We describe a type system for the linear-algebraic lambda-calculus. The type system accounts for the part of the language emulating linear operators and vectors, i.e. it is able to statically describe the linear combinations of terms resulting from the reduction of programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We show that the resulting typed lambda-calculus is strongly normalizing and features a weak subject-reduction. |