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We study conflict situations that dynamically arise in traffic scenarios, where different agents try
to achieve their set of goals and have to decide on what to do based on their local perception. We
distinguish several types of conflicts for this setting. In order to enable modelling of conflict situations
and the reasons for conflicts, we present a logical framework that adopts concepts from epistemic and
modal logic, justification and temporal logic. Using this framework, we illustrate how conflicts can
be identified and how we derive a chain of justifications leading to this conflict. We discuss how
conflict resolution can be done when a vehicle has local, incomplete information, vehicle to vehicle
communication (V2V) and partially ordered goals.

1 Introduction

As humans are replaced by autonomous systems, such systems must be able to interact with each other
and resolve dynamically arising conflicts. Examples of such conflicts arise when a car wants to enter the
highway in dense traffic or simply when a car wants to drive faster than the preceding. Such “conflicts”
are pervasive in road traffic and although traffic rules define a jurisdictional frame, the decision, e.g.,
to give way, is not uniquely determined but influenced by a list of prioritised goals of each system and
the personal preferences of its user. If it is impossible to achieve all goals simultaneously, autonomous
driving systems (ADSs) have to decide “who” will “sacrifice” what goal in order to decide on their
manoeuvres. Matters get even more complicated when we take into account that the ADS has only partial
information. It perceives the world via sensors of limited reach and precision. Moreover, measurements
can be contradicting. An ADS might use V2V to retrieve more information about the world, but it
inevitably has a confined insight to other traffic participants and its environment. Nevertheless, for the
acceptance of ADSs, it is imperative to implement conflict resolution mechanisms that take into account
the high dimensionality of decision making. These decisions have to be explained and in case of an
incident, the system’s decisions have to be accountable.

In this paper we study conflict situations as dynamically occurring in road traffic and develop a
formal notion of conflict between two agents. We distinguish several types of conflicts and propose a
conflict resolution process where the different kinds of conflicts are resolved in an incremental fashion.
This process successively increases the required cooperation and decreases the privacy of the agents,
finally negotiating which goals of the two agents have to be sacrificed. We present a logical framework
enabling the analysis of conflicts. This framework borrows from epistemic and modal logic in order to
accommodate the bookkeeping of evidences used during a decision process. The framework in particular
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provides a mean to summarise consistent evidences and keep them apart from inconsistent evidences.
We hence can, e.g., fuse compatible perceptions into a belief b about the world and fuse another set of
compatible perceptions to a belief b′ and model decisions that take into account that b might contradict
b′. Using the framework we illustrate how conflicts can be explained and algorithmically analysed as
required for our conflict resolution process. Finally we report on a small case study using a prototype
implementation (employing the Yices SMT solver [14]) of the conflict resolution algorithm. We discuss
related work in Sect. 5. In particular we discuss work regarding the notion of traffic conflict and relate
our works with work on the perimeter in game theory [10] and strategy synthesis for levels of cooperation
like [11, 7].

Outline In Sect. 2 we introduce the types of conflict on a running example and develop a formal notion
of conflict between two agents. We elaborate on the logical foundations for modelling and analysing
conflicts and the logical framework itself in Sect. 3. We sketch our case study on conflict analysis
in Sect. 4 and outline in Sect. 4.2 an algorithm for analysing conflict situations as requested by our
resolution protocol and for deriving explanation of the conflict for the resolution. Before drawing the
conclusions in Sect. 6, we discuss related work in Sect. 5.

2 Conflict

Already in 1969 in the paper “Violence, Peace and Peace Research” [18] J. Galtung presents his theory
of the Conflict Triangle, a framework used in the study of peace and conflict. Following this theory a
conflict comprises three aspects: opposing actions, incompatible goals, inconsistent beliefs (regarding
the reasons of the conflict, knowledge of the conflict parties,. . . ).

We focus on conflicts that arise dynamically between two agents in road traffic. We develop a char-
acterisation of conflict as a situation where one agent can accomplish its goals with the help of the other,
but both agents cannot accomplish all their goals simultaneously and the agents have to decide what to
do based on their local beliefs. In Sect. 2.1 we formalise our notion of conflict. For two agents with
complete information, we may characterise a conflict as: Agents A and B are in conflict, if 1. A would
accomplish its set of goals ΦA, if B will do what A requests, while 2. B would accomplish its set of
goals ΦB, if A will do what B requests, and 3. it is impossible to accomplish the set of goals ΦA ∪ΦB.
A situation where A and B both compete to consume the same resource is thus an example of a conflict
situation. Since we study conflicts from the view-point of an agent’s beliefs, we also consider believed
conflicts, which can be resolved by sharing information regarding the others observations, strategies or
goals. To resolve a conflict we propose a sequence of steps that require an increasing level of cooperation
and decreasing level of privacy – the steps require to reveal information or to constrain acting options.
Our resolution process defines the following steps:
(C1) Shared situational awareness
(C2) Sharing strategies
(C3) Sharing goals
(C4) Agreeing on which goals to sacrifice and which strategy to follow
Corresponding to (C1) to (C4), we introduce different kinds of conflicts on a running example – a two
lane highway, where one car, A, is heading towards an obstacle at its lane and at the lane to its left a fast
car, B, is approaching from behind (cf. Fig. 1). An agent has a prioritised list of goals (like 1. “collision-
freedom”, 2.“changing lane” and 3. “driving fast”). We assume that an agent’s goals are achievable.



W. Damm, M. Fränzle, W. Hagemann, P. Kröger and A. Rakow 49

A

B Figure 1: Car A wants to circumvent the
obstacle (grey box). Car B is approaching
from behind.

An agent A has a set of actions actA and exists within a world. At a time the world has a certain
state. The world “evolves” (changes state) as determined by the chosen actions of the agents within the
world and events determined by the environment within the world. The agent perceives the world only
via a set of observation predicates, that are predicates whose valuation is determined by an observation
of the agent. Without an observation the agent has no (direct) evidence for the valuation of the respective
observation predicate.

Example 1. Let car A want to change lane. It perceives that it is on a two lane highway, the way ahead
is free for the next 500 m and B is approaching. Let A perceive B’s speed via radar. That is A makes the
observation car B is fast justified by the evidence radar. We annotate this briefly as radar:car B
is fast. Further let A derive from lidar data that B is slow – lidar:car B is slow.

In this situation we say agent A has contradicting evidences. Certain evidences can be combined
without contradiction and others not. We assume that an agent organises its evidences in maximal con-
sistent sets (i.e., justification graphs of Sect. 3), where each represents a set of possible worlds:

Example 2. There are possible worlds of A where it is on a two lane highway, the way ahead is free for
the next 500 m and B is slowly approaching. Analogously A considers possible worlds where B is fast.
The state of the world outside of its sensors’ reach is unconstrained.

Observing the world (for some time), an agent A assesses what it can do to achieve its goals in all
possible worlds. That is, A tries to find a strategy that guarantees to achieve its goals in all its possible
worlds. A strategy determines at each state the action of the agent – the agent decides for an action based
on its believed past. If there is one such strategy for A to accomplish its goals ΦA, then A has a (believed)
winning strategy for ΦA. This strategy might not be winning in the "real" world though, e.g., due to
misperceptions.

Example 3. Let A want to drive slowly and comfortably. A wants to avoid collisions and it assumes that
also B wants to avoid collisions. Although A has contradicting evidences on the speed of B and hence
believes that it is possible that “B is fast” and also that “B is slow”, it can follow the strategy to stay at
its lane and wait until B has passed. This strategy is winning in all of A’s possible worlds.

Even when A has no believed winning strategy, it can have a winning strategy for a subset of possible
worlds. Additional information on the state of world might resolve the conflict by eliminating possible
worlds. We call such conflicts observation-resolvable conflicts.

Example 4. Let A want to change lane to circumvent the obstacle. It is happy to change directly after B
but only if B is fast. If B is slow, it prefers to change before B passed. Further let A have contradicting
evidences on the speed of B. A considers a conflict with B possible in some world and hence has no
believed winning strategy. Now it has to resolve its inconsistent beliefs. Let B tell A, it is fast, and A trust
B more than its own sensors, then A might update its beliefs by dismissing all worlds where B is slow.
Then “changing after B passed” becomes a believed winning strategy.

In case of inconsistent evidences, as above, A has to decide how to update its beliefs. The decision
how to update its beliefs will be based on the analysis of justifications (cf. Sect. 3) of (contradicting)
evidences. The lidar contradicts the radar and B reports on its speed. Facing the contradiction of
evidences justified by lidar and radar A trusts the evidence justified by B.
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Let the agents already have exchanged observations and A still have no believed winning strategy. A
conflict might be resolved by communicating part of the other agent’s (future) strategy:

Example 5. Let A want to change lane. It prefers to change directly after B, if B passes A fast. Otherwise,
A wants to change in front of B. Let B so far away that B might decelerate, in which case it might slow
down so heavily that A would like to change in front of B even if B currently is fast.

Let A believe “B is fast”. Now A has no believed winning strategy, as B might decelerate. According
to (C2), information about parts of the agent’s strategies are now communicated. A asks B whether it
plans to decelerate. Let B be cooperative and tell A that it will not decelerate. Then A can dismiss all
worlds where B slows down and “changing after B passed” becomes a believed winning strategy for A.

Let the two agents have performed steps (C1) and (C2), i.e., they exchanged missing observations
and strategy parts, and still A has no winning strategy for all possible worlds.

Example 6. Let now, in contrast to Ex. 5, B not tell A whether it will decelerate. Then step (C3) is
performed. So A asks B to respect A’s goals. Since A prefers B to be fast and B agrees to adopt A’s goal
as its own, A can again dismiss all worlds where B slows down.

Here the conflict is resolved by communicating goals and the agreement to adopt the other’s goals.
So an agent’s strategy might change in order to support the other agent. We call this kind of conflicts
goal-disclosure-resolvable conflicts.

The above considered conflicts can be resolved by some kind of information exchange between the
two agents, so that the sets of an agent’s possible worlds is adapted and in the end all goals ΦA of A and
ΦB of B are achievable in all remaining possible worlds. The price to pay for conflict resolution is that
the agents will have to reveal information. Still there are cases where simply not all goals are (believed to
be) achievable. In this case A and B have to negotiate which goals ΦAB ⊆ΦA∪ΦB shall be accomplished.
While some goals may be compatible, other goals are conflicting. We hence consider goal subsets ΦAB

for which a combined winning strategy for A and B exists. We assume that there is a weight assignment
function w that assigns a value to a given goal combination 2ΦA∪ΦB → N based on which decision for
a certain goal combination is taken. This weighting of goals reflects the relative value of goals for the
individual agents. Such a function will have to reflect, e.g., moral, ethics and jurisdiction.

Example 7. Let A’s and B’s highest priority goal be collision-freedom, reflected in goals ϕA,col and
ϕB,col . Further let A want to go fast ϕA, f ast and change lane immediately ϕA,lc. Let also B want to go fast
ϕB, f ast , so that A cannot change immediately. Now in step (C4) A and B negotiate what goals shall be
accomplished. In our scenario collision-freedom is valued most, and B’s goals get priority over A’s, since
B is on the fast lane. Hence our resolution is to agree on a strategy accomplishing {ϕA,col,ϕB,col,ϕB, f ast},
which is the set of goals having the highest value among all those for which a combined winning strategy
exists.

Note that additional agents are captured as part of the environment here. At each step an agent can
also decide to negotiate with some other agent than B in order to resolve its conflict.

2.1 Formal Notions

In the following we introduce basic notions to define a conflict. Conflicts, as introduced above, arise in a
wide variety of system models, but we consider in this paper only a propositional setting.

Let f1 : X→Y1,. . . , fn : X→Yn, and f : X→Y1× . . .×Yn be functions. We will write f = ( f1, . . . , fn)
if and only if f (x) = ( f1(x), . . . , fn(x)) for all x∈X . Note that for any given f as above the decomposition
into its components fi is uniquely determined by the projections of f onto the corresponding codomain.
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Each agent A has a set of actions AA. The sets of actions of two agents are disjoint. To formally
define a (possible) world model of an agent A, let S be a set of states and V be a set of propositional
variables. A believes at a state s ∈ S that a subset V of V is true and V \V is false. A (possible) world
model M for an agent A is a transition system over S with designated initial state and current state, all
states are labelled with the belief propositions that hold at that state and transitions labeled with actions
〈actA,actB,actEnv〉 where actA ∈ AA is an action of A, actB ∈ AB an action of B and actEnv ∈ AEnv an
action of the environment. The set of actions of an agent includes send and receive actions via which
information can be exchanged, the environment guarantees to transmit a send message to the respective
receiver. Formally a possible world is MA = (S,T,λ ,π,s∗,sc) with T⊆ S×S, λ : T→AA×AB×AEnv,
π : S→ 2V and s∗,sc ∈ S representing the initial state and the current state respectively. We use MA

to encode the current believes on the present, past and about the possible futures. If an agent, let us
say A wlog, follows a strategy, it decides for an action based on its believed past, i.e., a strategy for
A is a function δA : (2V)∗ → AA. Given strategies δA : (2V)∗ → AA for A, δB : (2V)∗ → AB for B,
δ = (δA,δB) : (2V)∗ → AA ×AB is a common strategy of A and B, which chooses the actions of A
according to δA and the actions of B according to δB.

A (believed) run r = (s0,s1, . . .) is an infinite sequence of states starting with the initial state s0 = s∗
and (si,si+1)∈ T for all i∈N. A run r= (s0,s1, . . .) results from a strategy δA in A’s world MA, denoted as
r ∈ r(δA,MA), if and only if λ (si,si+1) = δA(π(s0),π(s1), . . .π(si)) for all i ∈ N. Given a set of possible
worlds M(A) for A, we use r(δA,M(A)) to denote the set of runs that result from δA in a MA ∈M(A),
r(δA,M(A)) =

⋃
MA∈M(A) r(δA,MA).

We use linear-time temporal logic (LTL) to specify goals. For a run r and a goal (or a conjunction of
goals) ϕ we write r |= ϕ , if the valuation of propositions along r satisfies ϕ1. We say δ is a (believed)
winning strategy for ϕ in MA, if for all r ∈ r(δ ,MA) it holds that r |= ϕ . An agent A has a set of goals
Φ and a weight assignment function wA : 2Φ→ N that assigns values to a given goal combination. We
write r |= Φ as shorthand for r |=

∧
ϕ∈Φ ϕ . We say subgoal Φ′ ⊆ Φ is maximal for r if r |= Φ′ and

w(Φ′)≥ w(Φ′′) for all Φ′′ ⊆Φ with r |= Φ′′. true is the empty subgoal. We say Φ′ ⊆Φ is maximal for
a set R of runs if for all r ∈ R r |= Φ′ and for all Φ′′ ⊆Φ with r |= Φ′′ for all r ∈ R, w(Φ′)≥ w(Φ′′).

There is one “special” world model that represents the ground truth, i.e., it reflects how the reality
evolves. We refer the interested reader to [12] for a more elaborate presentation of our concept of reality
and associated beliefs. Agent A considers several worlds possible at a time. At each state s of the real
world A has a set of possible worlds MA(s) and for each world MA ∈M(A) a believed current state
and beliefs on the goals of B, ΦB(MA) and the goal weight assignment function of B, wB. A possible
world is labeled with the set of evidences that justifies that the world is regarded as possible. The real
world changes states according to the actions of A, B and E. The set of possible worlds MA(s) changes
to MA(s′) due to the believed passing of time and due to belief updates triggered by e.g. observations.
For the scope of this paper though, we do not consider the actual passing of time, but study the conflict
analysis at a single state of the real world.

We say that A has a (believed) winning strategy δA for ΦA at the real world state sc if δA is a winning
strategy for ΦA in all possible worlds MA ∈MA(sc).

Definition 1 (Believed Possible Conflict). Let Φmax
A be the set of maximal subgoals of A at state s for

which a believed winning strategy (δA,δ
′
B) : (2VA)∗→AA×AB in MA exists.

Agent A believes at state s it is in a possible conflict with B, if for each of its winning strategies
(δA,δ

′
B) : (2VA)∗→AA×AB for a maximal subgoal ΦA ∈Φmax

A ,

1cf. Def. 9



52 Dynamic Conflict Resolution

• there is a strategy (δ ′A,δB) : (2VA)∗→ AA×AB and a possible world M ∈MA such that (δ ′A,δB) is a
winning strategy in M for ΦB, a believed maximal subgoal of the believed goals of B in M.
• but (δA,δB) is not a winning strategy for ΦA∪ΦB in MA.

In Def. 1 Φmax
A is the set of maximal subgoals that A can achieve in all possible worlds with the help

of B. A believes that B might decide for a strategy to accomplish some of its maximal subgoals and B
takes this decision wrt A’s possible worlds. Note that A assuming the goals of B being true means that
A has to deal with arbitrary behaviour of B. Also note that B always has a winning strategy in every M
since ΦB is maximal wrt M. If A cannot find one winning strategy that fits all possible choices of B then
A believes that it is in a conflict with B. Note that A analyses the conflict within its possible worlds MA(s)
and in particular it beliefs that B believes that in one of its possible wolds. That A has got beliefs about
(deviations of) the beliefs of B is an interesting future extension.

3 Epistemic Logic, Justifications and Justification Graph

Conflict analysis demands to know who believes to be in conflict with whom and what pieces of infor-
mation made him belief that he is in conflict. To this end we introduce the logic of justification graphs
that allows to keep track of external information and extends purely propositional formulae by so called
belief atoms (cf. p. 54), which are used to label the sources of information. In Sect. 2 we already used
such formulae, e.g., "radar:car B is fast". Our logic provides several atomic accessibility relations
representing justified beliefs of various sources, as required for our examples of Sect. 2. It provides jus-
tification graphs as a mean to identify belief entities which compose different justifications to consistent
information even when the information base contains contradicting information of different sources, as
required for analysing conflict situations.

First, this section provides a short overview on epistemic modal logics and multi-modal extensions
thereof. Such logics use modal operators to expressing knowledge and belief stemming from different
sources. Often we will refer to this knowledge and belief as information, especially when focusing on the
sources or of the information. Thereupon the basic principles of justifications logics are shortly reviewed.
Justification logics are widely seen as interesting variants to epistemic logics as they allow to trace back
intra-logical and external justifications of derived information. In the following discussion it turns out
that tracing back external justifications follows the same principles as the distribution of information over
different sources.

Consequently, the concept of information source and external justification are then unified in our
variant of an epistemic modal logic. This logic of justification graphs extends the modal logic by a
justification graph. The nodes of a justification graph are called belief entities and represent groups
of consistent information. The leaf nodes of a justification graphs are called belief atoms, which are
information source and external justifications at the same time, as they are the least constituents of
external information. We provide a complete axiomatisation with respect to the semantics of the logic of
justification graphs.

3.1 Justification Graphs

Modal Logic and Epistemic Logic Modal logic extends the classical logic by modal operators ex-
pressing necessity and possibility. The formula 2φ is read as “φ is necessary” and 3φ is read as “φ is
possible”. The notions of possibility and necessity are dual to each other, 3φ can be defined as ¬2¬φ .
The weakest modal logic K extends propositional logic by the axiom K2 and the necessitation rule Nec2
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as follows

`2(φ → ψ)→ (2φ →2ψ), (K2) from ` φ conclude `2φ . (Nec2)

The axiom K2 ensures that whenever φ →ψ and φ necessarily hold, then also ψ necessarily has to hold.
The necessitation rule Nec2 allows to infer the necessity of φ from any proof of φ and, hence, pushes
any derivable logical truth into the range of the modal operator 2. This principle is also known as logical
awareness. Various modalities like belief or knowledge can be described by adding additional axioms
encoding the characteristic properties of the respective modal operator. The following two axioms are
useful to model knowledge and belief:

`2φ → φ , (T2) `2φ →3φ . (D2)

The axiom T2 and D2 relate necessity with the factual world. While the truth axiom T2 characterises
knowledge as it postulates that everything which is necessary is also factual, D2 characterises belief as
it postulates the weaker property that everything which is necessary is also possible. Under both axioms
`2⊥→⊥ holds, i.e. a necessary contradiction yields also a factual contradiction.

Multi-modal logics are easily obtained by adding several modal operators with possibly different
properties and can be used to express the information of more than one agent. E.g., the formula ei:φ
expresses that the piece of information φ belongs to the modality ei. Modal operators can also be used
to represent modalities referring to time. E.g., in the formula Xφ the temporal modality X expresses that
φ will hold in the next time step. An important representative of a temporal extension is linear temporal
logic (LTL).

In multi-agent logics the notions of common information and distributed information play an im-
portant role. While common knowledge captures the information which is known to every agent ei, we
are mainly interested in information that is distributed within a group of agents E = {e1, . . . ,en}. The
distributed information within a group E contains any piece of information that at least one of the agent
e1, . . . , en has. Consequently, we introduce a set-like notion for groups, where an agent e is identified
with the singleton group {e} and the expression {e1, . . . ,en}:φ is used to denote that φ is distributed
information within the group E. The distribution of information is axiomatised by

` E:φ → F :φ , where E is a subgroup of F . (DistE,F )

Note that groups may not be empty. The modal logic for distributed information contains for every group
E at least the axiom KE , the necessitation rule NecE , and the axiom DistE,F for any group F with E ⊆ F .

Justification Logics Justification logics [5] are variants of epistemic modal logics where the modal
operators of knowledge and belief are unfolded into justification terms. Hence, justification logics allow
a complete realisation of Plato’s characterisation of knowledge as justified true belief. A typical formula
of justification logic has the form s:φ , where s is a justification term built from justification constants,
and it is read as “φ is justified by s”. The basic justification logic J0 results from extending propositional
logic by the application axiom and the sum axioms

` s:(φ → ψ)→ (t:φ → [s · t]:ψ), (Appl) ` s:φ → [s+ t]:φ , ` s:φ → [t + s]:φ , (Sum)

where s, t, [s · t], [s+ t], and [t+s] are justification terms which are assembled from justification constants
using the operators + and · according to the axioms. Justification logics tie the epistemic tradition
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together with proof theory. Justification terms are reasonable abstractions for constructions of proofs. If
s is a proof of φ → ψ and t is a proof of φ then the application axiom postulates that there is a common
proof, namely s · t, for ψ . Moreover, if we have a proof s for φ and some proof t then the concatenations
of both proofs, s+ t and t + s, are still proofs for φ . In our framework we were not able to derive any
meaningful example using the sum axiom of justification logic. Therefore this axiom is omitted in the
following discussion.

Discussion All instances of classical logical tautologies, like A∨¬A and s:A∨¬s:A, are provable in
justification logics. But in contrast to modal logics, justification logics do not have a necessitation rule.
The lack of the necessitation rule allows justification logics to break the principle of logical awareness,
as s:(A∨¬A) is not necessarily provable for an arbitrary justification term s. Certainly, restricting the
principle of logical awareness is attractive to provide a realistic model of restricted logical resources.
Since we are mainly interested in revealing and resolving conflicts, the principle of logical awareness is
indispensable in our approach.

Nevertheless, justification logic can simulate unrestricted logical awareness by adding proper axiom
internalisation rules ` e:φ for all axioms φ and justification constants e. In such systems a weak variant
of the necessitation rule of modal logic holds: for any derivation ` φ there exists a justification term t
such that ` t:φ holds. Since φ was derived using axioms and rules only, also the justification term t is
exclusively built from justification constants dedicated to the involved axioms. Beyond that, t is hardly
informative as it does not help to reveal external causes of a conflict. Hence, we omit the axiom internal-
isation rule and add the modal axiom Kt and the modal necessitation rule Nect for any justification term t
to obtain a justification logic where each justification term is closed under unrestricted logical awareness.

An important consequence of the proposed system is that · becomes virtually idempotent and com-
mutative.2 These insights allows us to argue merely about justification groups instead of justification
terms. It turns out that a proper reformulation of Appl with regard to justification groups is equivalent to
DistE,F , finally yielding the same axiomatisation for distributed information and compound justifications.

Belief Atoms, Belief Groups, and Belief Entities So far, we argued that assembling distributed in-
formation and compound justifications follow the same principle. In the following we even provide a
unified concept for the building blocks of both notions. A belief atom e is the least constituent of ex-
ternal information in our logic. To each e we assign the modal operator e:. Hence, for any formula φ

also e:φ is a formula saying “e has information φ”. Belief atoms play different roles in our setting. A
belief atom may represent a sensor collecting information about the state of the world, or it may represent
certain operational rules as well as a certain goal of the system. The characteristic property of a belief
atom is that the information of a belief atom has to be accepted or rejected as a whole. Due to its external
and indivisible nature, e is the only source of evidence for its information. The only justification for
information of e is e itself. Consequently, e:φ can also be read as “e is the justification for φ”. This is
what belief atoms and justifications have in common: either we trust a justification or not.

The information of a system is distributed among its belief atoms. The modal logic for distributed
information allows us to consider the information which is distributed over a belief group. While belief
groups can be built arbitrarily from belief atoms, we also introduce the concept of belief entities. A belief
entity is either a belief atom, or a distinguished group of belief entities. Belief entities are dynamically

2For any instance ` s:(φ → ψ)→ (s:φ → [s · s]:ψ) of Appl there is an instance ` s:(φ → ψ)→ (s:φ → s:ψ) of Ks in the
proposed system. Moreover, it is an easy exercise to show that any instance of ` s:(φ → ψ)→ (t:φ → [t · s]:ψ) is derivable in
the proposed system.
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distinguished by a justification graph. In contrast to belief groups, belief entities and belief atoms are not
allowed to have inconsistent information. Hence a justification graph allows us to restrict the awareness
of extra-logical evidences – so we can distinctively integrate logical resources that have to be consistent.

Justification Graphs Let V be a set of propositional variables and let E be the set of belief entities.
The designated subset EA of E denotes the set of belief atoms.

Definition 2 (Language of Justification Graphs). A formula φ is in the language of justification graphs
if and only if φ is built according to the following BNF, where A ∈ V and /0 6= E ⊆ E:

φ ::=⊥ | A | (φ → φ) | E:(φ) | X(φ) | P(φ) | (φ)U(φ) | (φ)S(φ).

Using the descending sequence of operator precedences (:, ¬, ∨, ∧,→,↔), we can define the well-
known logical connectives ¬, ∨, ∧ and↔ from→ and ⊥. Often, we omit brackets if the formula is still
uniquely readable. We define → to be right associative. For singleton sets {e} ⊆ E we also write e:φ
instead of {e}:φ . The language allows the usage of temporal operators for next time (X), previous time
(P), until (U), and since (S). Operators like always in the future (G) or always in the past (H) can be
defined from the given ones.

Definition 3 (Justification Graph). A justification graph is a directed acyclic graph G whose nodes are
belief entities of E. An edge e 7→G f denotes that the belief entity e has the component f . The set of all
direct components of an entity e is defined as G(e) := { f | e 7→G f}.

The leaf nodes of a justification graph are populated by belief atoms, i.e. for any belief entity e it
holds e ∈ EA if and only if G(e) = /0.

Definition 4 (Axioms of a Justification Graph). Let G be a justification graph. The logic of a justification
graph has the following axioms and rules.

(i) As an extension of propositional logic the rule of modus ponens MP has to hold: from ` φ and
` φ → ψ conclude ` ψ . Any substitution instance of a propositional tautology φ is an axiom.

(ii) Belief groups are closed under logical consequence and follow the principle of logical awareness.
Information is freely distributed along the subgroup-relation. For any belief group E the axiom KE

and the necessitation rule NecE hold. For groups E and F with E ⊆ F the axiom DistE,F holds.
(iii) Belief entities are not allowed to have inconsistent information. Non-atomic belief entities inherit

all information of their components. For any belief entity e the axiom De holds. If E is a subgroup
of the components of e, then the axiom DistE,e holds.

(iv) In order to express temporal relation the logic for the justification graph includes the axioms of
Past-LTL (LTL with past operator). A comprehensive list of axioms can be found in [24].

(v) Information of a belief entity e ∈ E and time are related. The axiom (PRE) : ` e:Pφ ↔ Pe:φ
ensures that every belief entity e correctly remembers its prior beliefs and establishes a principle
which is also known as perfect recall (e.g., see [17]).

Definition 5 (Proof). Let G be a justification graph. A proof (derivation) of φ in G is a sequence of
formulae φ1, . . . ,φn with φn = φ such that each φi is either an axiom of the justification graph or φi is
obtained by applying a rule to previous members φ j1 , . . . ,φ jk with j1, . . . , jk < i. We will write `G φ if
and only if such a sequence exists.

Definition 6 (Proof from a set of formulae). Let G be a justification graph and Σ be a set of formulae.
The relation Σ `G φ holds if and only if `G (σ1∧ ·· · ∧σk)→ φ for some finite subset {σ1, . . . ,σk} ⊆ Σ

with k ≥ 0.
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Definition 7 (Consistency with respect to a justification graph). Let G be a justification graph.
(i) A set Σ of formulae is G-inconsistent if and only if Σ `G ⊥. Otherwise, Σ is G-consistent. A formula

φ is G-inconsistent if and only if {φ} is G-inconsistent. Otherwise, φ is G-consistent.
(ii) A set Σ of formulae is maximally G-consistent if and only if Σ is G-consistent and for all φ 6∈ Σ the

set Σ∪{φ} is G-inconsistent.

Semantics Let S be the state space, that is the set of all possible states of the world. An interpretation
π over S is a mapping that maps each state s to a truth assignment over s, i.e. π(s) ⊆ V is the subset of
all propositional variables which are true in the state s. In Sect. 2 we introduced world models and runs
on world models. There a world model captured the evolution of a states in time.

In this section we focus an the epistemic notions of knowledge and belief and therefore our main
concern is the accessibility relation of information. We hence presume that the set of runs of a possible
world of Sect. 2 is given, that then defines the evolution in time. Formally a run over S is a function r
from the natural numbers (the time domain) to S. The set of all runs is denoted by R.

Definition 8. Let G be a justification graph. A Kripke structure M for G is a tuple M = (S,R,π,(7→e)e∈E)
where

(i) S is a state space,
(ii) R is the set of all runs over S,

(iii) π is an interpretation over S,
(iv) each 7→e in (7→e)e∈E is an individual accessibility relation 7→e⊆ S×S for a belief entity e in E.

Definition 9 (Model for a Justification Graph). Let M = (S,R,π,(7→e)e∈E) be a Kripke structure for the
justification graph G, where

(i) 7→e is a serial relation for any belief entity e ∈ E,
(ii) 7→E is defined as 7→E =

⋂
e∈E 7→e for any belief group E ⊆ E,

(iii) 7→e ⊆ 7→E holds for all non-atomic belief entities e ∈ E\EA and any subgroup E ⊆ G(e).
We recursively define the model relation (M,r(t)) |=G φ as follows:

(M,r(t)) 6|=G ⊥.
(M,r(t)) |=G Q :⇐⇒ Q ∈ π(r(t)).
(M,r(t)) |=G φ → ψ :⇐⇒ (M,r(t)) |=G φ implies (M,r(t)) |=G ψ .
(M,r(t)) |=G E:φ :⇐⇒ (M,r′(t)) |=G φ for all r′ with r(t ′) 7→E r′(t ′) for all t ′ ≤ t.
(M,r(t)) |=G Xφ :⇐⇒ (M,r(t +1)) |=G φ .
(M,r(t)) |=G Pφ :⇐⇒ (M,r(t ′)) |=G φ for some t ′ with t ′+1 = t.
(M,r(t)) |=G φUψ :⇐⇒ (M,r(t ′)) |=G ψ for some t ′ ≥ t and

(M,r(t ′′)) |=G φ for all t ′′ with t ≤ t ′′ < t ′.
(M,r(t)) |=G φSψ :⇐⇒ (M,r(t ′)) |=G ψ for some 0≤ t ′ ≤ t and

(M,r(t ′′)) |=G φ for all t ′′ with t ′ < t ′′ ≤ t.

When (M,r(t)) |=G φ holds, we call (M,r(t)) a pointed model of φ for G. If (M,r(0)) is a pointed
model of φ for G, then we write (M,r) |=G φ and say that the run r satisfies φ . Finally, we say that φ is
satisfiable for G, denoted by |=G φ if and only if there exists a model M and a run r such that (M,r) |=G φ

holds.

Proposition 1 (Soundness and Completeness). The logic of a justification graph G is a sound and com-
plete axiomatisation with respect to the model relation |=G. That is, a formula φ is G-consistent if and
only if φ is satisfiable for G.
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While the soundness proof is straightforward, a self-contained completeness proof involve lengthy
sequences of various model constructions and is far beyond the page limit. However, it is well-known,
(e.g., [19]), that KD

n , the n-agent extension of K with distributive information is a sound and complete
axiomatisation with respect to the class of Kripke structures having n arbitrary accessibility relations,
where the additional accessibility relations for groups are given as the intersection of the participating
agents, analogously to Def. 9.(ii). Also the additional extension KDD

n with DE for any belief group E is
sound and complete with respect to Kripke structures having serial accessibility relations, analogously
to Def. 9.(i). The axioms of justification graph are between these two systems. Def. 9.(iii) explicitly
allows belief entities to have more information than its components. Various completeness proofs for
combining LTL and epistemic logics are given e.g., in [17].

Extracting Justifications Let Σ = {σ1, . . . ,σn} be a finite set of formulae logically describing the
situation which is object of our investigation. Each formula σi ∈ Σ encodes information of belief atoms
(σi ≡ ei:φi with ei ∈ EA), facts (σi ≡ φi where φi does not contain any epistemic modal operator), or is an
arbitrary Boolean combinations thereof. Further, let G be a justification graph such that Σ is G-consistent
and e be a non-atomic belief entity of G. For any formula φ we may now ask whether φ is part of
the information of e. If there is a proof Σ `G e:φ , then φ is included in e’s information. To extract a
justification for e:φ we use that Σ∪{¬e:φ} is G-inconsistent and accordingly unsatisfiable for G. If we
succeed in extracting a minimal unsatisfiable core Σ′ ⊆ Σ∪{¬e:φ} a minimal inconsistency proof can
be recovered, from which finally the used justifications are extracted.

The following proposition allows to use SAT/SMT-solvers for a restricted setting and has been used
in our case study.

Proposition 2 (SAT Reduction). Let Σ = {σ1, . . . ,σn} be a set of formulae such that each element σi is
of the form ei:φi with ei ∈ EA and φi does not contain any epistemic modal operators. Further, let e be
an arbitrary belief entity that does not occur in Σ. Then G = {e 7→G ei|ei occurs in Σ} is a justification
graph for Σ if and only if Φ = {φ1, . . .φn} is satisfiable over the non-epistemic fragment of the logic of
justification graphs.

In order to proof the proposition one shows that any model of Φ in the non-epistemic fragment can
be extended to a model of Σ for the given G by adding trivial accessibility relations. On the other hand,
for any model M and run r with (M,r) |=G Σ there exists a run r′ which is accessible from 7→e such
that (M,r′) |=G Φ. Since Φ does not contain any epistemic modal operators, dropping the accessibility
relations from M still yields a model of Φ. A more detailed version of this proof can be found in [12].

4 Identifying and Analysing Conflicts

In this section we first present an abstract algorithm for the conflict resolution of Sect. 2 that starts at
level (C1) and proceeds resolution stepwise up to level (C4). We then sketch our small case study where
we applied an implementation of the abstract algorithm.

4.1 Analysing Conflicts

For the analysis of conflicts we employ SMT solvers. Prop. 2 reduces the satisfiability of a justification
graph to a SAT problem. To employ SMT solving for conflict analysis, we encode the (real and possible)
worlds of Sect. 2 via logic formulae as introduced in Sect. 3. Each state si is represented as a conjunction
of literals, si ≡

∧
v∧
∧
¬v′. Introducing a dedicated propositional variable vt for each v∈V and time step
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Algorithm 1 Determining winning strategy based on observations, goals, and possible actions.
1: function FINDSTRATEGY(Σ,Φmax

A ,Φmax
B ,AA,AB)

2: ΣM← POSSIBLEWORLDS(Σ,AA,AB) . construct set of possible worlds

3: ∆A← STRATA(AA,AB,ΣM,Φmax
A ) . construct

{
(δ A,δ

′
B) | r((δ A,δ

′
B),ΣM) |= ΦA with ΦA ∈Φmax

A
}

4: C← /0 . set of conflict causes

5: for all (δ A,δ
′
B) ∈ ∆A with r((δ A,δ

′
B),ΣM) |= ΦA ∈Φmax

A do
6: E← TESTIFNOTWINNING((δ A,δ

′
B),ΣM,ΦA,Φ

max
B ,AA,AB) . cf. Alg. 2

7: if E 6= /0 then . (δ A,δ
′
B) is not winning for all ΣM ∈ ΣM, i.e. r((δ A,δ

′
B),ΣM) 6|= ΦA

8: C← C∪{E} . memorize justifications E

9: ∆A = ∆A \{(δ A,δ
′
B)}

10: if ∆A = /0 then . A is in conflict with B

11: for i ∈ [1,2,3,4] do . traverse resolution levels

12: Σ′,Φmax
A
′,Φmax

B
′← FIXCONFLICT(C,(Ci),Σ,Φ

max
A ,Φmax

B ) . cf. Alg. 3

13: if (Σ′ 6= Σ)∨ (Φmax
A
′ 6= Φmax

A )∨ (Φmax
B
′ 6= Φmax

B ) then . new information generated

14: ∆A← FINDSTRATEGY(Σ′,Φmax
A
′,Φmax

B
′,AA,AB) . new attempt with new information

15: if ∆A 6= /0 then . new attempt was successful, stop and return

16: break
17: return ∆A . select (δ A,δ

′
B) ∈ ∆A to reach some goal in Φmax

A

t allows us to obtain a formula describing a finite run on M. A predicate of the form
∧

(s,s′)∈T(st → s′t+1)
encodes the transition relation T . The effect of performing an action at at state s is captured by a formula
of the form at → (st → s′t+1). Using this we can encode a strategy δ in a formula ψδ such that its
valuations represent runs of M according to δ . All runs according to δ achieve goals Φ if and only if
ψδ ∧¬Φ is unsatisfiable. These logical encodings are the main ingredients for using a SAT solver for
our conflict analysis. Since there are only finitely many possible strategies, we examine for each strategy
which goals can be (maximally) achieved in a world M or in a set of worlds M. Likewise we check
whether A has a winning strategy that is compatible with the strategies A believes B might choose.

Since we iterate over all possible worlds for our conflict analysis, we are interested in summarising
possible worlds. We are usually not interested in all vt – e.g. the speed of B may at times t be irrelevant.
We are hence free to ignore differences in vt in different possible worlds and are even free to consider
all valuations of vt , even if A does not consider them possible. This insight leads us to a symbolic
representation of the possible worlds, collecting the relevant constraints. Now the justification graph
groups the constraints that are relevant, with other words, e:φ and e′:¬φ will not be components of the
same justification graph if the valuation of φ is relevant. In the following we hence consider the maximal
consistent set of possible worlds, meaning encodings of possible worlds that are uncontradictory wrt. the
relevant propositions, which are specified via the justification graph.

4.2 Algorithmic approach

In this section, we sketch an abstract algorithm for the conflict resolution at levels (C1) to (C4) as in
Sect. 2. Note that we do not aim with Alg. 1 for efficiency or optimal solutions but aim to illustrate how
satisfiability checks can be employed to analyse our conflicts.

The following algorithms describe how we deal with logic formulae encoding sets of possible worlds,
sets of runs on them, etc. to analyse conflicts (cf. Def. 1, p. 51) via SMT solving. We use ΣM to refer to a
formula that encodes a maximal consistent set of possible worlds (cf. Sect. 4.1), i.e., that corresponds to a



W. Damm, M. Fränzle, W. Hagemann, P. Kröger and A. Rakow 59

initial justified
information base ΣI

Σ∪
ΣM

ΣMΣMΣMΣM
∆ ⊆ ∆A

winning?
resolution
at level Ci

∆A

∆

constraints [no] justifications

[yes]

required information ΣR

Ci ← Ci+1

Figure 2: Abstract resolution process with information base, possible worlds and strategies.

justification graph. We use ΣM to refer to a set of formulas ΣM ∈ΣM that encode the set of possible worlds
M structured into sets of possible worlds via justification graphs. We use M and ΣM synonymously. Also
we often do not distinguish between ΣM and M – neglecting that ΣM represents a set of worlds that are
like M wrt to the relevant constraints.

Fig. 2 provides an overview of the relation between the initial information base ΣI of agent A, its
set ΣM of possible worlds ΣM, winning strategies, resolution, and stepwise update of the information ΣR

during our conflict resolution process. The initial information base defines the set of possible worlds
M, which is organised in sets of maximal consistent worlds ΣM. Based on ΣM, A’s set of strategies ∆A

is checked whether it comprises a winning strategies in presence of an agent B that tries to achieve its
own goals. If no such winning strategy exists, A believes to be in conflict with B. At each level (Ci) the
resolution procedure tries to determine information ΣR of level (Ci) to resolve the conflict. If the possible
worlds are enriched by this information, the considered conflict vanishes. The new information is added
to the existing information base and the over-all process is re-started again until either winning strategies
are found or ΣR is empty.

How to find a believed winning strategy Alg. 1 finds a winning strategy of agent A for a goal ΦA in
ΣM tolerating that B follows an arbitrary winning strategy in ΣM ∈ ΣM for its goals, i.e. it finds a strategy
that satisfies ΦA in all possible worlds ΣM where ΦA is maximal for ΣM and in each possible world
ΣM ∈ ΣM agent B may also follow a winning strategy for one of its maximal goals ΦB. If such a strategy
cannot be found, A believes to be in conflict with B (cf. Def. 1).

Input for the algorithm is (i) a set Σ of formulae describing the current belief of A, e.g. its current
observations and its history of beliefs –we call it the information base in the sequel–, (ii) a set of goals
Φmax

A of A that is maximal in M, (iii) a set of believed goals Φmax
B of B that is maximal for a ΣM ∈ ΣM,

(iv) a set of possible actions AA for A and (v) a set of believed possible actions AB for B.
First (L. 2 of Alg. 1) is to construct sets of maximal consistent sets of possible worlds that together

represent M. In L. 3 the set ∆A is determined, which is the set of strategies accomplishing a maximal goal
combination for A assuming B agrees to help, i.e., all winning strategies (δ A,δ

′
B) that satisfy ΦA ∈Φmax

A
in all possible worlds ΣM ∈ ΣM, where ΦA is maximal for M.

In lines 5 ff. we examine whether one of A’s strategies (where B is willing to help) works even when
B follows its strategy to achieve one of its maximal goals ΦB ∈Φmax

B in ΣM.
To this end TESTIFNOTWINNING is called for all of A’s winning strategies (δ A,δ

′
B)∈ ∆A (L. 6). The

function TESTIFNOTWINNING performs this test iteratively for one maximal consistent set of worlds ΣM

(Alg. 2 L. 2). Let ∆B be the set of joint strategies achieving a goal ΦB ∈ Φmax
B that is maximal in ΣM.

We check the compatibility of A’s strategy (δ A,δ
′
B) to every (δ ′A,δ B) ∈ ∆B (Alg. 2 L. 3). A strategy of A

(δ A,δ
′
B) is compatible to all of B’s strategies (δ ′A,δ B) if all joint strategies (δ A,δ B) achieve the maximal

goals for A and B (Alg. 2 L. 6).3 If the joint strategy (δ A,δ B) is not a winning strategy for the joint goal

3Note that according to Sect. 2.1, we have ΦB = true if B cannot achieve any goal. This reflects that A cannot make any
assumption about B’s behaviour in such a situation.
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Algorithm 2 Test if a strategy is winning in all possible worlds.
1: function TESTIFNOTWINNING((δ A,δ

′
B),ΣM,ΦA,Φ

max
B ,AA,AB)

2: for all ΣM ∈ ΣM do
3: ∆B← STRATB(AA,AB,ΣM,Φmax

B ) . construct
{
(δ ′A,δ B) | r

(
(δ ′A,δ B),ΣM

)
|= ΦB with ΦB ∈Φmax

B
}

4: for all (δ ′A,δ B) ∈ ∆B do
5: for all ΦB ∈Φmax

B with r((δ ′A,δ B),ΣM) |= ΦB and ΦB is maximal in ΣM do
6: if r((δ A,δ B),ΣM) 6|= ΦA∪ΦB then . (δ A,δ

′
B) is not winning for all M and all (δ ′A,δ B)

7: return GETJUSTIFICATIONS((δ A,δ B) 6|= ΦA∪ΦB)
8: else
9: return /0

Algorithm 3 Try to fix a conflict by resolving contradictions.
1: function FIXCONFLICT(C,(Ci),Σ,Φ

max
A ,Φmax

B )
2: for E ∈ C do
3: C← C\{E}
4: Σ,Φmax

A ,Φmax
B ← RESOLVE(Σ,E,Φmax

A ,Φmax
B ,(Ci)) . try resolution according to level (Ci)

5: return Σ,Φmax
A ,Φmax

B

ΦA∪ΦB (Alg. 2 L. 6), the function GETJUSTIFICATIONS extracts the set of justifications for this conflict
situation (Alg. 2 L. 7). The set of justifications is added to the set of conflict causes C (Alg. 1 L. 8.).
Since strategy (δ A,δ

′
B) is not compatible to all of B’s strategies, it is hence not further considered as a

possible conflict-free strategy for A (Alg. 1 L. 9).
A strategy that remains in ∆A at Alg. 1 L. 10 is a winning strategy for one of A’s goals in all possible

worlds ΣM regardless of what maximal goals B tries to achieve in ΣM. However, if ∆A is empty at
Alg. 1 L. 10 , A is in a (believed) conflict with B (Def. 1). In this case, conflict resolution is attempted
(cf. lines 10 ff. in Alg. 1). Function FIXCONFLICT from Alg. 3 is called with the set of conflict causes,
the current conflict resolution level, and the current information base and goals. For each conflict cause,
an attempt of resolution is made by function RESOLVE. The conflict is analysed to identify whether
adding/updating information of the current resolution level helps to resolve the conflict. If there are
several ways to resolve a conflict, justifications can be used to decide which resolution should be chosen.
Note that conflict resolution hence means updating of the information base Σ or goal sets Φmax

A and Φmax
B .

Line 13 of Alg. 1 checks if some new information was obtained from the resolution procedure. If not,
resolution will be restarted at the next resolution level. If new information was obtained, FINDSTRATEGY

is called with the updated information. If the result is a non-empty set of strategies, the algorithm
terminates by returning them as (believed) winning strategies for A. However, if the result is the empty
set, resolution is restarted at the next resolution level. If ∆A is empty at level (C4), the conflict cannot be
resolved and the algorithm terminates.

Termination Alg. 1 eventually terminates under the following assumptions. The first assumption is
that the set of variables V and hence the information base Σ is finite. In this case, the construction of
maximal consistent possible worlds ΣM terminates since there is a finite number of possible consistent
combinations of formulae and the time horizon for the unrolling of a possible world ΣM is bounded.

Together with finite sets Φmax
A , Φmax

B , AA, and AB, the construction of strategies, i.e. functions
STRATA and STRATA, terminates since there are only finite numbers of combinations of input histo-
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ries and output action and there is only a finite number of goals to satisfy. All loops in algorithms 1, 2,
and 3 hence iterate over finite sets.

The extraction of justifications terminates since runs are finite and consequently the number of ac-
tions involved in the run, too. Furthermore, for each state in a run, there are only a finite number of
propositions that apply. Together with a finite number of propositions representing the goal, GETJUSTI-
FICATIONS can simply return the (not necessarily minimal) set of justifications from all these finite many
formulae as a naive approach.

Alg. 1 terminates if a non-empty set ∆A is derived by testing and/or resolution, or if a fixed point re-
garding Σ, Φmax

A , and Φmax
B is reached. Since all other loops and functions terminate, the only open aspect

is the fixed point whose achievement depends on RESOLVE. We assume that Alg. 1 is executed at a fixed
time instance s.t. A’s perception of the environment does not change during execution. Thus, Σ contains
only a finite number of pieces of information to share. If we assume that that sharing information leads
only to dismissing possible worlds rather then considering more worlds possible, then this a monotonic
process never removing any information.4 Furthermore, we assume that the partial order of goals leads,
if necessary, to a monotonic process of goal negotiation which itself can repeated finite many times until
no further goals can be sacrificed or adopted from B. Thus, if ∆A remains to be the empty set in line 15,
the fixed point will eventually be reached.

Furthermore, we do not consider any kind of race conditions occurring from concurrency, e.g. dead-
lock situations where A can’t serve B’s request because it does not know what its strategy will be since A
wait’s for B’s respond, and vice versa.

So in summary, the algorithm terminates under certain artificial assumptions but cannot determine
a resolution in case without an outside arbiter. In practice such a conflict resolution process has to be
equipped with time bounds and monitors. We consider these aspects as future work.

4.3 Case study

We implemented the algorithm sketched above employing Yices [14] to determine contradictions and
analysed variations of a toy example to evaluate and illustrate our approach. More details on the
case study can be found in [12]. The implementation is available under https://uol.de/en/hs/
downloads/.

We modelled a system of two agents on a two lane highway. Each agent is represented by its position
and its lane. Each agent has a set of actions: it can change lane and drive forward with different speeds.
We captured this via a discrete transition relation where agents hop from position to position. The
progress of time is encoded via unrolling, that is we have for each point in time a corresponding copy
of a variable to hold the value of the respective attribute at that time. Accordingly the transition relation
then refers to these copies.

Since we analyse believed conflicts of an agent, we consider several worlds. In other words, we
consider several variations of a Yices model. Each variation represents a justification graph summarising
the maximal consistent set of evidences and thereby representing a set of worlds which is justified by
this set of evidences.

We modify the Yices file by adding additional constraints according to the algorithm Sect. 4.2. For
the steps (C1) to (C4) we add constraint predicates, e.g., that encode that information about certain ob-
servations have been communicated by say B to A, constraints that specify that B tells A it will decelerate
at step 4 and constraints that encode goal combinations.

4Otherwise the set of already examined worlds can be used to define a fixed point.

https://uol.de/en/hs/downloads/
https://uol.de/en/hs/downloads/
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We employed Yices to determine whether there is conflict. The key observation is: If Yices deter-
mines that it holds that ¬ϕ is satisfiable in our system model, then there is the possibility that the goal is
not achieved – otherwise each evolution satisfies ϕ and there is a winning strategy for the model.

5 Related work

Studying Traffic Conflicts According to Tiwari in his 1998 paper [26] studying traffic conflicts in
India, one of the earliest studies concerned with traffic conflicts is the 1963 paper [21] of Perkins and
Harris. It aims to predict crashes in road traffic and to obtain a better insight to causal factors. The term
traffic conflict is commonly used according to [26] as “an observable situation in which two or more
road users approach each other in space and time to such an extent that a collision is imminent if their
movements remain unchanged” [1]. In this paper we are interested in a more general and formal notion
of conflict. We are not only interested in collisions-avoidance but more generally in situations where
traffic participants have to cooperate with each other in order to achieve their goals – which might be
collision-freedom. Moreover, we aim to provide a formal framework that allows to explain real world
observations as provided by, e.g., the studies of [26, 21].

Tiwari also states in [26] that it is necessary to develop a better understanding of conflicts and con-
jectures that illusion of control [23] and optimism bias theories like in [13] might explain fatal crashes.
In this paper we develop a formal framework that allows us to analyse conflicts based on beliefs of the
involved agents, –although supported by our framework–we here do not compare the real world evolu-
tion with the evolution that an agent considers possible. Instead we analyse believed conflicts, that are
conflicts which an agent expects to occur based on its beliefs. Such conflicts will have to be identified
and analysed by prediction components of the autonomous vehicles architecture, especially in settings
where misperception and, hence, wrong beliefs are possible.

In [15] Sameh et al. present their approach to modelling conflict resolution as done by humans in or-
der to generate realistic traffic simulations. The trade-off between anticipation and reactivity for conflict
resolution is analysed in [25] in order to determine trajectories for vehicles at an intersection. Both works
[15, 25] focus on conflicts leading to accidents. Regarding the suggested resolution approaches, our res-
olution process suggests cooperation steps with increasing level cooperation. This resolution process is
tailored for autonomous vehicles that remain autonomous during the negation process.

Strategies and Games For strategy synthesis Finkbeiner and Damm [10] determined the right perime-
ter of a world model. The approach aims to determine the right level of granularity of a world model
allowing to find a remorse-free dominant strategy. In order to find a winning (or remorse-free dominant)
strategy, the information of some aspects of the world is necessary to make a decision. We accommodated
this as an early step in our resolution protocol. Moreover in contrast to [10], we determine information
that agent A then want requests from agent B in order to resolve a conflict with B – there may still be
no winning (or remorse-free dominant) strategy for all goals of A. In [11] Finkbeiner et. al.presented
an approach to synthesise a cooperative strategy among several processes, where the lower prioritised
process sacrifices its goals when a process of higher priority achieves its goals. In contrast to [11] we do
not enforce a priority of agents but leave it open how a conflict is resolved in case not all their goals are
achievable. Our resolution process aims to identify the different kinds of conflict as introduced in Sect. 2
that arise when local information and beliefs are taken into account and which not necessarily imply that
actually goals have to be sacrificed.

We characterize our conflict notion in a game theoretic setting by considering the environment of
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agents A and B as adversarial and compare two scenarios where (i) the agent B is cooperative (angelic)
with the scenario where (ii) B is not cooperative and also not antagonistic but reasonable in following
a strategy to achieve its own goals. As Brenguier et al. in [7] remark, a fully adversarial environment
(including B) is usually a bold abstraction. By assuming in (ii) that B maximises its own goals – we
assume that B follows a winning strategy for its maximal accomplishable goals. So we are in a similar
mind set than at assume-guarantee [9] and assume-admissible [7] synthesis. Basically we consider the
type of strategy (winning/admissible/dominant) as exchangeable, the key aspect of our definition is that
goals are not achievable but can be achieved with the help of the other.

Logics Justification logic was introduced in [5, 6] as an epistemic logic incorporating knowledge and
belief modalities into justification terms and extends classical modal logic by Plato’s characterisation of
knowledge as justified true belief. However, even this extension might be epistemologically insufficient
as Gettier already pointed out in 1963 [20]. In [4] a combination of justification logics and epistemic
logic is considered with respect to common knowledge. The knowledge modality Ki of any agent i
inherits all information that are justified by some justification term t, i.e. t:φ →Kiφ . In such a setting any
justified information is part of common knowledge. Moreover, justified common knowledge is obtained
by collapsing all justification terms into one modality J and can be regarded as a special constructive
sort of common knowledge. While our approach neglects the notion of common information, we use a
similar inheritance principle where a belief entity inherits information of its components, cf. Def. 4.(iii).
A comparison of the strength of this approach with different notions of common knowledge can be
found in [2]. While justification logic and related approaches [16, 3], aim to restrict the principle of
logical awareness and the related notion of logical omniscience, we argue in Sec. 3 that the principle of
logical awareness as provided by modal logic is indispensable in our approach. A temporal (LTL-based)
extension of justification logic has been sketched in [8]. This preliminary work differs from our approach
wrt. the axiom systems used for the temporal logic part and the justification / modal logic part, cf. the
logic of justification graphs axiomatised in Section 3. Our logic and its axiomatisation incorporates
a partial order on the set of beliefs that underlies their prioritization during conflict resolution, which
contrasts with the probabilistic extension of justification logic outlined in [22].

6 Conclusion

Considering local and incomplete information, we presented a new notion of conflict that captures sit-
uations where an agent believes it has to cooperate with another agent. We proposed steps for conflict
resolution with increasing level of cooperation. Key for conflict resolution is the analysis of a conflict,
tracing and identifying contradictory evidences. To this end we presented a formal logical framework
unifying justifications with modal logic. Alas, to the authors’ best knowledge there are no efficient satis-
fiability solvers addressing distributed information so far. However, we exemplified the applicability of
our framework in a restricted but non-trivial setting. On the one hand, we plan to extend this framework
by efficient implementations of adapted satisfiability solvers, on the other hand by integrating richer log-
ics addressing decidable fragments of first order logic, like linear arithmetic, and probabilistic reasoning.
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