Bounded Languages Meet Cellular Automata with Sparse Communication

Martin Kutrib
Andreas Malcher

Cellular automata are one-dimensional arrays of interconnected interacting finite automata. We investigate one of the weakest classes, the real-time one-way cellular automata, and impose an additional restriction on their inter-cell communication by bounding the number of allowed uses of the links between cells. Moreover, we consider the devices as acceptors for bounded languages in order to explore the borderline at which non-trivial decidability problems of cellular automata classes become decidable. It is shown that even devices with drastically reduced communication, that is, each two neighboring cells may communicate only constantly often, accept bounded languages that are not semilinear. If the number of communications is at least logarithmic in the length of the input, several problems are undecidable. The same result is obtained for classes where the total number of communications during a computation is linearly bounded.

In Jürgen Dassow, Giovanni Pighizzini and Bianca Truthe: Proceedings Eleventh International Workshop on Descriptional Complexity of Formal Systems (DCFS 2009), Magdeburg, Germany, July 6-9, 2009, Electronic Proceedings in Theoretical Computer Science 3, pp. 163–172.
Published: 30th July 2009.

ArXived at: bibtex PDF

Comments and questions to:
For website issues: