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Effective dimension in some general metric spaces
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We introduce the concept of effective dimension for a general metric space. Effective dimension was
defined by Lutz in (Lutz 2003) for Cantor space and has also been extended to Euclidean space. Our
extension to other metric spaces is based on a supergale characterization of Hausdorff dimension. We
present here the concept of constructive dimension and its characterization in terms of Kolmogorov
complexity. Further research directions are indicated.

1 Introduction

Effective dimension in Cantor space was defined by Lutz in [8, 9] in order to quantitatively study com-
plexity classes [7]. The connections of effective dimension with Information Theory [11], in particular
with Kolmogorov complexity and compression algorithms, some of them suspected even before the def-
inition of effective dimension itself ([12, 13, 15, 16, 1] and more recently for other spaces [14]), have
lead to very fruitful areas of research including those within Algorithmic Information theory [3].

In this paper we shall explore the definition of effective dimension for more general metric spaces.
The long term purpose of this line of research is to find more and easier dimension bound proofs in those
spaces, while the connections with Information Theory already suggest further developments.

The original definition of effective dimension was done in Cantor space which is the set of infinite
binary sequences with the usual longest-common-prefix-based metric. The spaces of infinite sequences
over other finite alphabets have been also explored, for instance the case of Finite-State effectivity is
particularly interesting with this variation [2]. Finally, the Euclidean space Rn has been explored by
several papers that go back to fractal geometry, starting in [10].

Gales and supergales, introduced by Lutz in [8], are intuitively betting strategies in a guessing game
on the elements of Cantor space. They allow the interpretation of Hausdorff dimension in terms of pre-
diction and provide natural effectivizations of dimension by restricting the computability and resource-
bounds used in the computation of these betting strategies.

We introduce here the concept of nice cover of a metric space. A nice cover can simulate very closely
any of the covers required in the definition of Hausdorff dimension, while it allows simple representations
of the points in the space and the use of gales as betting games on those representations.

We then characterize Hausdorff dimension using supergales for any metric space with a nice cover.
Spaces with nice covers can be fairly general (they are not even required to be locally separable). This
characterization allows the definition of effective dimension by restricting the family of supergales that
can be used.

In this paper we present an initial step in this direction by introducing the definition of constructive
dimension on a metric space. We then characterize constructive dimension in terms of Kolmogorov
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complexity and sketch further properties such as absolute stability (that is, the fact that constructive
dimension can be pointwise defined) and a correspondence principle (that is, the fact that constructive
dimension coincides with Hausdorff dimension for an interesting family of sets). We finish with a list of
topics for further development.

2 Preliminaries

Let (X ,ρ) be a metric space. (From now on we shall omit ρ when referring to space (X ,ρ)).
Definition. The diameter of a set A⊆ X is

diam(A) = sup{ρ(x,y) |x,y ∈ A} .

Notice that the diameter of a set can be infinite.
Definition. Let A⊆ X . A cover of A is C ⊆P(X) such that A⊆ ∪U∈CU .
Definition. Let A⊆ X . A is separable if there exists a countable set S⊆ A that is dense in A, that is, for
every x ∈ A,δ > 0 there is an s ∈ S such that ρ(x,s)< δ .
Definition. The ball of radius r > 0 about x ∈ X is the set B(x,r) = {y ∈ X |ρ(y,x)< r}.
Definition. An isolated point in X is x ∈ X such that there is a δ > 0 with B(x,δ )∩X = {x}.

We shall be interested in metric spaces that have no isolated points. Notice that metric spaces con-
sisting only of isolated points have little interest for Hausdorff dimension (cf. definition below), while
Hausdorff dimension in general spaces can be analyzed by restricting to non isolated points in the space.

We include the basic definitions of Hausdorff dimension. We refer the reader to [4] for a complete
introduction and motivation.

For each A⊆ X and δ > 0, we define the set of countable δ -covers of A

Hδ (A) = {U |U is a countable cover of A and diam(U)< δ for every U ∈U } .

We can now define Hs
δ
(A) and Hs(X)

Hs
δ
(A) = inf

U ∈Hδ (A)
∑

U∈U
diam(U)s.

Hs(A) = lim
δ→0

Hs
δ
(A).

Notice that Hs
δ
(X) is monotone as δ → 0 so Hs(X) is well defined. It is routine to verify that Hs is an

outer measure [4], Hs is called the s-Hausdorff measure.
Definition. (Hausdorff [5]). The Hausdorff dimension of A⊆ X is

dimH(A) = inf{s ∈ [0,∞) |Hs(A) = 0} .

Let Σ be a finite set. We denote as Σ∗ the set of finite strings over Σ.

3 A supergale characterization of dimension in some metric spaces

3.1 Nice covers

We introduce the concept of a nice cover for a metric space. A nice cover allows well behaving rep-
resentations of all points in the space, and it will be the key to the gale characterization of Hausdorff
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dimension in the next subsection. Intuitively, a nice cover of A is a sequence of covers of A that can
closely simulate any Hausdorff cover of A.

Let X be a metric space without isolated points.
Definition. Let c ∈ N.A c-nice cover of X is a sequence (Bn)n∈N with Bn ⊆P(X) for every n and
such that the following hold

1. (Decreasing monotonicity) For every n ∈ N, for every U ∈Bn, |{V ∈Bn+1,V ⊆U}|< ∞.

2. (Increasing monotonicity) For every n ∈ N, U ∈Bn, m < n, there is a unique V ∈Bm such that
U ⊆V .

3. (c-cover) For every r ∈ N there is an ε > 0 such that for every A⊆ X with 0 < diam(A)< ε there
exists {U1, . . . ,Uc} ⊆ ∪n>rBn a cover of A, with diam(Ui)< c ·diam(A) for every i.

Definition. A nice cover of X is a c-nice cover for some c ∈ N.
Notice that the above definition does not require the elements of each cover Bn to be open or disjoint.

Theorem 3.1 If X has a countable nice cover then X is separable.

Notice that both examples mentioned in the introduction (Cantor space and Euclidean space) corre-
spond to metric spaces with countable and very simple nice covers.

3.2 Supergale characterization of Hausdorff dimension

In this subsection we prove a supergale characterization of Hausdorff dimension for X with a nice cover.
Notice that each nice cover gives an equivalent characterization of dimension.

The concept of gale we introduce here is the natural extension of the gales introduced in [8] to spaces
with nice covers, while the flexibility on the metric spaces makes the proof of this characterization quite
more involved than the case of Cantor spaces proven in [8]. For instance we cannot assume anything
about the diameters of the covers used.

Let X be a metric space with a nice cover, fix a nice cover (Bn)n∈N. Let B = ∪nBn. For n ∈ N, let
B≥n = ∪m≥nBm.
Definition. Given x ∈ X , a B-representation of x is a sequence (wn)n∈N such that wn ∈Bn and x ∈
∩nwn.

We denote with R(x) the set of B-representations of x ∈ X .
A supergale is intuitively a strategy in a betting game on a representation (wn)n∈N of an unknown

x ∈ X .
Definition. Let s ∈ [0,∞). An s-supergale d is a function d : B→ [0,∞) such that the following hold

• ∑U∈B0 d(U)diam(U)s < ∞,

• for every n ∈ N, for every U ∈Bn the following inequality holds

d(U)diam(U)s ≥ ∑
V∈Bn+1,V⊆U

d(V )diam(V )s. (1)

An s-gale is an s-supergale for which equation (1) holds with equality.
Definition. An s-supergale d succeeds on x ∈ X if there is a (wn)n∈N ∈R(x), such that

limsup
n

d(wn) = ∞.
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Definition. Let d be an s-supergale. The success set of d is

S∞[d] = {x ∈ X |d suceeds on x} .

Definition. Ĝ (A) = {s | there is an s-supergale d with A⊆ S∞[d]}.

Theorem 3.2 (Supergale characterization) Let X be a metric space that has a nice cover, let A ⊆ X.
Then

dimH(A) = inf Ĝ (A).

Proof. Let s> dimH(A). Then for any k∈N there is a countable cover of A, Ck, such that ∑U∈Ck
diam(U)s <

2−k and diam(U) > 0 for each U ∈ Ck. (If necessary substitute each Un ∈ Ck with diam(Un) = 0 by a
ball of radius 2−k/s−n/s−1).

Let r ∈ N and fix ε as in property (3) of nice covers, let k = kr > kr−1 be such that 2−k < ε . Using
property (3) of nice covers we can get a cover Ek ⊆B≥r of A such that

∑
W∈Ek

diam(W )s < c1+s ·2−k.

Let Dk = {U |U ∈ Ek and no proper superset of U is in Ek }. Then Dk is a cover of A and

∑
W∈Dk

diam(W )s < c1+s ·2−k.

Define dk : B→ [0,∞) as follows,
For U ∈B, if diam(U) = 0 then d(U) = 1.
If diam(U)> 0, U ∈Bn for n > 0, and there is V ∈Bn−1−Bn and W ∈Dk with U ⊆V ⊆W then

dk(U) =
dk(V )diam(V )s

∑U ′⊆V,U ′∈Bn
diam(U ′)s .

Otherwise, if U ∈Bn−Bn−1 for n > 0 or U ∈Bn for n = 0,

dk(U) = ∑
W∈Dk∩B≥n,W⊆U

diam(W )s

diam(U)s .

Claim 3.3 dk is an s-supergale.

Proof of Claim 3.3. Let V ∈Bn−1−Bn with diam(V )> 0 and
∑U ′⊆V,U ′∈Bn

diam(U ′)> 0.
If there is W ∈Dk such that V ⊆W then

∑
U⊆V,U∈Bn

dk(U)diam(U)s = ∑
U⊆V,U∈Bn

dk(V )diam(V )s

∑U ′⊆V,U ′∈Bn
diam(U ′)s diam(U)s

= dk(V )diam(V )s.

If for any W ∈Dk, V 6⊆W then

dk(V ) = ∑
W∈Dk∩B≥n−1,W⊆V

diam(W )s

diam(V )s .
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Therefore,

∑
U⊆V,U∈Bn

dk(U)diam(U)s = ∑
U⊆V,U∈Bn

∑
W∈Dk∩B≥n,W⊆U

diam(W )s

diam(U)s diam(U)s

= ∑
U⊆V,U∈Bn

∑
W∈Dk∩B≥n,W⊆U

diam(W )s

≤ ∑
W∈Dk∩B≥n−1,W⊆V

diam(W )s = dk(V )diam(V )s,

where the last inequality follows from property (2) of nice covers.
For every U ∈B0, we use the second part in the definition of dk (since there is no n > 0 with U ∈Bn

and V ∈Bn−1−Bn with U ⊆V ). Therefore, using property (2) of nice covers,

∑
U∈B0

dk(U)diam(U)s ≤ ∑
W∈Dk

diam(W )s < c1+s ·2−k < ∞.

�

Claim 3.4 If W ∈Dk, dk(W ) = 1.

Proof of Claim 3.4. If diam(W ) > 0 and W ∈Bn, since all sets in Dk are incomparable, we use the
second part in the definition of dk and

dk(W ) = ∑
W ′∈Dk∩B≥n,W ′⊆W

diam(W ′)s

diam(W )s = 1.

�

Claim 3.5 For every k ∈ N, U ∈B, with diam(U)> 0, dk(U)≤ c1+s·2−k

diam(U)s .

Proof of Claim 3.5.
We prove by induction on n−m that for every n,m ∈ N with m < n, U ⊆ V with diam(U) > 0,

U ∈Bn and V ∈Bm,

dk(U)≤ dk(V )diam(V )s

diam(U)s .

By the definition of supergale, if U ∈Bn, dk(U) ≤ dk(U ′)diam(U ′)s

diam(U)s for U ′ ∈Bn−1 with U ⊆U ′. By

induction dk(U ′)≤ dk(V )diam(V )s

diam(U ′)s and therefore dk(U)≤ dk(V )diam(V )s

diam(U)s .
For every W ∈B0 with diam(W )> 0, we use the second part in the definition of dk and so dk(W )≤

c1+s·2−k

diam(W )s .
Since for every U ∈B there is a W ∈B0 with U ⊆W we have that

dk(U)≤ dk(W )diam(W )s

diam(U)s ≤ c1+s ·2−k

diam(U)s .

�
We define next an s-supergale d(U) = ∑r 2kr d2kr(U). By Claim 3.5 d is well-defined. By Claim

3.4, if W ∈ Dk, d(W ) ≥ 2k. Since for every r, Dkr ⊆B≥r is a cover of A, we have that A ⊆ S∞[d] and
s ∈ G (A).

For the other direction, let s ∈ Ĝ (A). Then there exists an s-supergale d such that A⊆ S∞[d].
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Claim 3.6 The set R = {U |d(U)diam(U)> 0} is countable.

Claim 3.7 Let d be an s-supergale. Then for every E ⊆B∩R such that all sets in E are incomparable
we have that

∑
W∈B0

d(W )diam(W )s ≥ ∑
V∈E

d(V )diam(V )s.

For each k ∈ N let

Ck =

{
U

∣∣∣∣∣diam(U)> 0,d(U)> 2k · ∑
W∈B0

d(W )diam(W )s

}
,

let Dk = {U |U ∈ Ck and no proper superset of U is in Ck }. Then, using Claim 3.7, ∑U∈Dk
diam(U)s ≤

2−k.
Notice that for every k, Dk is a 2−k/s-cover of S∞[d], so dimH(A)≤ s. This completes our proof.

�

4 Constructive dimension

In this section we take a first step in the effectivization of Hausdorff dimension by considering construc-
tive dimension. We consider spaces that have computable nice covers (defined below). Computable nice
covers have a flavor similar to computable metric spaces, although we conjecture they are incomparable
to those.

Then we characterize constructive dimension in terms of Kolmogorov complexity using the concept
of Kolmogorov complexity of x ∈ X at precision r ∈ N inspired by [10]. This characterization, together
with the absolute stability and correspondence principle sketched below allows a full Theory of Infor-
mation view of Hausdorff dimension in some general metric spaces.
Definition. Let X be a metric space with a nice cover (Bn)n∈N. We say that X has a computable nice
cover if the following hold,

4. (Small size) There is an 0 < ζ < 1 such that for every n ∈ N, for every U ∈Bn, diam(U)< ζ n.

5. (Computable diameter) B = ∪nBn is countable and there is a surjective δ : Σ∗→B for a finite Σ

such that diam◦δ is computable.

6. (Computable cover) For each n ∈ N, U ∈ N, PU = {V |V ∈Bn+1,V ⊆U } can be computed from
δ−1(U).

Fix a space X with a computable nice cover. Fix δ as in the definition above.
Definition. Let d be a supergale. Then d is contructive if d ◦δ is lower semicomputable.
Definition. Let A⊆ X ,

Ĝconstr(A) = {s | there is a constructive s-supergale d with A⊆ S∞[d]} .

Definition. Let A⊆ X . We define the constructive dimension of A as cdim(A) = inf Ĝconstr(A).
Constructive dimension can be characterized in terms of Kolmogorov complexity as follows. Let

K(w) denote the usual self-delimiting Kolmogorov complexity of w ∈ Σ∗.
Definition. Let x ∈ X , let r ∈ N. The Kolmogorov complexity of x at precision r is

Kr(x) = inf
{

K(w)
∣∣x ∈ δ (w), 2−r < diam(δ (w))≤ 2−r+1} .
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Theorem 4.1 Let X be a metric space with a computable nice cover. Let x ∈ X,

cdim(x) = liminf
r

Kr(x)
r

.

Proof. Let s,s′ be rational such that s > s′ > s′′ > liminfr
Kr(x)

r . Let

A =
{

w
∣∣K(w)≤ s′(− log(diam(δ (w))))

}
.

Then A is computably enumerable.
We define d as follows, let U ∈Bn with diam(U)> 0,

d(U) = ∑
V⊆U,V∈δ (A)∩B≥n

diam(V )s′

diam(U)s .

d is well defined since ∑V∈δ (A) diam(V )s′ ≤ ∑w 2−K(w) < ∞.
d is an s-supergale since for W ∈Bn−1,

∑
U⊆W,U∈Bn

d(U)diam(U)s = ∑
U⊆W,U∈Bn

∑
V⊆U,V∈δ (A)∩B≥n

diam(V )s′ ≤

≤ ∑
V⊆W,V∈δ (A)∩B≥n−1

diam(V )s′ = d(W )diam(W )s.

If U ∈ δ (A) then d(U) ≥ diam(U)s′−s. Since Kr(x) ≤ rs′′ for infinitely many r, for those r there
is a w with K(w) ≤ rs′′, x ∈ δ (w) and 2−r < diam(δ (w)) ≤ 2−r+1. Therefore w ∈ A and d(w) ≥
diam(δ (w))s′−s ≥ 2(r−1)(s−s′).

By condition (4) of computable nice covers, δ (w) ∈B>ar (for a = 1/(− log(ζ ))) and x ∈ S∞[d].
For the other direction, let s > cdim(x). Let d be a constructive s-supergale such that x ∈ S∞[d]. For

each k ∈ N, let

Ak =

{
w

∣∣∣∣∣d(δ (w))≥ 2k( ∑
W∈B0

d(W )diam(W )s)

}
.

Then the number of w ∈ Ak such that 2−r < diam(δ (w))≤ 2−r+1 is at most 2−k+rs. Therefore for w ∈ Ak
with 2−r < diam(δ (w))≤ 2−r+1, K(w)≤ rs− k+O(logk)+O(logr), and

liminf
r

Kr(x)
r
≤ rs− k+O(logk)+O(logr)

r
≤ s.

�
We next state without proof the property of total stability of constructive dimension (cf. [9] for the

corresponding version in Cantor space).

Theorem 4.2 Let X be a metric space with a computable nice cover. Let A⊆ X. Then

cdim(A) = sup
x∈A

cdim(x).
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Finally we remark (again without detailing a proof in this initial paper) that for arbitrary unions of
Π0

1 sets Hausdorff dimension and constructive dimension coincide. Cf. [6] for the Cantor space version.
Definition. For each U ∈B, let the U-cylinder be defined as CU = {x ∈ X |x ∈U }. For A⊆ X , A ∈ Σ0

1
if there is a computable h : N→ Σ∗ such that

A =
⋃
i∈N

Cδ (h(i)).

For A⊆ X , A ∈Π0
1 if Ac ∈ Σ0

1. For A⊆ X , A ∈ Σ0
2 if there is a computable h : N×N→ Σ∗ such that

A =
⋃
i∈N

⋂
j∈N

Cc
δ (h(i, j)).

Theorem 4.3 Let X be a metric space with a computable nice cover. Let A ⊆ X be a union of Π0
1 sets.

Then cdim(A) = dimH(A).

5 Further directions

This paper intended to give an initial view of effective dimension on arbitrary metric spaces. A number
of issues have not been addressed here including the following.

• The definition of resource-bounded dimension for resource-bounds other than lower semicom-
putability.

• The role of different (computable) nice covers in effectivization and condition for their equivalence
within it. For instance Finite-State dimension in Euclidean space depends heavily on the choice of
nice cover [2].

• The exact relationship between computable nice covers and computable metric spaces.

• The effectivization of packing dimension, a dual of Hausdorff dimension for which a gale charac-
terization exists (proof not included in this initial paper).
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