript.

http://dx.doi.org/10.1007/3-540-45413-6_5
http://dx.doi.org/10.1007/3-540-45413-6_5
http://dx.doi.org/10.1145/503032.503043
http://dx.doi.org/10.2168/LMCS-2(3:3)2006
http://dx.doi.org/10.1109/LICS.1997.614964
http://dx.doi.org/10.1007/3-540-45793-3_34
http://dx.doi.org/10.1007/978-3-540-76637-7_28
http://dx.doi.org/10.1007/978-3-540-76637-7_28
http://dx.doi.org/10.2168/LMCS-9(1:14)2013
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1016/0304-3975(75)90017-1
http://dx.doi.org/10.1017/S096012950000311X

	1 Introduction
	2 CBN Calculus with First-Class Continuations
	3 Natural Numbers and Streams
	4 Induction by Coinduction
	5 Examples
	6 Concluding Remarks

