Towards the Design of Heuristics by Means of Self-Assembly

German Terrazas
(University of Nottingham)
Dario Landa-Silva
(University of Nottingham)
Natalio Krasnogor
(University of Nottingham)

The current investigations on hyper-heuristics design have sprung up in two different flavours: heuristics that choose heuristics and heuristics that generate heuristics. In the latter, the goal is to develop a problem-domain independent strategy to automatically generate a good performing heuristic for the problem at hand. This can be done, for example, by automatically selecting and combining different low-level heuristics into a problem specific and effective strategy. Hyper-heuristics raise the level of generality on automated problem solving by attempting to select and/or generate tailored heuristics for the problem at hand. Some approaches like genetic programming have been proposed for this. In this paper, we explore an elegant nature-inspired alternative based on self-assembly construction processes, in which structures emerge out of local interactions between autonomous components. This idea arises from previous works in which computational models of self-assembly were subject to evolutionary design in order to perform the automatic construction of user-defined structures. Then, the aim of this paper is to present a novel methodology for the automated design of heuristics by means of self-assembly.

In S. Barry Cooper, Prakash Panangaden and Elham Kashefi: Proceedings Sixth Workshop on Developments in Computational Models: Causality, Computation, and Physics (DCM 2010), Edinburgh, Scotland, 9-10th July 2010, Electronic Proceedings in Theoretical Computer Science 26, pp. 135–146.
Published: 9th June 2010.

ArXived at: bibtex PDF

Comments and questions to:
For website issues: