
B. Finkbeiner and S. Kleinberg: Third International Workshop
on Formal Reasoning about Causation, Responsibility,
and Explanations in Science and Technology (CREST 2018)
EPTCS 286, 2019, pp. 50–64, doi:10.4204/EPTCS.286.5

c© H. Kress-Gazit & H. Torfah
This work is licensed under the
Creative Commons Attribution License.

The Challenges in Specifying and Explaining Synthesized
Implementations of Reactive Systems∗

Hadas Kress-Gazit
Sibley School of Mechanical and Aerospace Engineering

Cornell University, Ithaca, NY, USA
hadaskg@cornell.edu

Hazem Torfah†

Reactive Systems Group
Saarland University, Saarbrücken, Germany

torfah@react.uni-saarland.de

In formal synthesis of reactive systems an implementation of a system is automatically constructed
from its formal specification. The great advantage of synthesis is that the resulting implementation is
correct by construction; therefore there is no need for manual programming and tedious debugging
tasks. Developers remain, nevertheless, hesitant to using automatic synthesis tools and still favor
manually writing code. A common argument against synthesis is that the resulting implementation
does not always give a clear picture on what decisions were made during the synthesis process. The
outcome of synthesis tools is mostly unreadable and hinders the developer from understanding the
functionality of the resulting implementation. Many attempts have been made in the last years to
make the synthesis process more transparent to users. Either by structuring the outcome of synthesis
tools or by providing additional automated support to help users with the specification process.

In this paper we discuss the challenges in writing specifications for reactive systems and give a
survey on what tools have been developed to guide users in specifying reactive systems and under-
standing the outcome of synthesis tools.

1 Introduction

Synthesis is a procedure in which an implementation of a system is automatically constructed from a
logical specification. The resulting implementation is correct by construction and no further coding tasks
are needed. Synthesis allows developers to focus on determining what a system should do rather than
how it should do it. The task of the developer thus is shifted from writing a program that implements
the system to writing a specification for it. This comes with the big advantage of allowing systems to be
analyzed at early design stages and disposes of tedious and costly implementation efforts in later stages.

In the last decade, the theoretical ideas of synthesis have been translated into several tools (cf. [34, 24,
22, 9, 8, 23]). The tools have made it possible to tackle real-world design problems, such as the synthesis
of an arbiter for the AMBA AHB bus, an open industrial standard for the on-chip communication and
management of functional blocks in system-on-a-chip designs, or the IBM generalized buffer, which was
synthesized from a specification written in PSL [7]. Nevertheless, synthesis tools have barely been used
outside the scientific community. Developers are hesitant to use automatic synthesis, and rather rely
on self-created and self-maintained code, or use established legacy code. A common argument against
synthesis is the high structural complexity of the resulting implementation. In most cases, synthesized
implementations are not easy to follow and do not allow to structurally reason about the functionality of
the system nor backtrack any mistakes introduced in its specification. The outcome of synthesis tools
thus remains as a black box for developers that is hard to explore manually and where retracing relevant
aspects of the input specification becomes infeasible.
∗This work was partly funded by the European Research Council (ERC) Grant OSARES (No. 683300)
†Corresponding author

http://dx.doi.org/10.4204/EPTCS.286.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


H. Kress-Gazit & H. Torfah 51

One might argue that it is not the role of synthesis to provide understandable implementations more
than correct ones. However, the correctness of synthesized implementation is only relative to the pro-
vided specification. In other words, the quality of the resulting implementation is only as good as its
input specification. Understanding the functionality of the outcome is thus vital for writing correct and
high quality specifications. Tool support for refining specifications is thus vital for a correct synthesis
outcome that indeed fulfills all the user’s design intents.

In this paper, we investigate the challenges in writing specifications for reactive systems and under-
standing automatically synthesized implementations. The setting we are interested in is given in Figure 1,
where given a set of inputs from the environment (sensors) and a set of outputs of the system (actuators),
a synthesis tool constructs an implementation of the system that satisfies a high-level specification writ-
ten over the inputs and outputs (correct reaction of actuators to sensor information). Specifications are

SynthesizerSpecification Implementation

Inputs Outputs

Figure 1: The Synthesis Problem

usually given as formulas in a temporal logic that define the relations between inputs and outputs. Im-
plementations are realizations of these relations represented as transducers (Mealy or Moore machines).

Issues with the specifications in the synthesis process are captured by the problems of unrealizability
and completeness of specifications. When writing specifications, one might over-specify the systems,
such that, no implementation can realize the system’s specification. One might also under-specify parts
of the system which results in synthesized implementations that satisfy the given specification but still do
not meet the designers intents, i.e., they behave not as the designer expected for certain input scenarios.
Challenges on the implementation side involve the understandability of the resulting implementation and
transparency regarding why the specific implementation was chosen from the set of all possible correct
implementations.

We present a series of works that have addressed the construction of more structured and under-
standable implementations. In general, we can summarize the concerns using two questions: (1) How
do we assure that the synthesized implementation, which is one of many, is one that corresponds to the
user’s expectations? (2) How do we support the user in writing correct specifications, that include all the
relevant aspects needed for the construction of an implementation with all of the intended functionality?

We give an overview on challenges that we face on both the specification and implementation side
of the synthesis process. We describe methods that are used for the analysis of specifications. Either by
pointing out erroneous cores in a specification or indicating what assumptions have not been considered
by the user. Tools can, for instance, return minimal specification revisions to make an unrealizable speci-
fication realizable. Dually, they should also identify vacuous parts of specifications, and help to eliminate
ambiguities in the specification. Regarding the outcome of synthesis tools, we raise the question of how
to determine the quality of a resulting implementation: Are there other artifacts that can be additionally
generated to aid the user in understanding or validating the implementation and the specification? Are
there understandable witnesses that validate the black-box implementation obtained as the output of the
synthesis tool? What further metrics can be used to debug specifications, reason about implementations
and facilitate the composition of the implementation in a larger system?



52 The Challenges in Reactive Synthesis

2 Writing Specifications for Reactive Systems

Reactive systems are those systems that react to inputs from an environment. A specification of a reactive
system thus defines how an implementation of the system should behave in response to inputs from this
environment. A specification usually includes assumptions on the environment, which define the scope
in which the implementation should behave correctly, and guarantees that define the correct behavior of
the system under those assumptions. A synthesis procedure tries then to construct an implementation
that fulfills all the guarantees under the assumptions declared over the environment.

In general, two types of problems may occur when specifying a reactive system. One might over-
specify the system making the specification become unrealizable, i.e., there is no implementation that
satisfies the specification. One might under-specify the system by leaving out many relevant details, that
are crucial for a synthesized implementation that behaves as the user expected.

The first type of error is detected by the synthesis tools. If a specification is unrealizable, the synthe-
sizer is not able to return an implementation and may return a counterexample that captures the change
in the inputs that will make the system fail. The second type of error is harder to detect because the
synthesizer terminates with an implementation of the system, but gives no further information about how
the unspecified parts of the implementation were constructed.

In the following we discuss both types of specification errors and show how synthesis tools can
potentially leverage each of these errors for the purpose of correcting specifications.

2.1 Unrealizability of Specifications

A specification is unrealizable, either because it is unsatisfiable, i.e., the value of the specification is
equal to false due to inconsistencies in the specification, or it is unrealizable because there exists no
implementation that behaves correctly over all input sequences of the environment. Consider for example
an arbiter over two processes as given in Figure 2, and consider a specification for the arbiter given by
the conjunction of the LTL formulas response and access:

arbiter

p1 p2
r1

g1

r2

g2

response:
∧

i∈{1,2}
(ri→ gi)

access: (¬a→¬g1∧¬g2)

a

Figure 2: An arbiter over two processes and a specification for the arbiter given as a conjunction of the
formulas response and access.

The arbiter controls the access of the processes p1 and p2 into a shared resource. The processes p1 and
p2 request access to the resource via the signals r1 and r2, respectively. The arbiter grants access to
the processes using the respective signals g1 and g2. A further external signal a determines when the
resource can be accessed. The signals r1,r2 and a compose the inputs of the environment and g1 and g2
are the outputs of the system.

The specification response∧ access is unrealizable. The environment can always set the input
signal a to false, forbidding the arbiter from sending any grants g1 or g2. Thus, there is no implementation
that satisfies the specification response for an input of the environment, where a request ri has been sent



H. Kress-Gazit & H. Torfah 53

to the arbiter by one of the processes and where the signal a is always false1.
In this section we present a list of artifacts for explaining unrealizability, methods for detecting

unrealizable cores of specifications, and how to modify unrealizable specifications to get realizable ones.

2.1.1 Detecting and mitigating unrealizability

Checking the realizability of specifications can be seen as a game theoretic problem where two players,
the environment and the system, interchangeably produce input and outputs over an infinite duration [12].
Without loss of generality we assume that in our setting the system player starts the game, by initializing
the values of the atomic propositions of the system. An implementation of a system for a given specifica-
tion is a winning strategy for the system player in that game. A specification is realizable if there exists
a winning strategy for the system. A specification is unrealizable if for each strategy of the system, there
is an input sequence of the environment where the strategy loses the game, i.e., for which the strategy is
forced to produce an output that violates the specification. Consider the unrealizable specification given
in Figure 2. No matter what strategy the systems chooses, the environment challenges the strategy with
the input sequence {r1}{}ω , where the process p1 sends a request to the arbiter but where the signal a
is always set to false. As any correct strategy must give a grant, but at the same time is not allowed to,
because the signal a is always false, no strategy is able to fulfill both the specifications response and
access.

If a specification is unrealizable, then there is a set of input sequences for which no matter what strat-
egy the system chooses, the strategy will produce a violating output sequence on at least one of those
input sequences. We call such a set of input sequences a counterexample set for the unrealizable specifi-
cation. In the setting considered in this paper, finding a counterexample set can be done by solving the
synthesis game. For more general settings such as distributed architectures or settings with incomplete
information the problem is in general undecidable [42].

The counterexample set can grow infinitely large. Consider for example the following architecture
and LTL specification:

System

Env

o
i

ϕ = (o↔ i)

Figure 3: An unrealizable LTL with an infinite set of counterexamples

The specification requires the environment to send an input i if and only if the system outputs o. This
specification is unrealizable as the system has no control over the environment2. A counterexample set for
the specification is given by the set Γ = (2{i})ω , and there is no finite set Γ′ ⊂ Γ that is a counterexample
set for ϕ . Assume there is a finite set Γ′ that is a counterexample set for ϕ . Because, Γ′ is finite, there is a
position j such that all prefixes of length j of the sequences in Γ′ are pairwise different. As the sequences
in Γ′ can be distinguished at position j we can choose a strategy for the system that assigns the value of
o at position j+1 to true if the input i at this position is true, and otherwise sets o to false. This strategy
satisfies the property ϕ over all sequences in Γ′ and thus Γ′ cannot be a counterexample set for ϕ [28].

1The specification is an example of an unrealizable nevertheless satisfiable specification. An example input sequence that
has a corresponding satisfying output sequence is for example the sequence {a,g1,r1}ω .

2Remember the system moves first.



54 The Challenges in Reactive Synthesis

*/{r1} */{}

(a)

{o}/{}

{}/{i}

(b)

Figure 4: Counterstrategies for the unrealizable specifications access ∧ response in Figure 2
and ϕ in Figure 3 given as Mealy machines.

A convenient finite representation of the possibly infinite set of counterexamples can be given by
a counterstrategy. A counterstrategy is a winning strategy for the environment, and it is computed by
solving the synthesis game for the environment player instead of the system player. A counterstrategy for
the unrealizable specification in Figure 2 is given in Figure 4(a). The strategy responds to the first output
of the system by assigning the input r1 to true and assigns all subsequent inputs to false independent
of the chosen outputs by the system. A counterstrategy for the specification ϕ in Figure 3 is given in
Figure 4(b). The strategy assigns the input signal i to true if the system outputs false and to true otherwise.
In this way the system will never fulfill the specification ϕ .

Complex specifications may lead to large and complex counterstrategies that are difficult to inspect
manually. In many cases, there is no need to consider the whole counterstrategy to infer what parts of
the specification are unrealizable. A smaller set of input sequences might already suffice to decide the
unrealizability of the specification. Some techniques rely on pruning parts of the counterstrategy that
are irrelevant for its unrealizability in order to make the counterstrategy more readable [10]. Further
works suggested to only return a sufficient set of input scenarios of the environment instead of returning
the whole counterstrategy. An alternative, for example, are countertraces [36], which are fixed input
traces for which there is no output trace fulfilling the specification. One problem with countertraces
nevertheless is that they are hard to compute and sometimes they do not exist. In case of safety properties
one can compute a finite counterexample set of finite sequences using the symbolic method presented in
[28]. The finite sequences resemble scenarios where the system violates the safety property after finitely
many steps. The method involves a procedure that incrementally increases the bound on the size of input
sequences until a counterexample set is found. The big advantage of this method is that it also provides
a semi-decision procedure for the unrealizability problem over undecidable distributed architectures.

Treating unrealizability can also be done by directly analyzing the specification itself, for example
by identifying unrealizable cores of the specification (e.g. [45, 35, 21, 39] ). An unrealizable core is a
sub-specification that is unrealizable on its own. Consider our arbiter example again and let:

ϕ1 = (r1→ g1)

ϕ2 = (r2→ g2)

ϕ3 = (¬a→¬g1∧¬g2)

The specification contains the following minimal unrealizable cores: C1 = {ϕ1,ϕ3} and C2 = {ϕ2,ϕ3}.
To make the specification realizable, one has to resolve both the conflicts C1 and C2. This can be
done by either weakening the specifications ϕ1 and ϕ2, for example, by relaxing the eventuality to
(r1 → (¬a∨ g2)Wg1) and (r2 → (¬a∨ g1)Wg2) using the weak until operator W . In this way, the

requests r1 and r2 must be answered by the respective grants, as soon as the access signal a becomes
true, otherwise the specification specifically states that no grants are to be given. Another possibility to



H. Kress-Gazit & H. Torfah 55

make the specification realizable is by restricting the behavior of the environment. The main reason why
the specification is not realizable is because the environment can choose not to set the signal a to true.
However, this assumption on the behavior of the environment is not necessarily realistic. We can add
a further assumption that states that the environment will grant access to the shared resource an infinite
number of times, namely ϕ4 = a, making the specification realizable.

Detecting unrealizability is only the first step. As important is assisting the developer in repairing the
specification. A series of works [3, 13, 38, 2, 15, 17, 43, 14, 31] introduced frameworks that leverage the
artifacts above to turn an unrealizable specification into a realizable one.

As a specification for a reactive systems includes assumptions on the environment and guarantees to
be fulfilled by the system, making a specification realizable can be done by either strengthening the as-
sumptions on the environment or weakening the guarantees of the system. Strengthening the assumptions
on the environment is done by adding further assumptions that remove certain scenarios for which the
specification is unrealizable. Weakening the guarantees is done by tolerating additional behaviors of the
system. Most approaches rely on a counterexample-guided refinement loop to learn the new assumptions
[3, 13, 38, 2, 15, 17]. In each refinement loop a counterstrategy is used to extract new assumptions for the
environment. Some approaches try to directly learn assumptions on the environment by first computing
a safety assumption that removes a minimal set of environment edges from the game graph, and then
computing a liveness assumption that puts fairness conditions on some of the remaining environment
edges [14, 31].

An interactive approach to identifying the cause of failure in an unrealizable specification was pre-
sented in [43]. Here, a game-based approach is presented where the user attempts to fulfill a robot
specification against an adversarial environment. The idea of the approach is to highlight bad portions of
the specification and identify example executions for the environment that make the system fail.

2.2 Incomplete Specifications

A common error when specifying systems is to under-specify them. In this case, synthesis tools will
return an implementation for the given specification but that may still behave different than the user
expected. Revisiting the two process arbiter given in Figure 2, assume we want to synthesize an imple-
mentation for the arbiter that is mutually exclusive and where every request is guaranteed to be answered
eventually. A specification for the arbiter can be given by the respective LTL formulas (¬g1 ∨¬g2),
and (r1→ g1) and (r2→ g2). A possible outcome of the synthesis tool could be an implemen-
tation as given in Figure 5(a). The implementation returns immediately a grant g1 every time there is a
request r1 and a grant g2 whenever there is a request r2. If both request r1 and r2 occur at the same time,
the implementation prioritizes process p1 by first giving a grant g1 and as soon as process p1 is done, it
grants p2 access to the shared resource. The decision to give p1 priority was made by the synthesis tool.
If the user is not happy with prioritizing process p1 then an additional specification must be added by the
user to handle simultaneous requests more adequately.

The implementation in Figure 5(a) is not the only realization of the arbiter’s specification. Figure 5(b)
shows another implementation for the arbiter that interchangeably returns grant g1 and g2 without consid-
ering what requests were made by the processes. This means that the grants are given even if no requests
were made by the processes, which is not necessarily what the user intended by the specification. This
further means that the specification was not explicit enough on whether a grant depends on the requests,
as in the previous implementation. To avoid the construction of such implementations, the specification
must be refined.



56 The Challenges in Reactive Synthesis

{}

{g1}

{g2}

{g1}

{g2}
{}

{r1}

{r2}

{r1 ,r2}

{r1}

{}

{r2}

{r1 ,r2}

{r2}

{}

{r1}

{r1,r2} {r1},{r1 ,r2}

{r2},{}

{},{r1}

{r2},{r1,r2}

(a)

{g1} {g2}
*

*

(b)

Figure 5: Two different implementations for the specification (¬g1 ∨¬g2)∧ (r1→ g1)∧ (r2→
g2).

One possible modification could be to change the specifications describing the responsiveness of the
arbiter to (r1↔ g1) and (r2↔ g2). In this way it is more likely that an implementation such as
the one in Figure 5(a)is enforced.

Completeness of specifications cannot be defined formally, as it is dependent on the user’s design
intents. Nevertheless, with respect to this, we can say that a specification is complete if no implementa-
tion that satisfies the specification is incorrect with respect to the user’s intent. In general, debugging an
incomplete specification is a multistage refinement process. In the following we present some methods
on how to aid the user throughout this process to construct a complete specification.

2.2.1 Detecting vacuity in specifications

Different synthesis procedures result in different implementations for the same specification. The reason
for that is that parts of the implementation that are not explicitly defined by the specification are com-
pleted by the underlying decision procedure of the synthesis tools. For example, in the implementation in
Figure 5(a), the synthesis procedure decided to set the values of the atomic propositions g1 and g2 to false
in the initial state, as the specification did not explicitly state what the values of these atomic propositions
should be. Another synthesis procedure could have chosen different values as long as mutual exclusion
is ensured.

To understand which parts of the implementation were forced by the specification and which parts
were decided by the synthesis procedure, one has to perform a coverage analysis on the resulting imple-
mentation. Intuitively, an atomic proposition of a state in a transition system is covered by the specifi-
cation if changing the value of the atomic proposition in that state falsifies the specification [20]. For
example changing the value of the atomic proposition g1 in the initial state of the transition system in
Figure 5(a) from false to true does not falsify the specification. Thus, the value of g1 in the initial state is



H. Kress-Gazit & H. Torfah 57

not covered by the specification. In the transition system in Figure 5(b) on the other hand, changing the
value of g1 does violate the specification.

Definitions of coverage range from qualitative definitions like the above to quantitative versions
based on certain metrics [4, 5, 32, 20, 19]. A variant of coverage is one based on causality. In the
implementation in Figure 5(b) choosing g1 to be true in the initial state forced g2 to be true in the other
state. Thus, the decision made in the other state is caused by the decisions made in the initial state. If
changing the value of an atomic proposition a in one state q does not falsify the specification, one should
check whether there is a set of states Y , such that, changing the value of a and the values of atomic
propositions in Y falsifies the specification. If this is the case, then choosing the current values of the
atomic propositions in Y has a causal relation to choosing the value of a in q.

Using the various coverage definitions the designer can examine synthesized implementations and
modify the specification accordingly. This requires several synthesis and refinement steps until a com-
plete specifications is reached that enforces a desired implementation for the system, for example, to get
an implementation as in Figure 5(a) instead of another implementation like in Figure 5(b). By taking a
closer look into the arbiter’s specification and the usual mechanism of requests and grants, it is clear to
a human observer that the user intended grants to be given upon request from the processes. A system
that receives no requests from the processes should not send out unnecessary permissions to enter the
shared resource. A smart synthesis algorithm will construct an implementation that considers each part
of the specification entered by the user and avoids implementations like the one in Figure 5(b), which
vacuously satisfy the specification by ignoring parts of the specification, in this case the values of the
signals r1 and r2. We say that an implementation non-vacuously satisfies a specification if it satisfies
the specification but not any strengthening of the specification [6]. Instead of synthesizing any transi-
tion system that satisfies the specification, a good synthesis procedure would construct a non-vacuous
implementation that covers all parts of the specification [6].

In general it is useful to inform the user on the decisions made during the synthesis process. This
helps understand which parts were implemented independently by the synthesis procedure and which
parts were forced by the specification. Synthesis tools thus need to provide additional relevant infor-
mation accompanied with each synthesized implementation. A first step towards this direction is the
construction of skeletons for specifications [29]. Skeletons are transition systems, where states are la-
beled with a three-valued assignment to the output variable: in each state an output can be true, false,
or open, which means that the specification allows implementations with either value for a variable in
that state. States with open variables indicate that additional constraints may be added to complete the
specification according the user’s intent. Skeletons can additionally be constructed with each synthesized
implementation. For example, a skeleton for the transition system in Figure 5(a) is given in Figure 6.
Notice that from the skeleton we can read that the implementation of the initial state and the decision
to prioritize process p1 are marked with ”?”, indicating that these choices were made by the synthesis
procedure and were not explicitly determined by the specification.

2.2.2 Monitoring the implementation

In many cases the environment assumptions may not be known to the user in full, which results in im-
plementations with incorrect behavior. Many violations of the environment assumptions can be detected
during runtime or during simulation. To better understand the violations, one can deploy monitors that
give feedback on what caused the violation of these assumptions and modify the specification of the sys-
tem accordingly. In an automated feedback-based process, the specification of the system is augmented
with new environment assumptions that are computed at runtime. Whenever the automated process fails,



58 The Challenges in Reactive Synthesis

{g?
1 ,g

?
2}

{g1}

{g2}

{g?
1 ,g

?
2}

{g?
1 ,g

?
2}

{}

{r1}

{r2}

{r1 ,r2}

{r1}

{}

{r2}

{r1 ,r2}

{r2}

{}

{r1}

{r1 ,r2}
{r1},{r1 ,r2}

{r2},{}

{},{r1}

{r2},{r1,r2}

Figure 6: A skeleton for the implementation in Figure 5(a) and the specification (¬g1∨¬g2)∧ (r1→
g1)∧ (r2→ g2).

feedback is provided to the user, who is then asked to resolve the conflict by modifying the specifica-
tion [46, 47].

3 Analyzing the Outcome of Synthesis Tools

In most cases, the structure of an implementation produced by a synthesis tool is very complex and hard
to examine, and thus it is a challenge to convince the user that a synthesized implementation indeed does
what it is actually supposed to do by just looking at it. Figures 7 and 8 show examples of synthesized
and manually written implementation of two and three client arbiters. Notice that increasing the number
of clients by one results in a large blow up in the synthesized implementation.

In order to make an implementation more understandable, synthesis tools must either synthesize
structurally less complex implementations or provide the user with additional information that make the
resulting implementation easy to follow. In the following we show some of the improvements that have
been made to make the outcome of synthesis tools more understandable for the developer.

3.1 Representation of Implementations

A synthesized implementation of a system from its specification is given by a transducer (a Mealy or
Moore machine). Due to its large state space, there is a general trend to represent transducers suc-
cinctly by binary decision diagrams (BDD) or circuits [33]. Such artifacts give symbolic representations
of transducers that are easy to process but have the drawback of not mirroring the original functional
choices of an implementation. Looking at a binary decision diagram, the developer will not be able un-
derstand the functionality of the implementation easily. Many works have been devoted to minimizing
or simplifying BDDs [1, 37, 30], but such operation are however notoriously difficult. Some also tried



H. Kress-Gazit & H. Torfah 59

(a) Manually written
code

(b) Synthesized code by Acacia+

Figure 7: A manually written vs. a synthesized program for a two client arbiter

(a) Manually written
code

(b) Synthesized code by Acacia+

Figure 8: A manually written vs. a synthesized program for a three client arbiter

to use similar but more structured versions of BDDs to make the representation more explanatory [11].
However, the structure remains too complex to explore manually.

In general, the desire is not only to construct small but also structurally simple and understandable
implementations. To achieve this goal, algorithms are needed, which perform optimally not only in the
input specification, but also in the structural complexity of the implementation, so called output-sensitive
algorithms [26]. The first output-sensitive reactive synthesis algorithm was bounded synthesis [27]. In
bounded synthesis, the number of states of the implementation to be synthesized is an additional param-



60 The Challenges in Reactive Synthesis

Figure 9: [25] Three implementations of the TBURST4 component of the AMBA bus controller. Stan-
dard synthesis with Acacia+ [9] produces the state graph on the left with 14 states and 61 cycles. Bounded
synthesis produces the graph in the middle with 7 states and 19 cycles. Bounded cycle synthesis, has 7
states and 7 cycles, which is the minimum.

eter to the synthesis algorithm. Minimal solutions are thus ensured by synthesizing implementations for
incrementally increasing bounds. Further metrics that help reduce the structural complexity of the imple-
mentations were introduced in [25]. In addition to the size, the number of cycles in the state graph of the
transducer is limited by a given bound. Reducing the number of cycles makes an implementation much
easier to understand. Figure 9 shows the different structural complexities of transducers synthesized
using the bounded size, bounded cycle and a non-output sensitive algorithm.

Other works have tended to reduce the complex synthesis result to a much more understandable
version by approximating its behavior. In many cases, the user is not interested in implementation details
of fine granularity, and thus, one can abstract these details in the presentation of the transducer. Some
methods, especially in the context of probabilistic systems, tend to extract the important parts of the
implementation by pruning non-relevant behavior according to a notion of importance. An example
of such an approach was presented in [10], where the importance of a state in an implementation is
determined by the probability of visiting the state by the strategy.

In an inverse fashion one can incrementally construct the complex implementation starting with a
coarse abstraction and gradually refine it with respect to a given partial order, that forces a correct con-
struction. Inspired by counterexample guided abstraction refinement, a series of incremental synthesis
procedures have been investigated [40, 41, 44]. In each stage, refinement suggestions give information
on what behavior is added or excluded from the implementation. Allowing to observe each refinement
step gives a clearer picture regarding the behavior of the implementation.

In all the approaches above, the product of the synthesis procedure is a representation of a trans-
ducer. Although transducers are easy to process, they are not necessarily adequate for presenting the
synthesis result to the user. The main reason for that is, that in many domains a transducer is not a
standard model users tend to work with in their daily projects. Developers of cyber-physical systems
for example are familiar with dataflow models. Approaches adapting the idea of synthesizing dataflow
models compatible with Simulink3 or SCADE have become a target of investigation4. Instead of directly

3https://de.mathworks.com/products/simulink.html
4http://www.ansys.com/Products/Embedded-Software/ANSYS-SCADE-Suite.



H. Kress-Gazit & H. Torfah 61

synthesizing a transducer as in standard LTL synthesis, an actor-based controller using a computational
model of synchronous dataflow (SDF) is considered [16, 18]. An actor-based controller defines input
and output ports and a set of actors and their wiring. The advantage of actor-based controller is that they
abstract implementations details that might not be necessary at first for understanding the behavior of the
controller.

4 Conclusion

In this paper, we discussed a number of challenges in automatic synthesis of reactive systems. We
presented a list of errors that may happen during the specification process and tools for handling the
unrealizability and incompleteness of specification, such as identifying unrealizable cores and vacuous
parts of the specification. We also described what obstacles one encounters when trying to understand
the outcome of the synthesis process. We explored different artifacts that can be generated to debug spec-
ifications and to reason about implementations. Finally, we described different representations for im-
plementations; depending on the domain expertise of the specification designers, synthesis tools should
consider which representation would be most beneficial for their target users.

This paper should be seen as an initiator for a broad discussion on how far synthesis has come
and how to make it more attractive for users. Also what further tools are needed to aid the user in
the specification process and how to make the outcome of the synthesis process more readable and
understandable.

References

[1] S. B. Akers (1978): Binary Decision Diagrams. IEEE Trans. Comput. 27(6), pp. 509–516,
doi:10.1109/TC.1978.1675141.

[2] Rajeev Alur, Salar Moarref & Ufuk Topcu (2013): Counter-Strategy Guided Refinement of GR(1) Temporal
Logic Specifications. doi:10.1109/FMCAD.2013.6679387.

[3] Rajeev Alur, Salar Moarref & Ufuk Topcu (2015): Pattern-Based Refinement of Assume-Guarantee Spec-
ifications in Reactive Synthesis. In Christel Baier & Cesare Tinelli, editors: Tools and Algorithms for
the Construction and Analysis of Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 501–516,
doi:10.1007/978-3-662-46681-0 49.

[4] Ilan Beer, Shoham Ben-David, Cindy Eisner & Yoav Rodeh (2001): Efficient Detection of Vacuity in Tempo-
ral Model Checking. Formal Methods in System Design 18(2), pp. 141–163, doi:10.1023/A:1008779610539.

[5] Shoham Ben-David, Fady Copty, Dana Fisman & Sitvanit Ruah (2015): Vacuity in practice: temporal an-
tecedent failure. Formal Methods in System Design 46(1), pp. 81–104, doi:10.1007/s10703-014-0221-0.

[6] Roderick Bloem, Hana Chockler, Masoud Ebrahimi & Ofer Strichman (2017): Synthesizing Non-Vacuous
Systems. In: Verification, Model Checking, and Abstract Interpretation - 18th International Conference,
VMCAI 2017, Paris, France, January 15-17, 2017, Proceedings, pp. 55–72, doi:10.1007/978-3-319-52234-
0 4.

[7] Roderick Bloem, Stefan Galler, Nir Piterman, Amir Pnueli & Martin Weiglhofer (2007): Automatic hard-
ware synthesis from specifications: A case study. In: In Design, Automation and Test in Europe (DATE,
doi:10.1109/DATE.2007.364456.

[8] Roderick Bloem, Hans-Jrgen Gamauf, Georg Hofferek, Bettina Knighofer & Robert Knighofer (2012): Syn-
thesizing Robust Systems with RATSY 84. doi:10.4204/EPTCS.84.4.

http://dx.doi.org/10.1109/TC.1978.1675141
http://dx.doi.org/10.1109/FMCAD.2013.6679387
http://dx.doi.org/10.1007/978-3-662-46681-0_49
http://dx.doi.org/10.1023/A:1008779610539
http://dx.doi.org/10.1007/s10703-014-0221-0
http://dx.doi.org/10.1007/978-3-319-52234-0_4
http://dx.doi.org/10.1007/978-3-319-52234-0_4
http://dx.doi.org/10.1109/DATE.2007.364456
http://dx.doi.org/10.4204/EPTCS.84.4


62 The Challenges in Reactive Synthesis

[9] Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong Jin & Jean-François Raskin (2012): Acacia+, a
Tool for LTL Synthesis. In P. Madhusudan & Sanjit A. Seshia, editors: Computer Aided Verification, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 652–657, doi:10.1007/978-3-642-31424-7 45.

[10] Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelı́k, Andreas Fellner & Jan Křetı́nský (2015): Coun-
terexample Explanation by Learning Small Strategies in Markov Decision Processes, pp. 158–177. Springer
International Publishing, Cham, doi:10.1007/978-3-319-21690-4 10.

[11] Tomas Brazdil, Krishnendu Chatterjee, Jan Kretinsky & Viktor Toman (2018): Strategy Representation by
Decision Trees in Reactive Synthesis. In: TACAS, Springer, doi:10.1016/S0304-3975(98)00009-7.

[12] J. Richard Buchi & Lawrence H. Landweber (1990): Solving Sequential Conditions by Finite-State Strategies,
pp. 525–541. Springer New York, New York, NY, doi:10.1007/978-1-4613-8928-6 29.

[13] Krishnendu Chatterjee & Thomas A. Henzinger (2007): Assume-Guarantee Synthesis. In Orna Grumberg &
Michael Huth, editors: Tools and Algorithms for the Construction and Analysis of Systems, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 261–275, doi:10.1007/978-3-540-71209-1 21.

[14] Krishnendu Chatterjee, Thomas A. Henzinger & Barbara Jobstmann (2008): Environment Assumptions for
Synthesis. In Franck van Breugel & Marsha Chechik, editors: CONCUR 2008 - Concurrency Theory,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 147–161, doi:10.1007/978-3-540-85361-9 14.

[15] Krishnendu Chatterjee, Thomas A. Henzinger, Barbara Jobstmann & Arjun Radhakrishna (2010): Gist: A
Solver for Probabilistic Games. In Tayssir Touili, Byron Cook & Paul Jackson, editors: Computer Aided
Verification, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 665–669, doi:10.1007/978-3-642-14295-
6 57.

[16] Chih-Hong Cheng, Yassine Hamza & Harald Ruess (2016): Structural Synthesis for GXW Specifications.
In: International Conference on Computer Aided Verification, Springer, pp. 95–117, doi:10.1007/978-3-319-
89960-2 21.

[17] Chih-Hong Cheng, Chung-Hao Huang, Harald Ruess & Stefan Stattelmann (2014): G4LTL-ST: Automatic
generation of PLC programs. In: International Conference on Computer Aided Verification, Springer, pp.
541–549, doi:10.1007/978-3-319-08867-9 36.

[18] Chih-Hong Cheng, Edward A Lee & Harald Ruess (2017): autoCode4: Structural Controller Synthesis. In:
International Conference on Tools and Algorithms for the Construction and Analysis of Systems, Springer,
pp. 398–404, doi:10.1007/978-3-662-54577-5 23.

[19] Hana Chockler, Joseph Y. Halpern & Orna Kupferman (2008): What Causes a System to Satisfy a Specifica-
tion? ACM Trans. Comput. Logic 9(3), pp. 20:1–20:26, doi:10.1145/1352582.1352588.

[20] Hana Chockler, Orna Kupferman & Moshe Y. Vardi (2003): Coverage Metrics for Formal Verification. In
Daniel Geist & Enrico Tronci, editors: Correct Hardware Design and Verification Methods, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 111–125, doi:10.1007/978-3-540-39724-3 11.

[21] A. Cimatti, M. Roveri, V. Schuppan & A. Tchaltsev (2008): Diagnostic Information for Realizability. In
Francesco Logozzo, Doron A. Peled & Lenore D. Zuck, editors: Verification, Model Checking, and Abstract
Interpretation, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 52–67, doi:10.1007/978-3-540-78163-9 -
9.

[22] Rüdiger Ehlers (2011): Unbeast: Symbolic Bounded Synthesis. In Parosh Aziz Abdulla & K. Rustan M.
Leino, editors: Tools and Algorithms for the Construction and Analysis of Systems, Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp. 272–275, doi:10.1007/978-3-642-19835-9 25.

[23] Rüdiger Ehlers & Vasumathi Raman (2016): Slugs: Extensible GR(1) Synthesis. In Swarat Chaudhuri &
Azadeh Farzan, editors: Computer Aided Verification - 28th International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part II, Lecture Notes in Computer Science 9780, Springer, pp.
333–339, doi:10.1007/978-3-319-41540-6 18.

[24] Peter Faymonville, Bernd Finkbeiner & Leander Tentrup (2017): BoSy: An Experimentation Framework for
Bounded Synthesis. In: Proceedings of CAV, LNCS 10427, Springer, pp. 325–332, doi:10.1007/978-3-319-
63390-9 17.

http://dx.doi.org/10.1007/978-3-642-31424-7_45
http://dx.doi.org/10.1007/978-3-319-21690-4_10
http://dx.doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1007/978-1-4613-8928-6_29
http://dx.doi.org/10.1007/978-3-540-71209-1_21
http://dx.doi.org/10.1007/978-3-540-85361-9_14
http://dx.doi.org/10.1007/978-3-642-14295-6_57
http://dx.doi.org/10.1007/978-3-642-14295-6_57
http://dx.doi.org/10.1007/978-3-319-89960-2_21
http://dx.doi.org/10.1007/978-3-319-89960-2_21
http://dx.doi.org/10.1007/978-3-319-08867-9_36
http://dx.doi.org/10.1007/978-3-662-54577-5_23
http://dx.doi.org/10.1145/1352582.1352588
http://dx.doi.org/10.1007/978-3-540-39724-3_11
http://dx.doi.org/10.1007/978-3-540-78163-9_9
http://dx.doi.org/10.1007/978-3-540-78163-9_9
http://dx.doi.org/10.1007/978-3-642-19835-9_25
http://dx.doi.org/10.1007/978-3-319-41540-6_18
http://dx.doi.org/10.1007/978-3-319-63390-9_17
http://dx.doi.org/10.1007/978-3-319-63390-9_17


H. Kress-Gazit & H. Torfah 63

[25] Bernd Finkbeiner & Felix Klein (2016): Bounded Cycle Synthesis. Lecture Notes in Computer Science 9779,
Springer Berlin Heidelberg, doi:10.1007/978-3-319-41528-4.

[26] Bernd Finkbeiner & Felix Klein (2017): Reactive Synthesis: Towards Output-Sensitive Algorithms. In
Alexander Pretschner, Doron Peled & Thomas Hutzelmann, editors: Dependable Software Systems Engi-
neering, NATO Science for Peace and Security Series, D: Information and Communication Security 50, IOS
Press, pp. 25–43, doi:10.3233/978-1-61499-810-5-25.

[27] Bernd Finkbeiner & Sven Schewe (2013): Bounded synthesis. International Journal on Software Tools for
Technology Transfer 15(5-6), pp. 519–539, doi:10.1007/s10009-012-0228-z.

[28] Bernd Finkbeiner & Leander Tentrup (2015): Detecting Unrealizability of Distributed Fault-tolerant Systems.
Logical Methods in Computer Science 11(3), doi:10.2168/LMCS-11(3:12)2015.

[29] Bernd Finkbeiner & Hazem Torfah (2016): Synthesizing Skeletons for Reactive Systems, pp. 271–286.
Springer International Publishing, Cham, doi:10.1007/978-3-319-46520-3 18.

[30] M. Fujita, Y. Matsunaga & T. Kakuda (1991): On variable ordering of binary decision diagrams for the ap-
plication of multi-level logic synthesis. In: Proceedings of the European Conference on Design Automation.,
pp. 50–54, doi:10.1109/EDAC.1991.206358.

[31] Yuichi Fukaya & Noriaki Yoshiura (2015): Extracting Environmental Constraints in Reactive System Spec-
ifications. In Osvaldo Gervasi, Beniamino Murgante, Sanjay Misra, Marina L. Gavrilova, Ana Maria
Alves Coutinho Rocha, Carmelo Torre, David Taniar & Bernady O. Apduhan, editors: Computational
Science and Its Applications – ICCSA 2015, Springer International Publishing, Cham, pp. 671–685,
doi:10.1007/978-3-319-21410-8 51.

[32] Yatin Hoskote, Timothy Kam, Pei-Hsin Ho & Xudong Zhao (1999): Coverage Estimation for Symbolic
Model Checking. In: Proceedings of the 36th Annual ACM/IEEE Design Automation Conference, DAC ’99,
ACM, New York, NY, USA, pp. 300–305, doi:10.1145/309847.309936.

[33] Swen Jacobs, Nicolas Basset, Roderick Bloem, Romain Brenguier, Maximilien Colange, Peter Fay-
monville, Bernd Finkbeiner, Ayrat Khalimov, Felix Klein, Thibaud Michaud, Guillermo A. Perez, Jean-
Francois Raskin, Ocan Sankur & Leander Tentrup (2017): The 4th Reactive Synthesis Competition (SYNT-
COMP 2017): Benchmarks, Participants and Results. In: SYNT 2017, EPTCS 260, pp. 116–143,
doi:10.4204/EPTCS.260.10.

[34] Barbara Jobstmann, Stefan Galler, Martin Weiglhofer & Roderick Bloem (2007): Anzu: A Tool for Property
Synthesis. In Werner Damm & Holger Hermanns, editors: Computer Aided Verification, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 258–262, doi:10.1007/978-3-540-73368-3 29.

[35] Robert Könighofer, Georg Hofferek & Roderick Bloem (2011): Debugging Unrealizable Specifications with
Model-Based Diagnosis, pp. 29–45. Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-642-
19583-9 8.

[36] R. Knighofer, G. Hofferek & R. Bloem (2009): Debugging formal specifications using sim-
ple counterstrategies. In: 2009 Formal Methods in Computer-Aided Design, pp. 152–159,
doi:10.1109/FMCAD.2009.5351127.

[37] Wolfgang Lenders & Christel Baier (2005): Genetic Algorithms for the Variable Ordering Problem of Binary
Decision Diagrams. In Alden H. Wright, Michael D. Vose, Kenneth A. De Jong & Lothar M. Schmitt,
editors: Foundations of Genetic Algorithms, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–20,
doi:10.1007/11513575 1.

[38] W. Li, L. Dworkin & S. A. Seshia (2011): Mining assumptions for synthesis. In: Ninth ACM/IEEE
International Conference on Formal Methods and Models for Codesign (MEMPCODE2011), pp. 43–50,
doi:10.1109/MEMCOD.2011.5970509.

[39] Constantine Lignos, Vasumathi Raman, Cameron Finucane, Mitchell P. Marcus & Hadas Kress-Gazit
(2015): Provably correct reactive control from natural language. Auton. Robots 38(1), pp. 89–105,
doi:10.1007/s10514-014-9418-8.

http://dx.doi.org/10.1007/978-3-319-41528-4
http://dx.doi.org/10.3233/978-1-61499-810-5-25
http://dx.doi.org/10.1007/s10009-012-0228-z
http://dx.doi.org/10.2168/LMCS-11(3:12)2015
http://dx.doi.org/10.1007/978-3-319-46520-3_18
http://dx.doi.org/10.1109/EDAC.1991.206358
http://dx.doi.org/10.1007/978-3-319-21410-8_51
http://dx.doi.org/10.1145/309847.309936
http://dx.doi.org/10.4204/EPTCS.260.10
http://dx.doi.org/10.1007/978-3-540-73368-3_29
http://dx.doi.org/10.1007/978-3-642-19583-9_8
http://dx.doi.org/10.1007/978-3-642-19583-9_8
http://dx.doi.org/10.1109/FMCAD.2009.5351127
http://dx.doi.org/10.1007/11513575_1
http://dx.doi.org/10.1109/MEMCOD.2011.5970509
http://dx.doi.org/10.1007/s10514-014-9418-8


64 The Challenges in Reactive Synthesis

[40] P. Nilsson & N. Ozay (2014): Incremental synthesis of switching protocols via abstraction refinement. In:
53rd IEEE Conference on Decision and Control, pp. 6246–6253, doi:10.1109/CDC.2014.7040368.

[41] Hans-Jörg Peter & Robert Mattmüller (2009): Component-based Abstraction Refinement for Timed Con-
troller Synthesis. In Theodore Baker, editor: Proceedings of the 30th IEEE Real-Time Systems Symposium
(RTSS 2009), December 1 - December 4, 2009, Washington, D.C., USA, IEEE Computer Society, Los
Alamitos, CA, USA, pp. 364–374, doi:10.1109/RTSS.2009.14.

[42] A. Pnueli & R. Rosner (1990): Distributed Reactive Systems Are Hard to Synthesize. In: Proceedings of the
31st Annual Symposium on Foundations of Computer Science, SFCS ’90, IEEE Computer Society, Wash-
ington, DC, USA, pp. 746–757 vol.2, doi:10.1109/FSCS.1990.89597.

[43] V. Raman & H. Kress-Gazit (2013): Explaining Impossible High-Level Robot Behaviors. IEEE Transactions
on Robotics 29(1), pp. 94–104, doi:10.1109/TRO.2012.2214558.

[44] G. Reissig, A. Weber & M. Rungger (2017): Feedback Refinement Relations for the Synthe-
sis of Symbolic Controllers. IEEE Transactions on Automatic Control 62(4), pp. 1781–1796,
doi:10.1109/TAC.2016.2593947.

[45] Viktor Schuppan (2012): Towards a notion of unsatisfiable and unrealizable cores for LTL. Science of
Computer Programming 77(7), pp. 908 – 939, doi:10.1016/j.scico.2010.11.004. Available at http://www.
sciencedirect.com/science/article/pii/S0167642310002030. (1) FOCLASA09 (2) FSEN09.

[46] Kai Weng Wong, Rüdiger Ehlers & Hadas Kress-Gazit (2014): Correct High-level Robot Behavior in
Environments with Unexpected Events. In: Robotics: Science and Systems X, University of Cali-
fornia, Berkeley, USA, July 12-16, 2014, doi:10.15607/RSS.2014.X.012. Available at http://www.

roboticsproceedings.org/rss10/p12.html.
[47] Kai Weng Wong & H. Kress-Gazit (2015): Let’s talk: Autonomous conflict resolution for robots carrying out

individual high-level tasks in a shared workspace. In: 2015 IEEE International Conference on Robotics and
Automation (ICRA), pp. 339–345, doi:10.1109/ICRA.2015.7139021.

http://dx.doi.org/10.1109/CDC.2014.7040368
http://dx.doi.org/10.1109/RTSS.2009.14
http://dx.doi.org/10.1109/FSCS.1990.89597
http://dx.doi.org/10.1109/TRO.2012.2214558
http://dx.doi.org/10.1109/TAC.2016.2593947
http://dx.doi.org/10.1016/j.scico.2010.11.004
http://www.sciencedirect.com/science/article/pii/S0167642310002030
http://www.sciencedirect.com/science/article/pii/S0167642310002030
http://dx.doi.org/10.15607/RSS.2014.X.012
http://www.roboticsproceedings.org/rss10/p12.html
http://www.roboticsproceedings.org/rss10/p12.html
http://dx.doi.org/10.1109/ICRA.2015.7139021

	1 Introduction
	2 Writing Specifications for Reactive Systems
	2.1 Unrealizability of Specifications
	2.1.1 Detecting and mitigating unrealizability

	2.2 Incomplete Specifications
	2.2.1 Detecting vacuity in specifications
	2.2.2 Monitoring the implementation


	3 Analyzing the Outcome of Synthesis Tools
	3.1 Representation of Implementations

	4 Conclusion

