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Interventionist Counterfactuals on Causal Teams

Fausto Barbero and Gabriel Sandu (University of Helsinki)

We introduce an extension of team semantics ([13], [22]) which provides a framework for the logic
of manipulationist theories of causation based on structural equation models, such as Woodward’s
([25]) and Pearl’s ([18]); our causal teams incorporate (partial or total) information about functional
dependencies that are invariant under interventions. We give a unified treatment of observational
and causal aspects of causal models by isolating two operators on causal teams which correspond,
respectively, to conditioning and to interventionist counterfactual implication. We then introduce
formal languages for deterministic and probabilistic causal discourse, and show how various notions
of cause (e.g. direct and total causes) may be defined in them.

Through the tuning of various constraints on structural equations (recursivity, existence and
uniqueness of solutions, full or partial definition of the functions), our framework can capture dif-
ferent causal models. We give an overview of the inferential aspects of the recursive, fully defined
case; and we dedicate some attention to the recursive, partially defined case, which involves a shift
of attention towards nonclassical truth values.

1 Introduction

Some modern accounts of causation, most eminently the framework of D. Lewis ([16]), link the notion
of causality to that of counterfactual dependence. Recent approaches to the manipulationist analysis
of causality (Pearl [18], Spirtes, Glymour & Scheines [20], Woodward [25], Hitchcock [12]) focus on
counterfactuals whose antecedents express interventions, the key idea being that a cause can be inter-
vened upon to determine its effect. Such theories articulate the analysis of the notion of intervention
using the so-called structural equation models ([20], [18]); they will be our main concern in the present
paper. Our goal is to show how the notions of counterfactual and causal dependence that arise from the
manipulationist theories of causation can be expressed and incorporated in the logical framework pro-
vided by team semantics. In section 2, we briefly review the basics of structural equation modeling. In
section 3, we review the notion of a team and show how to integrate it with causal structure. Sections 4
to 6 define the (causal) team semantics for (deterministic) atomic formulas, connectives, and operators
corresponding to evidential and counterfactual reasoning. Section 7 briefly explores the properties of this
language when evaluated in the context of recursive, fully defined systems; sections 8 and 9 sketch ideas
for going beyond these restrictions. In section 10 we show how to enrich the languages with probabilistic
statements. Finally, as an example, we show that our languages are adequate for expressing the notions
of direct and total causation from Woodward ([25]). The reader can find a more extensive treatment of
our subject (including the omitted proofs) in the preprint [1].

2 Structural equation models

The most basic objects in the structural equation modeling approach are variables, which we will denote
with capital letters X ,Y.... Each variable V can assume values (tipically denoted as v,v′,v′′...) within a
certain range of objects, Ran(V ). Variables are related to each other by structural equations, for example

Y := fY (X1, . . . ,Xn)
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2 Interventionist Counterfactuals on Causal Teams

stating that Y is determined as a function of X1, . . . ,Xn. The use of the symbol := instead of an equality is
to emphasize that the equation should be thought of as non-reversible1. The set of arguments of function
fY , that is {X1, . . . ,Xn}, is usually denoted as PAY (the set of parents of Y ; Y is a child of each of the Xi).
For other sets or sequences of variables, we will follow a different notational convention:

Notation 2.1. • We use boldface letters such as X to denote either a set {X1, . . . ,Xn} of variables or
a sequence of the same variables (in a fixed alphabetical order).

• We use x to denote a set or sequence of values, each of which is a value for exactly one of the
variables in X. We leave the details of these correspondences between variables and values as
non-formalized.

• Ran(X) is an abbreviation for ∏X∈X Ran(X).

A structural equation model may contain an explicit description of the function f (fully defined case)
or not (partially defined case). In both cases, the structural equations determine a pattern of dependencies
between variables, which can be represented as a graph (one arrow from each parent Xi to the child Y ).

An intervention do(X = x) can be thought of as the act of replacing the equation for X with a constant
equation X := x. Correspondingly, all the arrows coming into X are removed from the graph. Importantly,
all the other structural equations are left untouched by the intervention. This aspect of the system of
structural equations, called invariance (modularity) will be crucial in our developments.

A structural equation model is typically further enriched, in the literature, with an assignment of
values to the exogenous variables (deterministic case), or with a joint probability distribution over the
exogenous variables (semi-deterministic case). If the graph underlying the model is acyclic, this assign-
ment or probability distribution can be canonically extended to the whole variable domain. At this stage
it becomes possible to evaluate counterfactual statements over the model: for example, X = x2→ ψ

holds under the current assignment/probability distribution if ψ holds after the intervention do(X = x).

3 Causal teams

Team semantics was introduced by Hodges ([13]) to provide a compositional presentation of the (game-
theoretically defined) semantics of Independence-Friendly logic ([11],[17]). In the subsequent years,
team semantics has been used to extend first-order logic by database dependencies (e.g. [22], [9], [7]);
and to enrich propositional logics (e.g. [26]) and modal logics ([23]). Appropriate generalizations have
been used as descriptive languages for probabilistic dependencies ([5]), quantum phenomena ([14]),
Bayes nets ([4]).

The basic idea of team semantics is that notions such as dependence and independence, which express
properties of relations, cannot be captured by Tarskian semantics, which evaluates formulas on single
assignments2; the appropriate unit for semantical evaluation is instead the team, i.e., a set of assignments
(all sharing a common variable domain). In our context, an assignment can be thought of as a way to
encode a possible configuration for the values of variables; once a set Dom of variables is fixed, each
assignment will be a function s : Dom→

⋃
X∈Dom Ran(X) such that s(X) ∈ Ran(X) for each X ∈Dom (in

the statistical literature, s would be called an individual). A team T of domain dom(T ) = Dom is a set of
such assignments.

A significant example of a property that can be satisfied by a team is functional dependence (among
variables). The formula =(X;Y ), called a dependence atom, has the intended meaning: the (values) of

1A structural equation is nothing else than a shorthand for a set of counterfactuals, to be taken as assumptions ([12]).
2This can be formally proved, see [3].
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the variable Y are functionally determined by (the values) of the set of variables X. Its truth in a team T
is defined by the following clause:

T |==(X;Y ) ⇐⇒ for all s,s′ ∈ T, if s(X) = s′(X) then s(Y ) = s′(Y )

where s(X) = s′(X) is an abbreviation for “s(X1) = s′(X1) and... and s(Xn) = s′(Xn)”.
Teams turned out to be a very useful framework for describing data-driven correlations. But they are

not sufficient, by themselves, to handle causal dependencies. The latter require that the functional corre-
lations be robust, i.e. invariant under interventions. We thus need to enrich teams with a set of functions,
the invariant functions, which are the carriers of causal dependencies3; and we need to formulate the
notion of intervention. We now move to technicalities.

Given a team T− and X ∈ dom(T−), we write T−(X) for the set of values that are obtained for X in
the team T−: T−(X) := {s(X)|s ∈ T−}. As before, we say that T− satisfies a dependence atom =(X;Y ),
and we write T− |==(X;Y ), if, whenever s(X) = s′(X) for all s,s′ ∈ T−, we have s(Y ) = s′(Y ).

Def 3.1. A causal team T over variable domain dom(T ) with endogenous variables V ⊆ dom(T ) is a
quadruple T = (T−,G(T ),RT ,FT ), where:

1. T− is a team.

2. G(T ) = (dom(T ),E) is a graph over the set of variables. For any X ∈ dom(T ), we denote as PAX

the set of all variables Y ∈ dom(T ) such that the arrow (Y,X) is in E.

3. RT = {(X ,Ran(X))|X ∈ dom(T )} (where the Ran(X) may be arbitrary sets) is a function which
assigns a range to each variable

4. FT is a function {(Vi, fVi)|Vi ∈ V} that assigns to each endogenous variable a |PAVi |-ary function
fVi : dom( fVi)→ ran(Vi) (for some dom( fVi)⊆ Ran(PAVi))

which satisfies the further restrictions:

a) T−(X)⊆ Ran(X) for each X ∈ dom(T )

b) If PAY = {X1, . . . ,Xn}, then T− |==(X1, . . . ,Xn;Y )

c) if s ∈ T− is such that s(PAY ) ∈ dom( fY ), then s(Y ) = fY (s(PAY )).

In case dom( fV ) = Ran(PAV ) for each V ∈ V, we say the causal team is fully defined; otherwise it is
partially defined. If the graph G(T ) is acyclic, we say T is recursive; otherwise nonrecursive.

We will assume for the rest of the paper that dom(T ), and therefore G(T ), is finite.

Clause b) ensures that the team component T− satisfy (at least) the dependencies encoded in the
graph G(T ). Clause c) further ensures that the team component is consistent with the invariant functions
encoded in FT . The graph G(T ) is induced (via b) and c) ) by the set of functional dependencies specified
by clause (4), and provides a distinction between endogenous variables, that are determined by one of
these invariant dependencies, and exogenous variables (those in dom(T )\V), that are not.

Example 3.2. Consider a causal team T with underlying team T− = {{(U,2),(X ,1),(Y,2),(Z,4)},
{(U,3), (X ,1),(Y,2),(Z,4)},{(U,1),(X ,3),(Y,3), (Z,1)},{(U,1),(X ,4),(Y,1),(Z,1)},{(U,4),(X ,4),
(Y,1),(Z,1)}}, graph G(T ) = ({U, X ,Y,Z}, {(U,Z),(X ,Y ),(X ,Z),(Y,Z)}), ranges Ran(U) = Ran(X)
= Ran(Y ) = Ran(Z) = {1,2,3,4}, and partial description of (one value of) the invariant function for Z:
F (Z)(4,1,2) := 3. We represent the T− and G(T ) components of T by means of a decorated table:

3The invariant functions will univoquely associate a set of structural equations to the enriched team.
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U X Y Z
2 1 2 4
3 1 2 4
1 3 3 1
1 4 1 1
4 4 1 1

4 A basic language for causal teams

We need first of all to specify what it means for a causal team to satisfy an atomic formula, and to
assign a semantics to connectives. Our language consists of formulas built using the connectives ∧ and
∨ (“tensor” disjunction), dependence atoms, and atomic formulas of the forms Y = y and Y 6= y. The
semantic clause for disjunction requires the notion of causal subteam:

Def 4.1. Given a causal team T , a causal subteam S of T is a causal team with the same domain and
the same set of endogenous variables, which satisfies: 1) S− ⊆ T−, 2) RS = RT , 3) G(S) = G(T ), 4)
FS = FT

4.

The semantic clause for dependence atoms was given above. The other clauses are:

• T |= Y = y (resp. T |= Y 6= y) if, for all s ∈ T−, s(Y ) = y (resp. s(Y ) 6= y)

• T |= ψ ∧χ if T |= ψ and T |= χ .

• T |= ψ ∨χ if there are causal subteams T1,T2 of T s.t. T−1 ∪T−2 = T−, T1 |= ψ and T2 |= χ .5

5 Selective implication

Our main goal is to give an exact semantics to counterfactual statements of the form “If ψ had been the
case, then χ would have been the case”. Very often, however, one finds examples in the literature where
these statements are embedded into a larger context. Pearl ([18]) analyzes the following query: “what is
the probability Q that a subject who died under treatment (X = 1,Y = 1) would have recovered (Y = 0)
had he or she not been treated (X = 0)?

The representation of the statement whose probability Pearl is interested in seems to be:

(X = 1∧Y = 1)⊃ (X = 02→ Y = 0).

where the symbol 2→ stands for counterfactual implication, while the symbol ⊃, called selective im-
plication, denotes a connective which is a generalization of material implication to teams6. It serves to
restrict, in this example, the range of application of the counterfactual to the available evidence. More
generally, given a causal team T , and a formula ψ without dependence atoms, define the causal sub-
team T ψ by the condition (T ψ)− = {s ∈ T−|s |= ψ}, where the relationship |= for single assignments is
intended as in classical logic: s |= Z = z if s(Z) = z, etc. We define selective implication by the clause:

4Alternatively, one might consider enriching the component FS with the information about invariant functions which is lost
in passing from the team to the subteam.

5Notice that it might be impossible to define consistently the union of two causal teams.
6To the best of our knowledge, this connective has been used, with different notation, in [8], as a special case of the maximal

implication introduced in [15].
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• T |= ψ ⊃ χ iff T ψ |= χ .

The consequent χ can be any formula of the current language. Instead, we require the antecedent to be a
formula which denotes properties of single assignments. It is straightforward to extend the clause above
in order to allow the use of ⊃ (and the counterfactual 2→, yet to be defined) in antecedents.

Example 5.1. The selective implication Z = 3⊃ Y = 2 holds on any causal team T which has the table
depicted below. In order to see that the formula holds on it, we have to construct the subteam T Z=3

T :

Z Y X
1 2 3
2 1 1
3 2 1
3 2 2

; T Z=3 :
Z Y X

3 2 1
3 2 2

which is obtained by selecting the third and fourth row of T (the rows that satisfy Z = 3). Notice that
T Z=3 |= Y = 2; by the semantical clause, then, T |= Z = 3⊃ Y = 2.

6 Intervention

We define an (interventionist) counterfactual implication. Its semantics will be determined by a notion
of intervention on a causal team. We may think of a (causal) team as an incomplete description of our
knowledge concerning the state of a system: each assignment represents a configuration of values for
the variables that we consider possible, even though we do not know which specific assignment encodes
the actual state of the system. If we perform an intervention on the system, say do(X = 1), then we
know that, whatever the correct assignment is, our intervention is an action that enforces the values of
the variable X to take value 1, and removes any causal link from other variables to X ; it is then reasonable
to apply these changes to the whole team. The change will then propagate to the descendants of X by
means of the functions specified by the fourth component of the causal team.

Example 6.1. Suppose we want to evaluate X = 12→ Y = 2 in the causal team of Example 3.2. We
need to generate a causal team TX=1 which differs from the initial one in that variable X is fixed, in all
assignments, to value 1. This will affect all descendants of X (in this case, the children Y and Z).

U X Y Z
2 1 2 4
3 1 2 4
1 3 3 1
1 4 1 1
4 4 1 1

;

U X Y Z
2 1 . . . . . .

3 1 . . . . . .

1 1 . . . . . .

1 1 . . . . . .

4 1 . . . . . .

;

U X Y Z
2 1 2 . . .

3 1 2 . . .

1 1 2 . . .

4 1 2 . . .

;

U X Y Z
2 1 2 4
3 1 2 4
1 1 2 f̂Z(1,1,2)
4 1 2 3

In the first step, we changed the value of X to 1 in all rows. Next, the Y column was filled using the fact
that, according to the graph, Y is determined by X; and observing that, in the initial team, rows that have
value 1 for X have value 2 for Y . Finally, we evaluated Z (which could not have been done until we knew
the values for Y ); the procedure is composite. In the first and second row we obtained the value 4 for Z
as before, by checking, on the initial team, the rows that assume values (2,1,2) (resp. (3,1,2)) over U,X
and Y . For the fourth row, we made use of the invariant functions: FT (Z)(4,1,2) = 3. The value that Z
should assume in the third row cannot be reconstructed by looking at the initial team T−, nor by using the
information stored in FT ; this can happen if the team is partially defined. Therefore, we insert a formal
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term to remind ourselves that the value for Z in this row should be obtained applying an appropriate
function fZ(U,X ,Y ) to the triple (1,1,2) (if only we knew what what function it is). We wrote f̂Z as a
formal symbol distinguished from the function fZ .7 Notice now that we have no uncertainties about the
Y column; so, it is natural to state that TX=1 |= Y = 2, and that, therefore, T |= X = 12→ Y = 2.

One must be careful in working out the details of the algorithm which constitutes an intervention.
The order of the updates of the descendents of X turns out not to be trivial, and it is not clear a priori
whether the algorithm will terminate. In case the causal team is partially defined, as in the example,
there is also the problem that the information encoded in the causal team may turn out to be insufficient
for generating, under intervention, a proper causal team, and thereby we must admit teams which assign
formal terms to some variables.

We begin considering the simplest case of recursive, fully defined causal teams. To take care of the
order of the updating of variables, we introduce a notion of distance between (sets of) variables.

Def 6.2. Given a graph G = (V,E) and X⊆ V,

• We denote as G−X = (V,E−X) the graph obtained by removing all arrows going into some vertex
of X (i.e., an edge (V1,V2) is in E−X iff it is in E and V2 /∈ X). Notice that, in the special case that
X = {X}, the set of directed paths of G−X starting from X coincides with the set of directed paths
of G starting from X.

• Let Y ∈ V. We call (evaluation) distance between X and Y the value dG(X,Y ) = sup{length(P)|
P directed path of G−X going from some X ∈ X to Y}. In case no such path exists, dG(X,Y ) :=
−1. Clearly, if the graph is finite and acyclic, dG(X,Y ) ∈ N∪{−1} for any pair X,Y .

We write X = x as an abbreviation for a conjunction of the form X1 = x1∧ ·· ·∧Xn = xn. Let X = x
be a consistent conjunction (that is, it does not contain two conjuncts of the form X = x and X = x′, for
x 6= x′). Then, applying the algorithm do(X = x) to a recursive, fully defined causal team T amounts to:

Stage 0. Delete all arrows coming into X, and replace each assignment s ∈ T with s(x/X). Denote
the resulting team8 as T0. Replace FT with its restriction F ′

T to V\X.

Stage n+1. If {Z1, . . . ,Zkn+1} is the set of all the variables Z j such that dG(T )(X,Z j) = n+1, define a
team Tn+1 by replacing each s∈ Tn with the assignment s( fZ1(s(PAZ1))/Z1, . . . , fZkn+1

(s(PAZkn+1
))/Zkn+1).

End the procedure after step n̂ = sup{dG(T )(X,Z)|Z ∈ dom(T )}.

In case the intervention do(X= x) is a terminating algorithm on T , we define the causal team TX=x (of
endogenous variables V\X) as the quadruple (T n̂,G(T )−X,RT ,F ′

T ) which is produced when do(X= x)
is applied to T . It is straightforward to prove (even in case the causal team has infinite ranges for some
variables) that

Theorem 6.3. If G(T ) is a finite acyclic graph, then TX=x is well-defined.

Furthermore, our definition of intervention has a kind of internal consistency: applying do(X = x) is
the same as sequentially applying interventions of the form do(X = x), for each conjunct X = x of X = x,
in any order. This statement is a special case of the following two results:

7More generally, complex terms with composition of many formal function symbols may be generated.
8A warning: the teams Tn produced before the last step of the algorithm may fail to form a causal team together with the

other components described, because of violations of conditions b) and c) of the definition of causal team.
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Theorem 6.4. Let T be a recursive causal team, X,Y ∈ dom(T ) such that X∩Y = /0, x ∈ Ran(X), and
y ∈ Ran(Y). Then TX=x∧Y=y = (TX=x)Y=y.

Theorem 6.5. Let T be a recursive causal team, X,Y ∈ dom(T ) such that X∩Y = /0, x ∈ ran(X), and
y ∈ ran(Y). Then (TX=x)Y=y = (TY=y)X=x.

The first of these two theorems is proved by a somewhat complex double induction argument on
the distances d(X,Z) and d(Y,Z) (for each variable Z). See [1] for details. The second theorem follows
easily from the first: under the hypotheses, Theorem 6.4 entails the equalities (TX=x)Y=y = TX=x∧Y=y and
(TY=y)X=x = TY=y∧X=x; but since the order of variables is irrelevant in the definition of the do algorithm,
we also have TX=x∧Y=y = TY=y∧X=x; transitivity yields the desired result.

Having defined the intervened team TX=x, we are immediately led to a semantical clause for counter-
factuals of the form X = x2→ ψ:

T |= X = x2→ ψ ⇐⇒ TX=x |= ψ.

In case the antecedent is inconsistent (i.e., it contains two conjuncts Xi = xi,Xi = x′i with xi 6= x′i), the
corresponding intervention is not defined; in this case, we postulate the counterfactual to be true.

7 The logic of recursive, fully defined causal teams

We call the (basic) language of causal dependence, C D , the language formed by the following rules:

Y = y | Y 6= y | =(X;Y ) | ψ ∧χ | ψ ∧χ | θ ⊃ χ | X = x2→ χ

for Y,X variables, y,x values, ψ,χ formulae of C D , θ formula of C D without dependence atoms. The
semantics for this language, evaluated over recursive fully defined causal teams, is given by the clauses
presented in earlier sections. We also call C O (the causal-observational language) the fragment of C D
which lacks dependence atoms. We consider also an extension C Oneg of C O with a “dual” negation,
whose semantics is defined by:

• T |= ¬ψ iff for all s ∈ T−, {s} 6|= ψ .9

(Here, and in the following, we abuse notation and write {s} for the causal subteam S of T whose
support S− is the singleton team {s}.)

In this section, we will give a short overview of the logical properties of these languages; we refer the
reader to the preprint [1] for a more detailed account. First of all, we underline some global properties:

Theorem 7.1. The logic C D is downwards closed, that is: if ϕ ∈ C D , T is a recursive10 fully defined
causal team, T ′ is a causal subteam of T , and T |= ϕ , then also T ′ |= ϕ .

Theorem 7.2. The logic C D has the empty team property, that is: for every recursive, fully defined
causal team T with support T− = /0, and every ϕ ∈ C D with variables in dom(T ), T |= ϕ .

Theorem 7.3. The logic C Oneg is flat, that is: for every formula ϕ of C Oneg and every recursive, fully
defined causal team T , T |= ϕ iff {s} |= ϕ for every assignment s ∈ T−.

9This atypical formulation of dual negation is justified by the flatness of the language C O , entailed by Theorem 7.3.
10This statement (as the next one) holds more generally for fully defined causal teams with at most unique solution, to be

introduced in a later section.
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This last result shows that our approach is in a sense a “conservative extension” of the structural
equation modeling approach: as long as the language is poor enough, the semantics of causal teams
can be reduced to that of deterministic structural equation models (which can be identified with causal
teams with singleton support). However, in presence of other operators (e.g. dependence atoms, or the
probabilistic atoms and boolean disjunction that will be considered in the following sections) the use of
causal teams is essential.

The proofs of these three theorems are routine inductions on the syntax of formulas. However, we
wish to point out that the third theorem makes an essential use of the following fact: by applying an
intervention to a causal team whose support is a singleton set, one obtains again a causal team with
singleton support. This is a property which is guaranteed for recursive causal teams, or, more generally,
for fully defined causal teams with unique solutions (see next section).

Let us consider some further logical features of our framework. Unlike in the structural equation
framework, the stronger variant of the law of excluded middle

(S−EM) : For any team T,T |= ψ or T |= ¬ψ

fails. Here is a very simple counterexample to it; the team

X
1
2

does not satisfy X = 1 nor its negation X 6= 1. A similar example shows that the following strong form
of the law of conditional excluded middle

(S−CEM) : For every causal team T , T |= θ 2→ χ or T |= θ 2→¬χ

fails. Within C Oneg, however, the internalized versions of these laws (i.e. the statements that, for all
recursive fully defined teams T , T |= ψ ∨¬ψ , resp. T |= χ 2→ (ψ ∨¬ψ)) are valid, due to flatness.

Three laws that are often considered in relation to natural language and Lewis-Stalnaker counterfac-
tuals (see e.g. [19]) are the so-called importation, exportation and permutation laws; there are coun-
terexamples for them in both contexts. Two results mentioned before (Theorems 6.4 and 6.5) provide
sufficient conditions for the validity of these laws; their assumptions can be further relaxed as follows:
assuming that the conjunction X = x∧Y = y is consistent, the following rules of inference

(IMP) :
X = x2→ (Y = y2→ χ)

(X = x∧Y = y)2→ χ
(EXP) :

(X = x∧Y = y)2→ χ

X = x2→ (Y = y2→ χ)

(PERM) :
X = x2→ (Y = y2→ χ)

Y = y2→ (X = x2→ χ)

are sound. More generally, the following “overwriting” rule (similar to an axiom discovered in [2]) can
be applied also in case X = x∧Y = y is inconsistent:

(CF−OUT ) :
X = x2→ (Y = y2→ ψ)

(X′ = x′∧Y = y)2→ ψ
;

here X′ = x′ is a conjunction of all the atoms of X = x that contain no occurrences of variables from Y.
Galles&Pearl ([6]) and Halpern ([10]) provide an axiom system for (a case slightly more general

than) recursive structural equation models. Their system can be adapted to our language C Oneg using
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the trick of transforming material implications into rules of inference. The resulting system (see [1])
is sound. However, C Oneg is more general than Halpern’s language in that we allow counterfactuals
and selective implications to occur in the consequents of counterfactuals11. Therefore, in order to obtain
a completeness result, we need extra rules in order to extract these kinds of implications from conse-
quents, or, vice versa, in order to insert them into consequents. The elimination and introduction of
consequents can be performed by using the overwriting rule CF-OUT and an appropriate inverse, in case
this consequent is a counterfactual statement; in case it is a selective implication, one can use the rule

(SEL−OUT ) :
X = x2→ (ψ ⊃ χ)

(X = x2→ ψ)⊃ (X = x2→ χ)

and its inverse. Similar extraction and introduction rules are available for the connectives ∧, ∨ and ¬.

8 Interventions on more general classes of causal teams

We consider here the possibility of extending the notion of intervention on a causal team beyond the
recursive, fully defined case.

8.1 The (recursive) partially defined case

In the case of a recursive, partially defined team T , we first transform T into an appropriate fully defined
team T ′, and then apply the algorithm from section 6 to T ′. In order to define T ′, we need first of all
to extend the ranges of the variables of T by allowing them to take as values also formal terms, as in
example 6.1. We call LG(T ) the set of function symbols f̂X (of arity card(PAX)), for each endogenous
variable X . We call G(T )-terms the terms generated from variables in dom(T ) and from symbols in
LG(T ) by the obvious inductive rules; the set of all G(T )-terms will be denoted as TermG(T ). We then
define the range component of T ′ by: RT ′(X) = RT (X)∪TermG(T )

12 for each X ∈ G(T ).
Secondly, for T ′ to be fully defined, we need the domains of the invariant functions to coincide with

the ranges of the parent variables (dom( fX) = Ran(PAX)). Therefore, we have to redefine each FT (X)
component over the whole range RT (PAX). Let paX ∈RT ′(X) be a sequence of values for PAX . There
are three possible cases: 1) paX ∈ dom(FT (X)); in this case we keep FT ′(X)(paX) := FT (X)(paX).
Otherwise, 2) paX /∈ dom(FT (X)), but there is an assignment s ∈ T− such that s(PAX) = paX ; in this
case we set FT ′(X)(paX) := s(X) (i.e., we transfer information from the team component T− to the
function component FT ′). Otherwise, 3) we define FT ′(X)(paX) to be the formal term f̂X(paX). (Cf.
example 6.1 for a justification of the three cases).

At this point, the algorithm do(X = x) described in section 6 can be applied, and it will produce a
causal team, some of whose entries may consist of formal terms. In the next section we will sketch some
ideas for the usage of these causal teams as semantical objects for formal languages.

8.2 The (fully defined) nonrecursive case

In case a causal team is not recursive (i.e., its graph is cyclic), the algorithm above may well fail to
terminate. However, if the causal team is fully defined and satisfies some further constraints, we can

11This has important consequences, such as the failure of modus ponens for 2→, and the failure of a version of Lewis’s
weak centering axiom. See also [2].

12Actually, only a finite number of formal terms are needed in each intervention. It is therefore possible to give a more
restrictive definition which preserves the finiteness of variable ranges.
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still find reasonable (but not necessarily computable) notions of intervention. One such constraint was
isolated by Galles&Pearl ([6]): they considered the case of systems of structural equations with unique
solutions, defined as follows: 1) for fixed values of the exogenous variables, the system has a unique
solution, and 2) each “intervened” system of equations obtained from the initial one by replacing some
equations of the form X := fX(PAX) with constant equations X := x still has a unique solution for each
choice of values for the exogenous variables. Since causal teams encode in an obvious way a system of
modifiable structural equations, we can as well define causal teams with unique solutions. In this case,
the natural way to define an intervention do(X = x) on the team is to replace each assignment s ∈ T−

with the (unique) assignment t which encodes the solution of the intervened system for the choice s(U)
of values for the exogenous variables13. The definition of the other components of the causal team
produced by the intervention is straightforward. We do not expect any significant differences in the
logical features of (fully defined) nonrecursive causal teams with unique solutions in comparison to their
recursive relatives.

Analogous definitions could be given of causal teams with at most unique solutions and of interven-
tions over them (the idea being that, whenever a modified structural equation system admits no solution
for s(U), the assignment s should be discarded). We expect the corresponding logic to differ significantly
from the case of unique solutions.

The general nonrecursive, fully defined case, where multiple solutions are allowed, is problematic.
One might choose to add, to the intervened team, all the assignments that correspond to solutions of
the modified equations. However, there seems to be no general criterion for deciding whether all such
solutions should be given equal probabilistic weight (see next sections); this reflects general problems
in the interpretation of nonrecursive causal systems ([21]). A second option might be to model such
an intervention as producing not one, but multiple teams, corresponding to possible different outcomes
of the intervention. This set of “accessible teams” would then induce a nontrivial modality, making it
reasonable to treat counterfactuals as necessity operators in a dynamic logic setting (in the spirit of [10]).

9 Falsifiability and admissibility

Interventions, when applied to a (recursive) partially defined causal team, can generate teams with formal
entries. How should we evaluate statements which involve variables whose columns are not filled with
proper values? Usually, we cannot ascertain their truth; e.g., we cannot assert Y = 3 in a team whose
non-formal entries for Y are all equal to 3. Yet, in some cases we might be able to observe the falsity
of such statements; i.e., to state their contradictory negation. Let us write ↓ s(X) to signify that s(X) is
a value, not a formal term. Let T be a team, possibly with formal entries. We read T |= f ψ as “ψ is
falsifiable in T ”. We propose the clauses:
• T |= f X = x (resp. X 6= x) if there is s ∈ T− such that ↓ s(X) and s(X) 6= x (resp. s(X) = x)

• T |= f=(X;Y ) if there are s,s′ ∈ T− such that s(X) = s′(X),↓ s(Y ),↓ s′(Y ) and s(Y ) 6= s′(Y )

• T |= f ψ ∧χ if T |= f ψ or T |= f χ

• T |= f ψ ∨χ if for all subteams T1,T2 of T with T−1 ∪T−2 = T−, we have T1 |= f ψ or T2 |= f χ

• T |= f X = x2→ χ if TX=x |= f χ .
Coming up with a clause for selective implication is less straightforward; we propose the following.

Given ψ C O formula, let Vψ be the set of variables occurring in ψ; define T ψ
∗ := T ψ ∪ {s ∈ T−| 6↓

s(V ) for some V ∈ Vψ}. Then:
13In case the intervention acts also on some of the exogenous variables, this idea should be modified in an obvious way.
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• T |= f ψ ⊃ χ if T ψ
∗ |= f χ

As a justification for this clause, consider the team

X → Y
2 1
1 f̂Y (1)

It seems unreasonable to assert that this team falsifies the formula Y = 1 ⊃ X = 2, because, as long
as we do not have full knowledge of the function fY , we cannot decide whether f̂Y (1) is meant to denote
1 or some other number; therefore, we do not know whether the second assignment is compatible or not
with our selection - if it were, then the formula would be falsified, otherwise it would not be. We opt for
the more cautious alternative.

We might also want to assert that some proposition is admissible in the team, that is, consistent with
the data we possess. The following seem to be reasonable clauses for the atomic formulas:

• T |=a X = x (resp. X 6= x) if for all s ∈ T− such that ↓ s(X),s(X) = x (resp. s(X) 6= x)

• T |=a=(X;Y ) if for all s,s′ ∈ T− such that ↓ s(Y ),↓ s′(Y ),s(X) = s′(X), we have s(Y ) = s′(Y ).

We do not consider the general case; but we still give clauses for “classical” formulas in disjunctive
normal form:

• T |=a ∨
i=1..m

∧
j=1..n(i) Pi

j (Pi
j being of the form X i

j = xi
j or X i

j 6= xi
j) if there are subteams Ti of T ,

for i = 1..m, such that

1. Ti |=a Pi
j, for all j = 1..n(i).

2. for each j, j′ = 1..n(i), if j 6= j′, Pi
j is X i

j = a and Pi
j′ is X i

j′ = b (with a 6= b), then for all
s ∈ T−i , s(X i

j) 6= s(X i
j′).

3. for each j, j′ = 1..n(i), if j 6= j′, Pi
j is X i

j = a and Pi
j′ is X i

j′ 6= a, then for all s ∈ T−i , s(X i
j) 6=

s(X i
j′).

The clauses 2. and 3. above refer to formal inequality between terms. To have an idea of the intuition
behind clause 2., the reader may think, for example, of the problem of checking the admissibility of
X = 1∧Y = 2; imagine that there is a row in which both the X-column and the Y -columm contain the
formal term f (3,g(2)); then, surely, the formula is not admissible (for X = 1∧Y = 2 to hold in the team,
it is necessary that the X and Y -column differ on each row). Clause 3. has a similar rationale.

If we restrict attention to causal teams that are generated by interventions applied to causal teams
without formal entries, clause 2. and 3. can be omitted, because in this case the same formal term cannot
occur in distinct columns of the intervened causal team (since, say, all formal terms in the X-column are
of the form f̂X(. . .), while all formal terms in the Y -column are of the form f̂Y (. . .)).

10 Introducing probabilities

Probabilistic notions of causation have been extensively studied in the literature. Bayesian networks
formulate causal relations in terms of conditional probabilities on (typically acyclic) graphs enriched
with a joint probability distribution over the variables of the graph (Pearl [18], Spirtes, Glymour and
Scheines [20]). Woodward also considers interventions on a variable that cause changes in the probability
of another variable. In the context of team semantics, probabilities have been recently introduced via the
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notion of multiteam. A multiteam differs from a team in that it may feature multiple copies of the same
assignment; it is therefore closer to a collection of experimental data than teams are. There have been
at least two different approaches to the formalization of multiteams in the literature ([24], [5]). For
simplicity, we simulate multiteams by means of teams. This can be accomplished by assuming that each
team has an extra variable Key (never mentioned in the object languages) which assumes distinct values
on distinct assignments of the same team. In this way, we can have two assignments that agree on all the
significant variables and just differ on Key. With this assumption, the definition of causal multiteam can
follow word by word the definition of causal team.

If we wish to talk about probabilities, it is natural to allow for more atomic formulas.
Def 10.1. The set of probabilistic literals is given by:

∼α | Pr(χ)≤ ε | Pr(χ)≥ ε | Pr(χ)≤ Pr(θ) | Pr(χ)≥ Pr(θ)

where α is a probabilistic literal, χ,θ are formulas of C O and ε ∈ R∩ [0,1]. Literals and probabilistic
literals without negation will be called atomic formulas.

The (basic) probabilistic causal language (PC D) is given by the following clauses:

α | ψ ∧χ | ψ ∨χ | ψ tχ | θ ⊃ ψ | X = x2→ ψ

where α is a literal or probabilistic literal, ψ,χ are PC D formulas, and θ a C O formula.
The symbols ∼ stands for contradictory negation (T |=∼ψ iff T 6|= ψ). We will use abbreviations

such as Pr(χ) = ε for Pr(χ)≤ ε∧Pr(χ)≥ ε , or Pr(χ)< ε for Pr(χ)≤ ε∧∼Pr(χ)≥ ε . The additional
connective t is known as boolean disjunction and its interpretation is given by the clause:
• T |= ψ tχ ⇐⇒ T |= ψ or T |= χ .

The statement “either X = x has probability less than one third, or greater than two thirds” should be
expressed as Pr(X = x) < 1/3tPr(X = x) > 2/3, and not by means of the earlier disjunction ∨. The
reader can verify this point as soon as we give semantical clauses for the probabilistic literals. For any
C O formula χ and any causal team T with nonempty finite support T−, define the probability of χ in
T as:

PrT (χ) :=
card({s ∈ T−|{s} |= χ})

card(T−)
.

It can be verified that this definition induces a probabilistic space over the subteams of T− that are
definable by some C O formula.

The semantics of probabilistic atoms can then be defined as:
• T |= Pr(χ)≤ ε ⇐⇒ T− 6= /0 and PrT (χ)≤ ε

• T |= Pr(χ)≤ Pr(θ) ⇐⇒ T− 6= /0 and PrT (χ)≤ PrT (θ)

et cetera14. It is easy to see that such a logic is not downward closed; for example, a team such that
less than half assignments satisfy χ will satisfy Pr(χ) ≤ 1

2 ; but the subteam T χ constituted only of the
assignments that satisfy χ will not satisfy Pr(χ)≤ 1

2 .
Can we define conditional probabilities in this kind of framework? Given two C O formulas χ1 and

χ2, we write Pr(χ2|χ1)≤ ε as an abbreviation for χ1 ⊃ Pr(χ2)≤ ε . Here is a proof that the abbreviation
has the intended meaning: assuming T− 6= /0,

T |= χ1 ⊃ Pr(χ2)≤ ε ⇐⇒ T χ1 |= Pr(χ2)≤ ε ⇐⇒ card({s ∈ (T χ1)−|{s} |= χ2})
card((T χ1)−)

≤ ε

14Notice that, by definition, causal teams with empty support do not satisfy the probabilistic atoms.
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⇐⇒ card({s ∈ (T χ1)−|{s} |= χ2})
card(T−)

card(T−)
card((T χ1)−)

≤ ε ⇐⇒ PrT (χ1∧χ2)

PrT (χ1)
≤ ε,

and we observe that the left member in this last equation is the usual definition of the conditional proba-
bility PrT (χ2|χ1). In case T− = /0, it is easily proved, instead, that T 6|= χ1 ⊃ Pr(χ2) ≤ ε . Things work
analogously for inequalities in the opposite direction, and for atoms of the form Pr(χ)≤ Pr(θ).

In the literature (e.g. [18]) one finds ad hoc notations that mix interventions and probabilities; for
example, P(y|do(x),z) = ε is used for a probability which is conditional on the outcome of an in-
tervention (post-intervention conditioning); the notation P(Yx|z) = ε is used for the probability of a
variable after the intervention, conditioned on pre-intervention observations. These two cases are ex-
pressed, in PC D , as X = x2→ (Z = z ⊃ Pr(Y = y) = ε), resp. Z = z ⊃ (X = x2→ Pr(Y = y) = ε);
their difference amounts to a swap in the order of application of 2→ and ⊃. Our formalism immedi-
ately shows that more varied possibilities could be considered, such as conditioning simultaneously pre-
and post-intervention (W = w ⊃ (X = x2→ (Z = z ⊃ Pr(Y = y) = ε))) or between two interventions
X = x2→ (Z = z⊃ (W = w2→ Pr(Y = y) = ε)).

11 Direct and total cause

We show that the basic type-causal notions from Woodward ([25]), direct and total cause, can be ex-
pressed in our languages, over causal teams which are finite, recursive and fully defined. Quoting from
Woodward:

A necessary and sufficient condition for X to be a direct cause of Y with respect to some
variable set V is that there be a possible intervention on X that will change Y (or the proba-
bility distribution of Y ) when all other variables in V besides X and Y are held fixed at some
value by interventions. ([25], p.55)

This definition is ambiguous in that it talks about a change in Y , but does not say with respect to
what the change is made; to Y ’s actual value? To some possible value of Y , i.e., some y ∈ Ran(Y )? We
resolve the ambiguity by stipulating that the values of Y to be compared are generated by two distinct
interventions.

The kind of intervention that is needed in order to establish whether X is a direct cause of Y is an
intervention on all variables in the domain except for X and Y . For example, consider the causal team T
in the figure below (with invariant functions FZ(X) := X and FY (X ,Y ) := X +Y ). We show that X is a
direct cause of Y in T . First of all we must fix all other variables (in this case, just Z) to an appropriate
value (we choose 1) by an intervention, which also removes the arrow that enters in Z, and updates Y :

T :
X Z Y
1 1 2
2 2 4
3 3 6

; TZ=1:
X Z Y
1 1 2
2 1 3
3 1 4

Then we intervene in two different ways on X , by do(X = 1) and do(X = 2):

X Z Y
1 1 2

X Z Y
2 1 3
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The fact that the two interventions generate distinct values for Y proves that X is a direct cause of Y .
The specific form of these kinds of interventions makes it so that, if there is an arrow from X to Y , the
intervention enforces a team with constant columns; that is, a singleton causal team is produced.

Let Fix(z) be an abbreviation for
∧

Z∈Dom(T )\{X ,Y}Z = z. Then, the fact that X is a direct cause of Y
in T can be expressed in C D as follows: T |= DC(X ;Y ) iff

T |=
⊔

x 6=x′,y 6=y′,z
[(Fix(z)∧X = x)2→ Y = y]∧ [(Fix(z)∧X = x′)2→ Y = y′].

In the probabilistic setting, applying the intervention described by Fix(z) does not in general shrink
the multiteam to a singleton, because the resulting multiteam may still consist of multiple copies of one
and the same assignment. Nevertheless, we can still define direct causation, T |= PDC(X ;Y ):

T |=
⊔

x 6=x′,y,z
[(Fix(z)∧X = x)2→ Pr(Y = y) = 0]∧ [(Fix(z)∧X = x′)2→ Pr(Y = y) = 1].

In a sense, we have a collapse of the probabilistic case to the deterministic one.
We now consider the notion of total cause, following again Woodward:

X is a total cause of Y if and only if there is a possible intervention on X that will change Y
or the probability distribution of Y . ([25], p.51)

Applying the kind of intervention described by Woodward, teams do not in general shrink to singletons.
However, total cause can be equivalently defined as the existence of such interventions, to be applied
after all nondescendants of X have been fixed to some values. We denote by Fix′(w) the conjunction that
expresses the intervention that fixes all nondescendants W of X to w. Such an intervention does shrink
the causal team to a singleton, provided there is at least one directed path from X to Y . We can thus
express that X is a total cause of Y in T , T |= TC(X ;Y ), by the clause:

T |=
⊔

x 6=x′,y6=y′,w
Fix′(w)2→ [(X = x2→ Y = y)∧ (X = x′ 2→ Y = y′)].

A similar definition can be given in the probabilistic language, using the fact that only a finite number of
distinct probability values can arise from a finite multiteam.
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