
U. de’Liguoro and A. Saurin (Eds.):
Control Operators and their Semantics 2013 (COS’13)
EPTCS 127, 2013, pp. 113–129, doi:10.4204/EPTCS.127.8

Combining and Relating Control Effects and their Semantics

James Laird
Department of Computer Science, University of Bath, UK

Combining local exceptions and first class continuations leads to programs with complex control
flow, as well as the possibility of expressing powerful constructs such as resumable exceptions. We
describe and compare games models for a programming language which includes these features,
as well as higher-order references. They are obtained by contrasting methodologies: by annotating
sequences of moves with “control pointers” indicating where exceptions are thrown and caught, and
by composing the exceptions and continuations monads.

The former approach allows an explicit representation of control flow in games for exceptions,
and hence a straightforward proof of definability (full abstraction) by factorization, as well as offer-
ing the possibility of a semantic approach to control flow analysis of exception-handling. However,
establishing soundness of such a concrete and complex model is a non-trivial problem. It may be
resolved by establishing a correspondence with the monad semantics, based on erasing explicit ex-
ception moves and replacing them with control pointers.

1 Introduction

Control effects such as exceptions and continuations are key features of higher-order programming lan-
guages. They are typically used to recover from errors, and may result in complicated and unpredictable
control flow in programs. Therefore, principles for reasoning about notions such as exception safety are
potentially useful and important. Denotational semantics provides one basis for such principles. Here,
broadly speaking, there are two approaches to describing computational effects. Constructions such
as monads, and continuation-passing-style interpretations yield useful algebraic theories for reasoning
soundly about programs, although they impose additional layers of definition and interpretation through
which reasoning about programs must be filtered, particularly in the presence of properties such as local-
ity. By contrast, game semantics provides a framework in which to model combinations of effects more
directly by the relaxation of constraints on strategies representing functional programs. This approach
has been used successfully to give fully abstract interpretations of many features, including an account
of locality for features such as state [1]. However, the combinatorial nature of games models means that
reasoning about denotations — for example, proving basic soundness results — can be difficult in the
absence of structuring principles.

Thus it can be useful to relate the direct (games) and indirect (monads, CPS) approaches to effects,
to gain the advantages of both representations. This paper will do so for exceptions and continuations.
In the process, we construct a first fully abstract model for a language which combines continuations and
locally declared exceptions, as in Standard ML of New Jersey. Although many control structures can
be implemented using either feature, exceptions and continuations exhibit several subtle but significant
differences in behaviour: one way of understanding these is by studying the interaction of the two effects
in combination. (For example, observing that exceptions break key equational rules which hold for
continuations [8].) Combining exceptions and continuations also provides a way of interpreting further,
powerful control constructs: they may be used to macro-express resumable exceptions, and implement
dynamic delimited control operators such as prompts [3].

http://dx.doi.org/10.4204/EPTCS.127.8

114 Combining and Relating Control Effects and their Semantics

Exceptions and continuations also provide a test case for semantic theories of combining algebraic
effects, studied in detail in [4]. Here we shall simply use the fact that there is a distributive law of
the monad +E (exceptions) over RR (continuations) (which exist for objects E and R whenever the
relevant categorical constructions do), since the exceptions monad distributes over any other monad.
Thus we have an exceptions-and-continuations monad RR +E

.
How can this monad be related to a game semantic account? In the case of first-class continuations

(on their own), there is a simple correspondence between the games and monadic interpretations —
relaxing the well-bracketing condition on strategies renders the lifted sum monad Σ introduced in [2]
isomorphic to the continuations monad RR , where R is the “one-move game”, giving both direct and
indirect (continuation-passing style) interpretations of call/cc [6].

The case of exceptions is more complicated. We may interpret a single global exception by adding
to our games distinguished “exception answer” moves for each question. Extending the continuations
monad with such an answer yields a monad formally equivalent to RR +1 1 In the presence of local state,
this is sufficient to macro-express local exception declaration, as we may use imperative variables both
as flags to indicate which exception has been set, and to carry exceptional values. However, this leaves
open the problem of identifying the elements of the model definable using local exception handling, and
their intrinsic equivalence.

Exceptions have also been more difficult to incorporate into the simple picture of relaxing constraints
on strategies to get more powerful effects; locally declared exceptions can be interpreted directly by re-
laxing the bracketing condition to a “weak bracketing” condition [7], but fully capturing this behaviour
also requires new information to be added to strategies in the form of additional “control pointers” at-
tached to sequences. Relaxing the weak bracketing condition also gives a straightforward and intuitively
natural alternative denotation for call-with-current-continuation in the context of exception handling —
playing a control pointer to a “closed” move allows the handler-context to be reset. However, this rep-
resentation of continuations and exceptions is rather implicit, and does not lend itself to reasoning about
equivalence between denotations of programs — even to the limited extent of proving soundness with
respect to the operational semantics.

The solution adopted here is a correspondence with the exceptions monad and CPS interpretations,
given by relating exception-arenas to control games by replacing exception moves with control pointers
(in this case, indicating which question is pending when an exception is thrown). Finally, we prove
full abstraction results for the control games models using factorization into the model with only local
control defined in [1].

2 An Effectful Functional Programming Language

We shall first describe a simply-typed call-by-value programming language LRC E with (locally de-
clared) general references, first-class continuations and local exceptions (which might be considered
as a simply-typed fragment of SML of New Jersey). The core of the language, L , is a simply-typed
call-by-value λ -calculus based on the computational λ -calculus [11].

Types of L are generated from the product, sum (and their units 1 and 0) and function types:
S,T := 0 | 1 | S×T | S+T | S→ T
We distinguish computation and value terms. Values are given by the grammar:
U,V := x | () | 〈U,V 〉 | in1(V) | in2(V) | λx.M

1Another approach in [12] also uses an exceptions monad on a category of nominal games — here we focus on more
concrete models with implicit state.

J. Laird 115

Γ,x:T`vx:T
Γ`vV :T

Γ`c[V]:T
Γ`cM:S Γ,x:S`cN:T
Γ`clet x=M inN:T

Γ`v():1
Γ`vV :0

Γ`cvoidV :T

Γ`vU :S Γ`vV :T
Γ`v〈U,V 〉:S×T

Γ`vV :S×S′ Γ,x:S,y:S′`cM:T
Γ`cmatchV as (x,y).M:T

Γ`vU :S
Γ`vini(V):T1+T2

i ∈ {1,2} Γ`vV :S+S′ Γ,x:S`cM:T Γ,x:S′`cN:T
Γ`ccaseV as inl(x).M|in2(x).N:T

Γ,x:S`cM:T
Γ`vλx.M:S→T

Γ`vU :S→T Γ`vV :S
Γ`cU V :T

Table 1: Typing Judgements for Computations and Values

Computations are given by the grammar:
M,N := [V] | let x = M inN | voidV |U V | matchV as (x,y).M | caseV as in1(x).M|in2(x).N

Typing judgements, of the form Γ `c M : T for computations, and Γ `v V : T for values, are given in
Table 1. We write M;N for let x = M inN, if x is not free in M or N.

2.1 Computational Effects

Computational effects are introduced by adding constructs for declaring references and exceptions, and
capturing the current continuation as a first-class function, as follows:

References The type var[T] of references to values of type T is defined to be (T → 1)× (1→ T) —
the product of the types of its methods, assignment and dereferencing, which may be recovered by left
and right projection, respectively — i.e. given a : var[T] and V : T , we sugar match a as (x,y).x V as
a :=V , and match a as (x,y).y () as deref(a).

Thus the only further syntax we need to add to our type theory is a constant (value) new : 1→ var[T]
for declaring a new reference. We write let x = (new ()) in x :=V ;M as new x :=V.M.

Exceptions The type of exn of exceptions is similarly defined to be the product ((1→ 0)→ 1)× (1→
0) of its method types: throwing of type 1→ 0 and catching, of type (1→ 0)→ 1.2 Given e : exn, we
sugar match e as (x,y).x λ ().N and match e as(x,y).y () as catch e inN and throw(e), respectively.

Thus to extend our type theory with exceptions it is sufficent to add a value new exn : 1→ exn for
declaring a new exception.

Continuations As in New Jersey SML, we introduce first-class continuations via a value callcc :
((T → S)→ T)→ T , which passes a first class representation of the current continuation (as a value of
type T → S for arbitrary S) to its argument.

2The “thunked” empty type 1→ 0 is used to represent the type of computations which do not return a value.

116 Combining and Relating Control Effects and their Semantics

E[case ini(V) as in1(x).M1|in2(x).M2],E −→ E[Mi[V/x]],E
E[match 〈U,V 〉 as (x,y).M],E −→ E[M[U/x,V/y]],E
E[(λx.M)V],E −→ E[M[V/x]],E
E[let x = [V] inM],E −→ E[M[V/x]],E
E[new ()],E [(loc)] −→ E[[〈set(a), !a〉]],E [loc∪{a}]
E[set(a)V],E [S] −→ E[[()]],E [S[a 7→V]]
E[!a ()],E [S] −→ E[[S(a)]],E
E[new exn ()],E [Ex] −→ E[[〈catch(e),throw(e)〉]],E [Ex∪{e}]
E[catch(e) λx.Ee[throw(e) ()]],E −→ E[[()]],E
E[callccV],E −→ E[V λx.#E[x]],E
E[#(M)],E −→ M,E

Table 2: Operational Semantics of LRC E

We make use of the following fragments of LRC E — the purely functional fragment L , the fragment
LR with local control (i.e. references but no continuations or exceptions, omitting the constants new exn

and callcc: this is essentially the language defined in [1], with its games model), and the fragment LRC

with continuations and references but no exceptions.

2.2 Operational Semantics

To give an operational semantics for LRC E , we introduce constants representing the capacity to read
from and write to a location, and raise and handle an exception, and a new constructor, representing
composition with the top-level continuation. Let L #

C E be the extension of LRC E with:

• An unbounded set of pairs of constants (set(a), !a).

• An unbounded set of pairs of constants (throw(e),catch(e)).

• An operation # taking computations of type 1 to computations of type T .

Evaluation contexts E[] are given by the grammar:

E[] ::= [] | let x = E[] inM | catch(e) λx.E[]

Eh[] denotes an evaluation context without a catch(h) λx. in the spine — i.e. given by the above
grammar subject to e 6= h.

The “small-step” operational semantics for reducing a term in an environment E (a set of location
names loc and store S, and a set of exception names Ex) is given in (Table 2). Variable names not
occurring on the left of a rule are assumed fresh. For a program (computation) M : 1, we write M ⇓ if
M,∅ reduces to [()]. Observational approximation and equivalence are defined with respect to this notion
of convergence: M . N if for all closing contexts, C[] : 1, C[M] ⇓ implies C[N] ⇓. M ≈ N if M . N and
N .M.

2.3 Expressiveness

We make some remarks on the expressiveness of our language. Although we have used a simplified ver-
sion of exceptions which do not carry explicit values, we may macro-express value-carrying exceptions
by using references to pass values through the store. For example, for any type T , define the type exn[T]

J. Laird 117

of exceptions carrying values of type T to be ((1→ 0)→ T)×(T → 0), so that applying right-projection
to a value raises an exception with that value, and applying left projection to a (thunked) computation
captures an exception and returns the value it carries. Then we may define an object declarating an
exception of type T — new exnT : 1→ exn[T] =d f

λ ().new a.new exn e.[〈λ f .catch e in (f ());deref(a),λx.(a := x);throw(e)〉]

We may represent ML or Java-style exception handling — i.e. including code to be run if only if a
given exception is caught — by using exceptions or continuations to escape from the handler context if
an exception is not raised, defining e.g.

handle e inN withM =d f callcc(λk.(catch e inN;(k ()));M)

By combining references, exceptions and continuations we may express resumable exceptions which
may return to the point at which they were raised. e.g. define the declaration resumable exn : ((1→
0)→ (T → 0))× (1→ T) as follows:

new a in new exn e in [〈λ f .(catch e in f ());deref(a),callcc(λk.a := k;throw(e))〉]

Right projection captures the current continuation and raises a (local) exception, left projection traps the
exception and returns the continuation from the point it was thrown as a first-class function.

Finally, we note that exceptions and continuations are used in [3] to implement prompts in Standard
ML of New Jersey. Prompts are a form of locally declared, dynamically bound, delimited control oper-
ator which may be used to express local exceptions, as defined here, and a delimited form of callcc.
However, the implementation of prompts in SMLNJ uses global variables and is not therefore fully com-
positional: we leave a semantic investigation of the relationship between exceptions, continuations and
delimited control as future work.

3 Denotational Semantics: Preliminaries

First, we fix what we mean by a model of the type-theory L (essentially, a model of the computational
λ -calculus [11]):

• a category C with finite, distributive coproducts and products (including terminal and initial ob-
jects) and

• a strong monad (Σ,η ,µ,τ) on C such that for any A and B in C , the exponential A⇒ ΣB exists.

Types are interpreted as objects of C — [[1]] and [[0]] are the terminal and initial objects and [[S×T]] =
[[S]]× [[T]], [[S+T]] = [[S]]+ [[T]] and [[S→ T]] = [[S]]⇒ Σ[[T]].
For a context Γ = x1 : T1, . . . ,xn : Tn, define [[Γ]] = [[T1]]× . . .× [[Tn]].

• Values Γ `v V : T are interpreted as morphisms from [[Γ]] to [[T]].

• Computations Γ `c M : T are interpreted as morphisms from [[Γ]] to Σ[[T]].

Formal semantics are given in Table 3.

118 Combining and Relating Control Effects and their Semantics

[[Γ `v () : 1]] = t[[Γ]]
[[Γ,x : T `v x : T]] = πr

[[Γ `v 〈U,V 〉 : S×T]] = 〈[[Γ `v U : S]], [[Γ `V : T]]〉
[[Γ `v ini(V) : T1 +T2]] = [[Γ `v V : Ti]]; ιi

[[Γ `v λx.M : S→ T]] = Λ([[Γ,x : T `c M : T]])

[[Γ `c void(V) : T]] = [[Γ `v V : 0]]; iΣ[[T]]
[[Γ `c [V] : T]] = [[Γ `v V : T]];η

[[Γ `c U V : T]] = 〈[[Γ `v U : S→ T]], [[Γ `v V : T]]〉;app
[[Γ `c caseV as in1(x).M|in2(x).N]] = 〈id[[Γ]], [[Γ `v V : S1 +S2]]〉; [[[Γ,x : S1 `c M : T]], [[Γ,x : S2 `c N : T]]]
[[Γ `v matchV as(x,y).M : T]] = 〈id[[Γ]], [[Γ `v V : S1×S2]]〉; [[Γ,x : S1,y : S2 `c M : T]]
[[Γ `c letM = x inN : T]] = 〈id[[Γ]], [[Γ `c M : S]]〉; t[[Γ]],[[S]]; [[Γ,x : S `c M : T]]∗

Table 3: Interpretation of L -terms

3.1 Game Semantics

We now review the game semantics of L and its extensions with references [1] and continuations [6] (to
which we refer for further details), in a category of arenas and thread-independent strategies.

An arena A is a bipartite labelled forest — a triple 〈MA,`A,λA〉, where MA is the set of nodes (moves),
`A⊆MA×MA (the enabling relation) is the set of edges, and λA : MA → {Q,A} is a labelling function
which partitions moves as answers (A) or questions (Q), such that answers are enabled by questions.
The set of root nodes of the forest is denoted MI

A — these are called initial moves. Partitioning of MA

into Player and Opponent moves may be inferred from the requirement that initial moves are Opponent
moves, and that Player moves are enabled by Opponent moves and vice-versa.

Key constructions on arenas are:

• The disjoint sum of forests (product): A×B = (MA +MB,`A + `B, [λA,λB]).

• The graft of A onto the roots of B (function space): A⇒ B =
(
⊕

m∈MI
B

MA +MB,(
⊕

m∈MI
B
`A)+ `B ∪{(m, inm(n)) | m ∈MI

B,n ∈MI
A}, [[λA | m ∈MI

B],λB]).

A legal justified sequence over the arena A is a finite alternating sequence of moves of A in which each
occurrence of a non-initial move n comes with a unique justification pointer to a preceding occurrence
of a move m which enables n (i.e. such that m `A n).

A strategy σ over an arena A is a non-empty, even-prefix-closed set of even-length alternating justi-
fied sequences over A, satisfying:

Determinacy If sa,sb ∈ σ then b = c.

Thread-independence If r,s, t are even-length legal sequences such that t is the interleaving of r and s,
then t ∈ σ if and only if r,s ∈ σ .

The pending question prefix (if any) of a justified sequence s is the greatest prefix of s ending with a
question which does not occur between an answer and its justifying question in s: i.e.

• pending(sq) = q

• pending(sqta) = pending(s), where q justifies a.

A strategy σ is well-bracketed if it satisfies the following condition:

Well-Bracketing Any answer-move played by σ is justified by the question pending when it was played
— i.e sqta ∈ σ (where a points to q) implies pending(sqt) = sq.

J. Laird 119

Composition of strategies σ : A⇒ B,τ : B⇒C is by parallel composition plus hiding of moves in
B. σ ;τ = {s ∈ LA⇒B | ∃t ∈ L((A⇒B)⇒C).t�A,B ∈ σ ∧ t�B,C ∈ τ ∧ t�A,C = s}. This yields a Cartesian
closed category G in which objects are arenas, morphisms from A to B are strategies on A⇒ B, and
identities are copycat strategies. It has a cartesian closed, wide subcategory G B in which morphisms are
well-bracketed strategies [1, 6].

3.2 Semantics of L

We interpret L by exhibiting a strong monad on the category of “pre-arenas” obtained by applying the
Fam() construction (small co-product completion) to G B (following [2]). For any category C , Fam(G)
is the category of set-indexed families of objects of C , which has as morphisms from {Ai | i ∈ I} to
{B j | j ∈ J}, a pair 〈 f : I → J,{ψi : Ai → B f (i) | i ∈ I}〉 of a re-indexing function and a family of
morphisms in C .

If C is Cartesian closed, then so is Fam(C):

• Fam(C) has co-products, given by the disjoint union of indexed families.

• Fam(C) has products, — {Ai | i ∈ I}×{B j | j ∈ j} is {Ai×B j | 〈i, j〉 ∈ I× J}.

• Fam(C) has exponentials — in particular, for any arena B, exponentials of the singleton family
{B}: {Ai | i ∈ I}⇒ {B}= {Πi∈I(Ai⇒ B)}.

A justified sequence on A⇒ B is linear if every initial move in B justifies exactly one initial move in
A. A (thread-independent) strategy σ : A→ B is linear if it contains some non-empty sequence, and
every sequence s ∈ σ is linear. A tree arena is an arena with a unique root (initial move). Let GS be the
subcategory of G B consisting of tree arenas and linear strategies.

Proposition 3.1 The inclusion of GS in Fam(G B) has a left adjoint Σ .

PROOF: The lifted sum [2] of a family of arenas A = {Ai | i ∈ I} is the tree ΣA with a single (question)
root node, beneath which are answer nodes for each i ∈ I, beneath each of which is the arena Ai:

• MΣA = (
⊕

i∈I(MAi +{ai}))+{q}

• λ
QA
ΣA (q) = Q,λ QA

ΣA (ai) = A i ∈ I, λ
QA
ΣA (〈m, i〉) = λAi(m)

• ∗ `ΣA q `ΣA ai `ΣA 〈m, i〉 and 〈l, i〉 ` 〈n, i〉 where m ∈MI
Ai

and l `Ai n.

There is an evident correspondence between non-empty even-length linear sequences on A⇒ ΣB and
even-length sequences on A⇒ B yielding an adjunction

GS(ΣA,B)
Fam(G B)(A,{B})

�

Hence we have a (strong) monad on Fam(G B) sending A to the singleton family {ΣA} [2], giving a
semantics of L . To extend this to a semantics of LR it suffices to give the denotation of the non-
functional part — the constant newT : var[T] — as a strategy cellA : Σ(ΣA× (A⇒ Σ1)) defined in [1],
which takes an argument of type T and behaves as a reference cell initialized with that argument. This
yields a computationally adequate semantics of LR , as proved in [1]:

Proposition 3.2 M ⇓ if and only if [[M]] 6=⊥.

120 Combining and Relating Control Effects and their Semantics

3.3 Semantics of Continuations

We may interpret call-with-current-continuation directly — by identifying its denotation as a strategy, as
for new variable declaration — but also indirectly, by CPS interpretation. We recall the observation in
[6] that relaxing the bracketing condition on strategies renders the lifted sum of games equivalent to a
CPS construction. More precisely, let UC : Fam(G)→ Fam(G B) be the identity-on-morphisms functor
which acts on arenas by relabelling every answer as a question. Then there is an evident isomorphism of
arenas: UC(ΣA)∼= (Σ0)(Σ0)A

yielding an equivalence of the lifting monad (on Fam(G C)) to a CPS monad
on Fam(G) :

Lemma 3.3 Σ ·UC ∼=UC · (Σ0)(Σ0)

Hence we have a strong monad Σ on Fam(G), equivalent to the one-move-game continuations monad
— and thus a semantics of L in G , such that the inclusion functor J : G B→ G preserves meanings of
LR terms.

For any game A, the isomorphism from (A⇒ Σ0)⇒ Σ0 into ΣA yields a map callccA,B : ((A⇒ ΣB)⇒
ΣA)→ ΣA with which to interpret callcc. Concretely, this responds to the initial question (label) with
a Player question (ok), and to its answer or the subsequent question (throw) with an answer to the initial
question (caught) (note that this violates the bracketing condition), and thereafter plays copycat between
moves hereditarily enabled by (ok), and those hereditarily enabled by caught. A typical play of callcc1,0
is as follows:

(Σ0 ⇒ Σ1) ⇒ Σ1
label

ok

,,
|

h Y

jump

**
�

j Z

caught

We may prove that our model is sound by using its characterization as a CPS interpretation — either
by using an equational theory for CPS models to verify soundness of the reduction rules directly (see [6]
for details), or by formalizing it as a CPS translation of LRC into LR and showing that it is sound. We
give a proof of the latter form in the Appendix, showing that:

Proposition 3.4 Interpretation of programs as strategies in G is sound and computationally adequate:
M ⇓ if and only if [[M]] 6=⊥.

4 Control Strategies

We now extend the game semantics of LRC with continuations and exceptions, to interpret LRC E . We
retain the interpretation of L -types as (families of) arenas, but change the notion of strategy by adding
control-flow information to justified sequences in the form of “control pointers”. (These were introduced
in [7] in the context of interpreting a call-by-name language without first-class continuations: here, we
relax the weak bracketing condition imposed in that model.

Definition 4.1 A control sequence s over an arena A is an alternating justified sequence |s| over A,
together with a control pointer from each question move in |s| either to a unique preceding question (or
else to a distinguished root token ∗) — such that Opponent moves point to Player moves or ∗ and Player
moves point to Opponent moves.

J. Laird 121

We write CA for the set of control sequences over the arena A. A control strategy on A is a non-empty,
even-prefix-closed set of even-length control sequences in CA, satisfying the determinacy and thread-
independence conditions.

In order to use our definition of composition for control strategies, we need to define the restriction
operator on control sequences to replace “dangling” control pointers, by following back pointers to hid-
den moves until an unhidden move is reached. Accordingly, we define the set of open questions of a
control sequence as follows:
open(ε) = {},
open(sqta) = open(s), if a is an answer
open(sqtq′) = open(sq)∪{sqtq′} if q′ is a question with a control pointer to q,
open(sq) = {q}, if q points to ∗.

We extend the restriction operation to control sequences by requiring that every move in s�B points
to the most recent preceding open move which is in B (if any). With this definition of restriction, the
original proofs of well-definedness and associativity of parallel composition plus hiding [10] extend
straightforwardly to control strategies.

To form a category, we also need to define identity morphisms (and other copycats) as control strate-
gies. Say that a control sequence s satisfies (player) control locality if every Player question in s points
to the pending question: let LocA be the set of control sequences over A which satisfy this condition.
Given a strategy on A, we may define a local control strategy σ̂ on A by taking all player-local sequences
which correspond to sequences in σ when pointers are ignored i.e. σ̂ = {s ∈ LocA | |s| ∈ σ}. (In other
words, by decorating sequences in σ by adding control pointers from each Opponent question to some
Player question, and from each Player question to its pending question.) We define the identity control
strategy to be îdA (and similarly for the other copycat strategies giving cartesian closed structure). So we
may define a cartesian closed category C G in which objects are arenas, and morphisms from A to B are
control strategies on A→ B.

We also observe that:

• The operation̂ is not functorial: the arenas Σ1 and Σ0⇒ Σ0 are isomorphic in G but not in C G :
the composition of the images of these isomorphisms under̂ is not ̂idΣ0⇒Σ0.

• ̂ is functorial on well-bracketed strategies: there is a faithful, identity-on-objects functor J : G B→
C G sending σ : A→ B to σ̂ .

4.1 Semantics of Exceptions

C G has structure with which to model L — (it is a CCC with a strong lifted sum monad Σ on
Fam(C G). The functor J : G B→ C G preserves all of this structure, and hence the meaning of L -terms.
We interpret new reference declaration, and call-with-current-continuation by decorating the correspond-
ing underlying strategies with control pointers: i.e.

• [[newT]]C = ĉell[[T]]

• [[callcc]]C = ĉallcc

Since cell is well-bracketed, it lies within the domain of the functor J, which therefore preserves the
meaning of LR-terms by definition. As we have noted, ̂ is not functorial on non-well-bracketed strate-
gies, and hence does not preserve the meaning of LRC -terms in general.

122 Combining and Relating Control Effects and their Semantics

Exceptions We interpret new-exception declaration as a new-exception strategy exnC : Σ((Σ0⇒ Σ1)×
(Σ0)). This was defined in a weakly-bracketed setting in [7]: it relies on control pointers to determine
the current exception handler. Its behaviour can be described as follows:

• Answer the initial (Opponent) question.

• If Opponent plays the initial move on the left (try) then respond with a question (ok).

• If Opponent plays the initial move on the right (throw), then answer the most recent open initial
question on the left (caught). If there are no such moves, do nothing, representing divergence
caused by an uncaught exception.

In other words, exnC consists of the legal control sequences of the form qa(((tryok)∗(throwcaught)∗)∗

such that each caught move is justified by the most recent open try move. Here is a typical play:

Σ (Σ0 ⇒ Σ1 × Σ0)
q
a

try

tt
JPUZ_dh

ok

**
v

f Z

...
raise

dd

`\YVR
N

J

caught

XX

�

�

,

Proving soundness for this model directly is difficult due to the implicit nature of its representations of
continuations and exceptions. Instead, we will provide an alternative characterization of exn by relating
it to an exceptions monad.

5 A Monadic Effect Semantics

In this section, we construct a semantics of LRC E corresponding to exceptions and continuation-passing-
style interpretation. This has the advantage of relating these control effects to well-understood structure,
at the cost of a less direct and concrete interpretation of terms. Observe that since the (strong) exceptions
monad +E distributes over any other monad, we have a monad Σ(+1) on Fam(G). By Lemma 3.3,
this is equivalent to the exceptions-and-continuations monad RR +E

, for the answer object R = Σ0.
In fact, we will describe the semantics of LRC E in a category of “exception arenas” in which raising

and propagating the global exception is represented by playing explicit “exception moves”. The lifting
monad in this model is equivalent to the above exceptions-and-continuations monad, giving a route to
establishing its soundness, whilst it may be related to the control games interpretation by replacing runs
of exception moves with control pointers.

Definition 5.1 An exception arena is a pair (A,eA) of an arena together with a function eA : {m ∈
MA | λ (m) = Q} → {m ∈ MA | λ (m) = A} associating each question q with a unique “exception an-
swer”, which is a child of q — i.e q ` eA(q) — and a leaf of A.

Exception moves correspond to a single, global exception: playing an exception answer in response
to a non-exception move corresponds to raising this exception, playing the pending exception answer
in response to an exception move corresponds to propagating it, and playing a non-exception move in
response to an exception move corresponds to handling it.

J. Laird 123

Observe that if (A,eA) and (B,eB) are exception arenas, then (A⇒ B,
⊕

m∈MI
B

eA+eB and (A×B,eA+
eB) are exception arenas. Hence we may define:

• a Cartesian closed category G E , which has exception-arenas as objects and unbracketed strategies
on A⇒ B as morphisms from A to B.

• A fully faithful (identity on morphisms) cartesian closed functor UE : G E → G which forgets the
exception answer labelling.

Given a family of exception-arenas A = {(Ai,ei) | i ∈ I}, define ΣEA = (Σ({Ai | i ∈ I}+ 1),
⊕

i∈I ei ∪
{q,inr(a)}) — i.e. the exception arena given by extending Σ{Ai | i ∈ I} with an additional exception
answer move inr(a) to the initial question. By definition, we have:

Lemma 5.2 UE(ΣEB) = Σ(UE(B)+1).

Hence by full faithfulness of UE , we therefore have a strong monad ΣE on Fam(G E) such that UE ·
ΣE = Σ(+ 1) ·UE , giving a semantics for the type-theory L in G E . Note that by Lemma 3.3, ΣE is
equivalent to the exceptions-with-continuations monad RR +1

, where R is the one-move game — i.e.
UC ·UE ·ΣE ∼= RR +1 ·UC ·UE .

We may interpret continuations and references in this model by adding exception-answers to our
existing denotations for these features. Given an exception-arena A, let K(A) be the arena obtained by
erasing all of the exception-answers in A — i.e. MK(A) =MA−{e(q) | λ (q)=Q}. Say that an even-length
legal sequence s on A is exception-local if:

• Player always propagates exception moves: if te(q)mv s is even-length, then m = e(q′), where q′

is the pending question of te(q).

• Player never raises an exception: if tmn v s is even-length, and m is not an exception-move, then
n is not an exception move.

Given an exception-local sequence, let s be the legal sequence on K(A) obtained by erasing exception
moves in s. Let the exception-completion of a strategy σ on K(A), be the set σ̃ of exception-local
sequences on A such that s ∈ σ . (Note that this is deterministic and thread-independent.) Hence we may
define the denotation of callcc and new as the exception-completions of their denotations in G .

To interpret exception declaration and handing, first note that we have evident raise and handle
strategies on 1→ ΣE1 and ΣE0→ ΣE1 which raise and handle the global exception by playing the
exception-answer to the initial question and respond to Opponent’s playing of an exception answer by
playing a “non-exception-answer”, respectively. The interpretation of new exn : ((1→ 0)→ 1)×(1→ 0)
as a strategy exnE : ((ΣE0⇒ ΣE1)×ΣE0 combines these behaviours with local state: the handle method
handles the global exception if the raise method has been used to raise a global exception which has
not yet been handled, and propagates it otherwise. Formally, define exnE to consist of all plays of the
form qa(handlok)∗(raise ·e[raise]))∗(e[ok]caught)∗ which are Player-well-bracketed. Example plays are
given in Figure 1.

5.1 Soundness

We may prove soundness and adequacy of our exceptions monad model by showing that it corresponds
to an exception-passing-style translation ()E from LRC E to LRC . This acts on types as follows:

• 0E = 0, 1E = 1,

• (S×T)E = SE ×T E ,

124 Combining and Relating Control Effects and their Semantics

Σ (ΣE0 ⇒ ΣE1 × ΣE0)
q
a

try
ok

...
raise

e(raise)
e(ok)

caught

ΣE (ΣE0 ⇒ ΣE1 × ΣE0)
q
a

try
ok

...

e(ok)
e(try)

Figure 1: Plays of exnE

• (S+T)E = SE +T E ,

• (S→ T)E = SE → (T E +1).
Translation of computations x1 : S1, . . . ,xn : Sn ` M : T as computations x1 : SE

1 , . . . ,xn : SE
n `c ME :

T E + 1 and values x1 : S1, . . . ,xn : Sn ` V : T as values x1 : SE
1 , . . . ,xn : SE

n `E V E : T E is given in Table
4. The translation of LRC arises straightforwardly from the strong monad structure, so we focus on
the interpretation of local exceptions — specifically, the new-exception declaration. Right injection and
pattern matching may be used to define evident operations which raise and handle the single global
exception, respectively. But how can we use these to construct an object whose methods raise and handle
a local exception? The answer is: we use the local state in our underlying model/metalanguage. Our
exception has as its internal state a Boolean variable e acting as a flag. The raise method for the local
exception object sets e and raises the global exception. The handle method for the object handles the
global exception, tests e and resets it if it is set (i.e. e had been raised and has now been handled) or
re-raises the global exception if it is not set (i.e. some other exception was raised and now needs to be
propagated). So we have two methods:
• raise(e) = λ z.e := tt; in2(()) : (1→ 0)E

• handle(e) = λ f .(f ());If deref(e) then (e := ff ; in2(())) else in2(()) : ((1→ 0)→ 1)E

New-exception declaration simply aggregates these methods and hides the internal state e. We establish
that the interpretation of local exceptions via translation into LRC is sound.
Lemma 5.3 M ⇓ if and only if ME ⇓.

PROOF: The key step is to break the exception-propagation rule down to propagate exceptions past each
let-context and non-matching handler. �

We have already noted that the forgetful functor UE sends ΣE to the (lifted) exceptions monad Σ(+1).
This correspondence extends to the interpretation of LRC -types and terms.
Lemma 5.4 For any L -term, Γ `M : T , UE([[Γ `M : T]]) = [[ME]].

PROOF: For types, and terms of LRC , this follows from equivalence of ΣE and Σ +1 via UE . Thus, it
remains to observe that these interpretations agree on the interpretation of new exception declaration —
i.e. [[λ ().new x := ff .[in1(〈handle(e),raise(e)〉)]]] = UE(exnE). �

Hence we have soundness and adequacy for the exception-arena semantics.
Proposition 5.5 M ⇓ if and only if [[M]]E 6=⊥

J. Laird 125

• (x)E = x

• [V]E = [in1(VE)]

• (letM = x inN)E = letME = y in case y as in1(x).NE|in2(x).in2(())

• (λx.M)E = λx.ME , (U V)E =UE V E

• (matchV as (x,y).M)E = match (x,y) asV E inME , 〈U,V 〉E = 〈UE ,V E〉,
• ()E = (), void(V)E = void(V E)

• ini(V)E = ini(VE), (caseV as in1(x).M|in2(x).N)E = caseVE as in1(x).ME|in2(x).NE

• callcc(V)E = callcc(λk.V E λx.k in1(x))

• newE = λ ().new a in [in1(a)]

• new exnE = λ ().new x := ff .[in1(〈handle(e),raise(e)〉)]

Table 4: Exception-passing translation

6 Relating Control Games to the Exception Monad

We now relate the monadic and control-games interpretations of LRC E by establishing a correspondence
between the two models: a meaning-preserving functor into C G from a subcategory of G E consisting of
exception-arenas and exception-propagating strategies.

A sequence s over A is exception-propagating if whenever Opponent raises an exception, Player
always propagates it by playing the exception-answer to the pending question, and vice versa. Formally,
define the set of exception-propagating sequences to be the least set of justified sequences such that:

• The empty sequence is exception-propagating,

• If s is exception-propagating, and m is not an exception move, then sm is exception-propagating.

• If s (of even length) is exception-propagating then se(q)e(q′) is exception-propagating, where q′ is
the pending question of se(q).

We write EPA for the set of exception-propagating control sequences on A. Recall that we defined K(A)
to be the arena obtained by erasing all of the exception-answers in A. Given s ∈ EPA we define a control
sequence K(s) on K(A) by:

• First, adding a control pointer from each question to its pending question (or the token ∗ otherwise).

• Then, deleting all exception answers.

This is a well-defined control sequence; it is alternating since if s is exception-propagating then all
exception-moves in s come in adjacent pairs. Control pointers alternate in polarity since the pending
question is always of opposite polarity to the move about to be played (and there is always a pending
question at any Player move). For an example, the first typical play given for the new-exception strategy
exnE (Fig. 1) is transformed to the typical play given for the corresponding control strategy exnC

Extend the definition of K to all justified sequences on the exception-arena A by letting K(s) = K(t),
where t is the greatest exception-propagating prefix of s. A strategy σ on A is exception-propagating if
K(σ) = {K(s) | s ∈ σ} is a well-defined (thread-independent) control strategy. In other words:

• K(σ) consists of even-length sequences — σ always propagates exceptions raised by Opponent.

126 Combining and Relating Control Effects and their Semantics

• K(σ) is even-branching — σ ignores exceptions raised by Opponent once they have been handled
(but not their effect on the exception handling context).

We show that this is a compositional property of strategies, and that the action of K is functorial, based
on the following lemma:

Lemma 6.1 Given s ∈ L(A→B)→C, if s�A,B and s�B,C are legal and exception-propagating, then:

• s�A,C is exception-propagating.

• K(s)�A,C = K(s�A,C).

PROOF: Since the s�A,B and s�B,C are exception-propagating, any runs of exception-answers occur in
even-length blocks in s, and erasing the part in B leaves an exception-propagating sequence.

We show by induction on the length of s that the pending question in s�A,C is the pending question
in the relevant fragment s�A,B or s�B,C, and so control pointers in K(s)�A,C and K(s�A,C) agree. �

Based on this lemma, we show:

Proposition 6.2 The composition of exception-propagating strategies is exception-propagating.

It is straightforward to verify that the identity strategy is exception propagating, with K(id) = id.
Hence:

• Exception-propagating strategies form a lluf subcategory G EP of G E .

• K acts as a functor from G EP to C G .

Evidently, K preserves Cartesian closed structure, and ΣE ·K∼=Σ ·K. So for L -types we have K([[T]]E)∼=
[[T]]C. Moreover, if we apply K to the exception-completion of a strategy, this is equivalent to decorating
with control-pointers to the pending moves — i.e. K(σ̃) = σ̂ . So K preserves the meaning of LRC -
terms. It remains to check that this is the case for exception declaration.

Lemma 6.3 exnE is exception-propagating, and K(exnE)∼= exnC.

PROOF: Recall that exnE is the set of well-bracketed plays qa(handleok)∗(raise·e[raise]))∗(e[ok]caught)∗.
This is evidently exception-propagating, and erasing the exception moves on exception-propagating plays
leaves a control sequence of the form qa(((tryok)∗(throwcaught)∗)∗, where the pending try move in the
original sequence becomes the target of a control pointer and hence the most recent open handler as
required. �

Thus we have shown that:

Proposition 6.4 Every LRC E -term M denotes an exception-propagating strategy such that K([[M]]E) =
[[M]]C.

and hence established soundness and adequacy for the exception-arena semantics.

Proposition 6.5 M ⇓ if and only if [[M]]C 6=⊥.

7 Full Abstraction

Having proved soundness for the control strategy model using algebraic methods (correspondence with
the monad model), we may establish full abstraction via reduction (by factorization) to the definability
result for the original model of LR .

Recall that a (thread-independent) strategy σ is compact (in the inclusion order) if the set of well-
opened sequences (those having a unique initial move) in σ is finite. The following result is proved (by
factorisation) in [1].

J. Laird 127

Proposition 7.1 For any type L -type T , every compact well-bracketed strategy on Σ[[T]] is the denota-
tion of a LR term Mσ : T .

Since J : G B → C G preserves the meaning of LR-terms, every compact strategy in the image of J is
definable — i.e. all compact, local well-bracketed strategies which also satisfy the following condition:

Control blindness |σ |= {|s| | s ∈ σ} is a deterministic strategy on A.

Corollary 7.2 Every compact local, well-bracketed and control-blind strategy over an L type-object is
definable as a term of LR .

We now factorize any compact control-blind strategy into the composition of a definable strategy with
the denotation of callcc.

Lemma 7.3 For any (compact) control-blind strategy σ : 1→A there is a (finitary) local, well-bracketed
strategy σ̃ : ((Σ0⇒ Σ1)⇒ Σ1)→ A such that Λ(callcc1,0); σ̃ = σ .

PROOF: This is essentially the factorization given in [5]: we define a map ˜ from control sequences
to Player well-bracketed sequences in L((Σ0⇒Σ0)⇒Σ1)⇒A which interjects label,ok after each Opponent
question, and blocks of jump,caught moves before each Player answer, so that any intervening questions
are closed.

�

So it remains to show that control-blind strategies may be factorized as the composition of a local control
strategy with the strategy exn.

Lemma 7.4 For any (compact) control strategy σ : 1→ A there is a (compact) control-blind strategy
σ̂ : [[exn]]→ A such that exn; σ̂ = σ

PROOF: We define a map̂ from control sequences on A to control sequences on exn→ A which makes
all control pointers on O-moves manifest. It raises an exception before each Opponent move, and handles
it after each O-move. The handler which catches the raised exception is determined by the control
pointers from O-moves in s, so that |s̃| = |̃t| implies s = t. Since s̃�A = s, and s̃�[[exn]] ∈ exn, we have
exn; σ̂ = σ as required �

For any compact strategy, σ : I→Σ[[T]], the control-blind strategy σ̃ is definable as a term x : exn`M and
thus σ is definable as let x = new exn inM. The proof of full abstraction based on finite definability is
now standard.

Theorem 7.5 The model of LRC E in Fam(C G)Σ is (inequationally) fully abstract — i.e. for any L -type
T and any terms M,N : T , [[M]]C ⊆ [[N]]C if and only if M . N.

8 Conclusions and Further Directions

Model checking exceptions Giving different representations of exceptions in games models may be
useful in the developing field of program-verification based on semantic games. For example, we may
observe that the set of exception-propagating sequences over a finite alphabet (with a specified subset of
distinguished exception tokens) is regular, giving a way of extending results characterizing finite-state
representable fragments of imperative languages to include local exceptions. On the other hand control
pointers describe control flow (and, in particular, exception handling points) directly, and so adding them
to game semantic approaches to control flow analysis [9] offers the possibility of reasoning about e.g.
exception safety.

128 Combining and Relating Control Effects and their Semantics

Delimited Control Further instances of delimited continuations such as locally declared, dynamically
bound prompts [3] could be modelled by a similar analysis relating CPS interpretation to the stateful
behaviour in games models.

Good Variables Languages such as ML and Java have explicit exception types, so that an object of
exception type must behave as an exception, whereas there is clearly no such constraint on objects of
the product type which we have used as an exception type. Extending our full abstraction results to such
languages is liable to require some characterization of such behavioural constraints. This problem is
analogous to the “good variable” problem for references, and we may look to research in this area for
approaches to model “good exceptions” [12]. Implementing wildcard handling (e.g. Java’s finally)
becomes straightforward when exceptions are passed as names through an exceptions monad, although
a wildcard handler typically cannot trap an exception and then discover its name, and so a model should
reflect this constraint.

References

[1] S. Abramsky, K. Honda & G. McCusker (1998): A fully abstract games semantics for general references.
In: Proceedings of the 13th Annual Symposium on Logic In Computer Science, LICS ’98, IEEE Press,
doi:10.1109/LICS.1998.705669.

[2] S. Abramsky & G. McCusker (1998): Call-by-value Games. In M. Neilsen & W. Thomas, editors: Proceed-
ings of CSL ’97, Springer-Verlag, pp. 1–17, doi:10.1007/BFb0028004.

[3] C. Gunter, D. Rémy, and J. Riecke (1995): A generalization of exceptions and control in ML like languages.
In: Proceedings of the ACM Conference on Functional Programming and Computer Architecture, pp. 12–23,
doi:10.1145/224164.224173.

[4] J. M. E. Hyland, P. B. Levy, G. D. Plotkin & J. Power (2007): Combining Algebraic effects with continuations.
Theoretical Computer Science 375(1-3), pp. 20–40, doi:10.1016/j.tcs2006.12.026.

[5] J. Laird (1997): Full abstraction for functional languages with control. In: Proceedings of the Twelfth
International Symposium on Logic In Computer Science, LICS ’97, IEEE Computer Society Press,
doi:10.1109/LICS.1997.614931.

[6] J. Laird (1998): A Semantic Analysis of Control. Ph.D. thesis, Department of Computer Science, University
of Edinburgh.

[7] J. Laird (2001): A fully abstract game semantics of local exceptions. In: Proceedings of LICS ’01, IEEE
Computer Society Press, doi:10.1109/LICS.2001.932487.

[8] J. Laird (2002): Exceptions, Continuations and Macro-expressiveness. In: Proceedings of ESOP ’02, LNCS
2305, Springer, doi:10.1007/3-540-54927-8 10.

[9] P. Malacaria and C. Hankin (1998): Generalised Flowcharts and Games. In: Proceedings of the 25th Inter-
national Colloquium on Automata, Langugages and Programming, doi:10.1007/BFb0055067.

[10] G. McCusker (1996): Games and full abstraction for a functional metalanguage with recursive types. Ph.D.
thesis, Imperial College London. Published by Cambridge University Press.

[11] E. Moggi (1988): Computational Lambda-Calculus and monads. Technical Report ECS-LFCS-88-66, Uni-
versity of Edinburgh Department of Computer Science.

[12] Nikos Tzevelekos (2008): Full abstraction for nominal exceptions. Proc. Games and Logic in Programming
Languages.

http://dx.doi.org/10.1109/LICS.1998.705669
http://dx.doi.org/10.1007/BFb0028004
http://dx.doi.org/10.1145/224164.224173
http://dx.doi.org/10.1016/j.tcs2006.12.026
http://dx.doi.org/10.1109/LICS.1997.614931
http://dx.doi.org/10.1109/LICS.2001.932487
http://dx.doi.org/10.1007/3-540-54927-8$_$10
http://dx.doi.org/10.1007/BFb0055067

J. Laird 129

• (x)C = x, (let x = M inN)C = λκ.MC λm.letx = m in (NC κ)

• [V]C = λκ.κ VC

• (λx.M)C = λ z.match (x,κ) as x inMC κ , (U V)C =UC VC

• 〈U,V 〉C = 〈UC,VC〉 (match (x,y) asV.M)C = λκ.match (x,y) asVC.MC κ

• ()C = (), void(V)C = λκ.κ void(VC).

• in2(U)C = in2(VC), in1(V)C = in1(VC),
(caseV as in1(x).M|in2(x).N)C = caseVC as in1(x).MC|in2(x).NC

• newC = λκ.new a in κ 〈λx.fst(x) (a := snd(x)),λy.snd(y) deref(a)〉
• callcc(V)C = λκ.VC 〈k,λx.match (y,z) as x in k x〉

Table 5: CPS translation of exception-free terms

Appendix: Soundness for LRC via CPS translation

We give an interpretation of LRC in LR — a CPS translation corresponding to the action of the CPS
monad on our denotational model. This acts on types as follows:

• 0C = 0, 1C = 1,

• (S+T)C = SC +TC,

• (S×T)C = SC×TC,

• (S→ T)C = (SC× (TC→ 0))→ 0.

Values x1 : S1, . . . ,xn : Sn `v V : T are translated as values x1 : SC
1 , . . . ,xn : SC

n `v VC : TC and computations
x1 : S1, . . . ,xn : Sn `c M : T are translated as values x1 : SC

1 , . . . ,xn : SC
n `v MC : (TC → 0)→ 0 as defined

in Table 3.
Extending to L #

C by setting #(M)C = λκ.MC τ (where τ : 1→ 0 is a variable representing the top-
level continuation), we may show that reduction of a term tracks that of its translation:

Proposition 8.1 For any program M : 1, M ⇓ if and only if MC τ −→ τ ()

We note that CPS interpretation corresponds (up to isomorphism) to the interpretation of LRC -types and
terms:

Proposition 8.2 For any L -type T , there is an isomorphism of arenas φT : UC([[T]]) ∼= [[TC]] such that
for any LRC -term, Γ `M : T , UC([[Γ `M : T]]);φT = [[MC]].

PROOF: The key type-constructor is the function type: we have UC([[S→ T]]) =UC([[S]])⇒UC(Σ[[T]])∼=
[[SC]]⇒ RR[[TC]]

= ([[SC]]× [[(TC]])⇒ R)⇒ R∼= [[(SC× (TC→ 0))→ 0]]∼= (S→ T)C. �

Hence interpretation in the games model is sound and adequate:

Proposition 8.3 M ⇓ if and only if [[M]] 6=⊥.

	1 Introduction
	2 An Effectful Functional Programming Language
	2.1 Computational Effects
	2.2 Operational Semantics
	2.3 Expressiveness

	3 Denotational Semantics: Preliminaries
	3.1 Game Semantics
	3.2 Semantics of L
	3.3 Semantics of Continuations

	4 Control Strategies
	4.1 Semantics of Exceptions

	5 A Monadic Effect Semantics
	5.1 Soundness

	6 Relating Control Games to the Exception Monad
	7 Full Abstraction
	8 Conclusions and Further Directions

