
B. Löwe, G. Winskel (Eds.):
Developments in Computational Models 2012 (DCM 2012)
EPTCS 143, 2014, pp. 76–86, doi:10.4204/EPTCS.143.7

c© B. Nagy & S. Vályi

Computing discrete logarithm by interval-valued paradigm

Benedek Nagy
Faculty of Informatics

University of Debrecen, Hungary
Department of Mathematics

Eastern Mediterranean University, Turkey
nbenedek@inf.unideb.hu

Sándor Vályi
Institute of Mathematics and Informatics

College of Nyı́regyháza, Hungary
valyis@nyf.hu

Interval-valued computing is a relatively new computing paradigm. It uses finitely many interval
segments over the unit interval in a computation as data structure. The satisfiability of Quantified
Boolean formulae and other hard problems, like integer factorization, can be solved in an effective
way by its massive parallelism. The discrete logarithm problem plays an important role in practice,
there are cryptographical methods based on its computational hardness. In this paper we show that the
discrete logarithm problem is computable by an interval-valued computing in a polynomial number
of steps (within this paradigm).

1 Introduction

There are intractable problems that traditional computing devices (Turing machines, Neumann archi-
tecture computers) cannot solve efficiently. For some classes of hard problems, such as NP-complete,
PSPACE etc., it is strongly believed that one cannot find any method to solve these in deterministic poly-
nomial time. Such a hard problem is to find the discrete logarithm of a given positive integer. Several
cryptographic methods are based on the assumption that the computation of discrete logarithm cannot be
achieved in deterministic polynomial time [9].

There are various new theoretical computing paradigms [1] that attack these hard problems success-
fully at least in theory. There are various paradigms based on inspiration from Biology (e.g., DNA-
computing, membrane computing), from Physics (e.g., Quantum computing) and from other phenomena
of the Nature. The efficiency of most of these new paradigms come from a massive parallelism built in the
system (the power of quantum computation also derives from entanglement). In this paper we dealt with
another new paradigm that uses strong inner parallelism. The Interval-valued computing paradigm uses
finitely many interval segments over the unit interval in a computation. Logical operations are straight-
forward generalizations of the classical bit operations (of usual computers), moreover shift operations is
also used to carry some pieces of information to other parts of the unit interval. The product operation al-
lows to raise the density of information. The paradigm has been investigated in [3, 4] as a way of visual
computations and proved to be very efficient, e.g., PSPACE is characterized by restricted polynomial
interval-valued computations in [5]. Computationally hard problems are solved in efficient way in this
paradigm, e.g., the PSPACE complete problem of satisfiability of Quantified Boolean formulae in [5],
integer prime factorization in [6].

In this paper we solve another computationally hard problem, namely the discrete logarithm prob-
lem, that plays an important role both in mathematical theory and in practice, e.g., it is related to some
cryptographical algorithms [2, 9]. We note here that other new computing paradigms also address this
problem, see, e.g., [8], where a Quantum algorithm is presented to solve the discrete logarithm problem
efficiently.

http://dx.doi.org/10.4204/EPTCS.143.7

B. Nagy & S. Vályi 77

The structure of the paper is as follows. In the next section we recall the interval-valued paradigm
in a formal way. In Section 3 our algorithm is presented that solves the discrete logarithm problem in a
cubic complexity, finally in Section 4 some concluding remarks close the paper.

2 Preliminaries

For the sake of a self-contained paper, we repeat the needed definitions from [5] and [6]. First we define
what an interval-value means. Then we present the allowed operations which can be used to build and
evaluate computation sequences. We also give the notions concerning decidability and computational
complexity.

2.1 Interval-values

We note in advance that we do not distinguish interval-values (specific functions from [0,1) into {0,1})
from their subset representations (subsets of [0,1)) and we always use the more convenient notation.

Definition 1. The set V of interval-values coincides with the set of finite unions of [)-type subintervals
of [0,1).

Definition 2. The set V0 of specific interval-values coincides with{
k⋃

i=1

[
li

2m ,
li +1

2m

)
: m ∈ N,k ≤ 2m,0≤ l1 < .. . < lk < 2m

}
. (1)

Similarly, let Vn be the set of interval-values that can be represented by (1) using only values m with the
condition m≤ n.

We note that the set of finite unions includes the empty set (k = 0), that is, ∅ is also an allowed
interval-value.

2.2 Operators on interval-values

If we consider interval-values as subsets of [0,1), then the set-theoretical operations such as complemen-
tation (A), union (A∪B) and intersection (A∩B) on V are definitely applicable. The algebra (V,̄ ,∪,∩)
forms an infinite Boolean set algebra with these operations, V0 is one of its infinite subalgebra, while the
systems based on Vn (n > 0) are finite subalgebras.

Definition 3. The first component of an interval value A ∈ V, A 6= ∅, is defined as the interval value
[t,s) where t and s ∈ [0,1] satisfy that [0, t)∩A =∅, [t,s)⊂ A and ∀s′ > s : [t,s′) 6⊂ A. Now the function
Flength : V→ R is defined as follows. If A = ∅, then Flength(A) = 0. Otherwise Flength(A) = s− t,
where [t,s) is the first component of A.

Intuitively, this function provides the length of the left-most component (included maximal subinter-
val) of an interval-value A. The function Flength helps us to define the binary shift operators on V. The
left-shift operator will shift the first interval-value to the left by the first-length of the second operand and
remove the part which is shifted out of the interval [0,1) to the negative direction. As opposed to this,
the right-shift operator is defined in a circular way, i.e., the parts shifted above 1 will appear at the lower
end of [0,1). In this definition we write interval-values in their “characteristic function” notation.

78 Computing discrete logarithm by interval-valued paradigm

Definition 4. The binary operators Lshift and Rshift on V are defined in the following way. If x ∈ [0,1)
and A,B ∈ V then

Lshift(A,B)(x) =
{

A(x+Flength(B)) if 0≤ x+Flength(B)< 1,
0 in other cases;

and

Rshift(A,B)(x) = A(frac(x−Flength(B))),

where the function frac gives the fractional part of a real number, i.e., frac(x) = x−bxc, where bxc is the
greatest integer which is not greater than x.

By the combined application of the shift operators we can choose any ‘important’ part of the interval-
values by erasing its complement.

Definition 5. Let A and B be interval-values and x ∈ [0,1). Then the (fractalian) product B∗A includes
x if and only if B(x) = 1 and A

(
x−xB

xB−xB

)
= 1, where xB denotes the lower end-point of the B-component

including x, and xB denotes the upper end-point of this component, that is, [xB,xB) is the maximal subin-
terval of B containing x.

We can give this operation in a more descriptive manner. If A contains l interval components with
end points ai,1,ai,2 (1 ≤ i ≤ l) and B contains k components with end points bi,1,bi,2 (1 ≤ i ≤ k), then
we determine the value of C = B ∗A as follows: we set the number of components of C to be l · k. For
this process we can use double indices for the components of C. The lower and higher end-points of
the (i, j)th component are bi1 + a j1(bi2− bi1) and bi1 + a j2(bi2− bi1), respectively. In visual way, the
interval-value A is zoomed to the components of the interval-value B. The idea and the role of this
operation is similar to the unlimited shrinking of 2-dimensional images in optical computing. It will be
used to connect interval-values of different resolution (i.e, increase n in the actually used Vn).

2.3 Syntax and semantics of computation sequences

This formalism is of Boolean network style. As usual, the length of a sequence S is denoted by |S| and
its ith element by Si. If j ≤ |S| then the j-length prefix of S is denoted by S→ j.

Definition 6. An interval-valued computation sequence is a nonempty finite sequence S satisfying S1 =
FIRSTHALF and further, for any i ∈ {2, . . . , |S|}, Si is (op, l,m) for some

op ∈ {AND,OR,LSHIFT,RSHIFT,PRODUCT}

or Si is (NOT, l) or (OUTPUT, l) where {l,m} ⊆ {1, . . . , i−1}.
One of the complexity measures of a given computation is the bit height of a computation. It is the

minimal value n such that all the interval-values of the computation are in Vn.

The semantics of interval-valued computation sequences is defined by induction on the length of the
sequences. The interval-value of such a sequence S is denoted by ‖S‖ and defined by induction on the
length of the computation sequence, as follows.

B. Nagy & S. Vályi 79

Definition 7. First, we fix ‖(FIRSTHALF)‖ as
[
0, 1

2

)
. Second, if S is an interval-valued computation

sequence and |S| is its length, then

‖S‖=

‖S→ j‖∩‖S→k‖, if S|S| = (AND, j,k),
‖S→ j‖∪‖S→k‖, if S|S| = (OR, j,k)
‖S→ j‖∗‖S→k‖, if S|S| = (PRODUCT, j,k)
Rshift(‖S→ j‖,‖S→k‖), if S|S| = (RSHIFT, j,k)
Lshift(‖S→ j‖,‖S→k‖), if S|S| = (LSHIFT, j,k)
‖S→ j‖, if S|S| = (OUTPUT, j)
‖S→ j‖, if S|S| = (NOT, j).

Here the system of [5] is extended with an instruction to write (i.e., generate) the output as we detail
below based on [6].

2.4 Computing a discrete function by interval-values

The semantics of writing the output is the following. The output sequence is an element of {0,1}∗,
initially the empty sequence. Let S1 . . .Sn denote the computation sequence. If S j = (OUT PUT, i) where
i < j then ‖S→ j‖= ‖S→i‖ and as a side effect, 1 is concatenated to the output sequence if S j is nonempty,
otherwise 0 is concatenated to it. The answer of a computation sequence is its output sequence produced
during the computation. Let f : {0,1}∗ → {0,1}∗. We say that f is computable by an interval-valued
computation if and only if there exists a logspace algorithm B that for each possible input (w ∈ {0,1}∗)
constructs a computation sequence that generates the output sequence f (w).

The size of a computation is measured by the length of the computation sequence. We recall from [5]
that the class of polynomial size interval-valued computations in which one of the arguments of every
product operation is FIRSTHALF characterizes the classical complexity class PSPACE.

3 Computing the discrete logarithm by interval-values

In this section we solve the discrete logarithm problem within the interval-valued paradigm. Let the input
a,b, p ∈ Z. We give an interval-valued computation sequence that give the result as output: an exponent
x of input integer a such that ax = b mod p holds. We can assume without loss of generality that a, b and
x are non-negative integers less than p.

Theorem 8. Discrete logarithm can be computed by an interval-valued computation of size O(n3).

We prove this theorem in a constructive way through several Lemmas in this section.
The computation of discrete logarithm usually means the following computing task: For any input

triplet(a,b, p), where p is a prime, a and b are non-negative integers less than p, find a non-negative
integer x such that ax = b mod p holds. There is a value x such that x < p, therefore our search will
check only integers that can be represented at most as many bits as p can be. Throughout in this paper
we denote the upper integer part of the usual logarithm of p by n. That is, a, b, x and p all can be written
by n binary digits. Let a1 . . .an be the binary representation of the input integer a. (One can assume that
n≥ 3.) Similarly, b1 . . .bn is the binary form of b and p1 . . . pn is of p. We give a logspace algorithm B
that constructs an interval-valued computation sequence S from a,b and p with an output bit sequence
d1 . . .dn that is the binary representation of the target x.

The algorithm B starts its work by representing the input bit sequences (a, b and p) by interval-
values. First, fix S1 as FIRSTHALF and S2 as (RIGHT,1,1). Then, for each i ∈ {1, . . . ,n}, if ai =

80 Computing discrete logarithm by interval-valued paradigm

Figure 1: Representation of the input by interval-values.

1, then put S2+i := (OR,1,2) else S2+i := (AND,1,2); if bi = 1, then put S2+n+i := (OR,1,2) else
S2+n+i := (AND,1,2); and if pi = 1, then put S2+2n+i := (OR,1,2) else S2+2n+i := (AND,1,2). We
denote the indices of the subsequence S3,S4, . . . ,S2+n by a(1),a(2), . . . ,a(n). Indices b(1),b(2), . . . ,b(n)
and p(1), p(2), . . . , p(n) can be defined similarly. In this way we have represented the input:

Lemma 9. For each k ∈ {1, . . . ,n}:

‖S→a(k)‖=
{

[0,1) if ak = 1 and
∅ if ak = 0;

‖S→b(k)‖=
{

[0,1) if bk = 1 and
∅ if bk = 0;

‖S→p(k)‖=
{

[0,1) if pk = 1 and
∅ if pk = 0.

Proof. This is straightforward.

We illustrate our algorithm by an example: a = 3, b = 2 and p = 5. In Figure 1 an illustration is
given for the initialization part of the algorithm.

All possible candidates for x are going to be represented in a parallel way in different slices of
the interval values. B continues its job by computing Sp(n)+1, . . . ,Sp(n)+(3n−2) as follows: Sp(n)+1 =
(AND,1,1). For all positive integers k < n,

Sp(n)+3k−1 = (PRODUCT, p(n)+3k−2,1),

Sp(n)+3k = (RSHIFT, p(n)+3k−2, p(n)+3k−1) and

Sp(n)+3k+1 = (OR, p(n)+3k, p(n)+3k−1).

B. Nagy & S. Vályi 81

Figure 2: Representation of the possible solutions.

The index sequence p(n)+ 1, p(n)+ 4, . . . , p(n)+ (3n− 2) will be denoted by x(1),x(2), . . . ,x(n).
By induction on k one can establish the following statement.
Lemma 10. For all integer k ∈ {1, . . . ,n}:

‖S→x(k)‖= ‖S→p(n)+(3k−2)‖=
2k−1−1⋃

l=0

[
2l
2k ,

2l +1
2k

)
.

Similar representations were used, for instance, in [5] for a concise representation of all the possible
evaluations of a Boolean formula. In this way all variations of n independent bits can be represented
simultaneously by the interval-values ‖S→x(1)‖, ‖S→x(2)‖, . . . ,‖S→x(n)‖ in the following sense:
Lemma 11. For each bit sequence t1 . . . tn there exists r ∈ [0,1) that for any k ∈ {1, . . . ,n}: r ∈ ‖S→x(k)‖
if and only if tk = 1.

The choice r =
2n
∑

i=1

1−ti
2i proves the lemma. In our example the largest number is 5 and it can be

represented on 3 bits, therefore the case n = 3 is visualized in Figure 2. Now a further definition is
needed to find the coded (represented) values.
Definition 12. For k ∈ {1, . . . ,n} and r ∈ [0,1), let xk(r) := (r ∈ ‖S→x(k)‖). Further, let the bit sequence
x1(r) . . .xn(r) be denoted by X(r). For any bit sequence BS = b1 . . .bn, let #BS denote the integer whose
binary representation is BS.

Let us construct a Boolean circuit of size m+ n (m > 0) that multiplies two n-length input bit se-
quences (interpreted as integers in binary form) modulo a third n-length input bit sequence outputting
the ith output bit in step m+ i (i∈ {1, . . . ,n}). The circuit can be chosen so that circuit size m will depend
on n quadratically.

It can be simulated by an interval-valued computation sequence using only the corresponding Boolean
operators. Let e(i, j) abbreviate x(n)+ (i− 1) · n+ i ·m+ j, for any (i, j) ∈ {1, . . . ,n}2. Applying the
chosen multiplier computation sequence n times to the appropriate operands, B can construct an interval-
valued computation sequence that satisfies the formula

‖S→e(i, j)‖=
{

[0,1), if the jth bit of (a2i
mod p) is 1,

∅, otherwise;

for any (i, j) ∈ {1, . . . ,n}2.
The length of the actual part of the constructed computation sequence is in O(n3). Figure 3 shows

the interval-values {e(i, j)|1≤ i, j ≤ 3} in our example.
The algorithm B continues to build the computation sequence. This part is of length 3n2 and ensures

the following: For any positive integer i≤ n and j < n,

‖S→e(n,n)+3(i−1)n+3 j‖= ‖S→e(i, j)‖∩‖S→x(i)‖

82 Computing discrete logarithm by interval-valued paradigm

Figure 3: The values e(i, j) with a = 3, b = 2 and p = 5.

and
‖S→e(n,n)+3in‖= (‖S→e(i,n)‖∩‖S→x(i)‖)∪‖S→x(i)‖.

With the notation c(i, j) = e(n,n)+3(i−1)n+3 j, the last two properties lead to the following statement.
Lemma 13. If r ∈ ‖S→x(i)‖ then (r ∈ ‖S→c(i, j)‖⇔ the jth bit of (a2i

mod p) is 1), otherwise r ∈ ‖S→c(i, j)‖
⇔ j = n.

By reusing the circuit for multiplication, B continues the computation in such a way that the follow-
ing requirement fulfills, with the notation f (i, j) = e(n,n)+(i−1)n+ im+ j (1≤ i, j ≤ n),

r ∈ ‖S→ f (i, j)‖⇔ the jth bit of

(
i

∏
k=1

[xk(r)(a2k
mod p)] mod p

)
.

The interval-values c(i, j) and f (i, j) of our example are shown in Figure 4. The next lemma is a direct
corollary of Lemma 13.
Lemma 14. For any possible inputs a, p and for any r ∈ [0,1), #(r ∈ ‖S→ f (n,1)‖, . . . ,r ∈ ‖S→ f (n,n)‖) is
a#X(r) mod p.

From this point B continues with the equality test and output generation. Equality test means point-
wise checking for ∀k ∈ {1, . . . ,n} : r ∈ ‖S→b(k)‖⇔ r ∈ ‖S→ f (n,k)‖. f := f (n,n). The following compu-
tation will do it. For any k ∈ {1, . . . ,n}, let

S→ f+5k−4 = (AND,b(k), f (n,k)),

S→ f+5k−3 = (NOT,b(k)),

S→ f+5k−2 = (NOT, f (n,k)),

S→ f+5k−1 = (AND, f +5k−3, f +5k−2),

S→ f+5k = (OR, f +5k−4, f +5k−1), and

S→ f+5n+1 = (AND, f +5, f +5);

for any k ∈ {2, . . . ,n}, let

S→ f+5n+k = (AND, f +5k, f +5(k−1)).

Now, let e denote f +6n.

B. Nagy & S. Vályi 83

Figure 4: The values c(i, j) and f (i, j) with a = 3, b = 2 and p = 5.

Lemma 15. For any possible inputs a, p,b and for any r ∈ [0,1), r ∈ ‖S→e‖⇔ b = a#X(r) mod p.

Proof. We observe that

∀k ∈ {1, . . . ,n}∀r ∈ [0,1) :r ∈ ‖S→ f+5k‖⇔ (r ∈ ‖S→b(k)‖⇔ r ∈ ‖S→ f (n,k)‖),
∀k ∈ {2, . . . ,n}∀r ∈ [0,1) :r ∈ ‖S→ f+5n+k‖⇔ ∀ j ∈ {1, . . . ,k} : (r ∈ ‖S→b(j)‖⇔ r ∈ ‖S→ f (n, j)‖).

For k = n, the last statement means that ∀r ∈ [0,1): r ∈ ‖S→e‖ ⇔ ∀ j ∈ {1, . . . ,n} : (r ∈ ‖S→b(j)‖ ⇔
r ∈ ‖S→ f (n, j)‖), that is, b = a#X(r) mod p from Lemma 14 and the fact, that b = #(r ∈ ‖S→b(1)‖, . . . ,r ∈
‖S→b(n)‖), independently from r.

Now the proof of the main theorem is continued with separation of an 1
2n -size subinterval of ‖S→e‖

that describes a solution. More definitely, we find a subinterval S of ‖S→e‖ that ∀r, t ∈ S : #X(r) = #X(t)
holds. It is an important step because ‖S→e‖ may describe more (at most two) solutions.

First a 7-step process is used to separate the first component of ‖S→e‖.

e+1 : (NOT,e),

e+2 : (LSHIFT,e,e+1),

e+3 : (LSHIFT,e+2,e+2),

e+4 : (RSHIFT,e+3,e+2),

e+5 : (RSHIFT,e+4,e+1),

e+6 : (NOT,e+5),

e+7 : (ANDe,e+6).

This computation guarantees that ‖S→e+7‖ is the first component of ‖S→e‖. Based on the fact that the
solution x = 0 implies another solution x < p that is positive integer, we use right-shift to obtain an empty

84 Computing discrete logarithm by interval-valued paradigm

subinterval
[
0, 1

2n

)
.

e+8 : (RSHIFT,e+7,x(n)),

e+9 : (LSHIFT,e+8,x(n)),

e+10 : (RSHIFT,e+9,x(n)).

Then

e+11 : (NOT,e+10),

e+12 : (LSHIFT,e+10,e+11),

e+13 : (AND,e+12,x(n)),

e+14 : (NOT,e+13),

e+15 : (LSHIFT,e+13,e+14),

e+16 : (LSHIFT,e+15,e+15),

e+17 : (RSHIFT,e+16,e+15),

e+18 : (RSHIFT,e+17,e+14),

e+19 : (NOT,e+18),

e+20 : (AND,e+13,e+19),

e+21 : (RSHIFT,e+20,e+11).

Finally, it is shifted back to the correct place

e+22 : (LSHIFT,e+21,x(n)).

Lemma 16. For all r, t ∈ Se+22, we have #X(r) = #X(t).

Proof. There are two possible cases. The first component of ‖S→e‖ is just an 1
2n -sized subinterval or

longer. In both cases ‖S→e+12‖ is a left-shifted version of ‖S→e+7‖. Even if it is longer than 1
2n , the first

component of ‖S→e+13‖ has exactly length 1
2n . ‖S→e+21‖ is computed by the same way from ‖S→e+13‖

as ‖S→e+7‖ from ‖S→e‖, so ‖S→e+21‖ is the first component of ‖S→e+13‖. In ‖S→e+22‖, this component
is shifted back to its original place. So ‖S→e+22‖ is the left 1

2n -length prefix of the first component of
‖S→e‖.

Let z denote e+ 22. Then B continues the computation sequence in the following way. Let Sz+k
be (AND,z,x(k)) for all k ∈ {1, . . . ,n} and let Sz+n+k be (OUTPUT,z+ k). By the above results, it is
clear that for any possible input a,b, p, B will put out the bits of a solution x of ax = b mod p. That is,
computing the discrete logarithm is finished. Analyzing the length of the computation validates that it is
really in O(n3). In this way our main result, Theorem 1 is proved.

Let us continue our example. In Figure 5 some details of the final part of the computation is shown.
The result 111 is written to the output representing the number 7. One may easily check that 37 = 2187
and 2187 mod 5 = 2, the example computation is correct. With a small modification of the algorithm we
may put the other value to the output (if more than one solutions can be represented on n bits).

B. Nagy & S. Vályi 85

Figure 5: The final part of the computation on input a = 3, b = 2 and p = 5.

4 Concluding remarks

In this paper, the efficiency of the interval-valued paradigm is presented by solving the discrete logarithm
problem by a cubic algorithm. Unfortunately our algorithm uses high inner parallelism (high number
of small interval segments in the unit interval) and therefore it does not help to solve the problem in
traditional computers.

Based on some similarities of our new result and the result presented in [6]), we could formulate a
conjecture: any function computation problem that {(x,y)| f (x) = y} is checkable on a Boolean circuit of
polynomial size can be solved by a interval-valued computation of polynomial size, where the computa-
tion has a special form: the product operator is used only at the beginning, where ‘all possible inputs’ are
generated, and later product is not used. Moreover, it seems that the reverse direction of the conjecture
also holds.

As we already mentioned a class of restricted polynomial size interval-valued computations charac-
terizes PSPACE. It is an interesting challenge to analyse the power of non-restricted case and the relations
of various classes of interval-valued computations to other paradigms, e.g., to vector machines [7].

Acknowledgements

The work is supported by the TÁMOP 4.2.1/B-09/1/KONV-2010-0007 and by the TÁMOP 4.2.2/C-
11/1/KONV-2012-0001 projects. The projects are implemented through the New Hungary Development
Plan, co-financed by the European Social Fund and the European Regional Development Fund.

References

[1] C.S. Calude & Gh. Păun (2001): Computing with cells and atoms: an introduction to quantum, DNA and
membrane computing. Taylor and Francis Publishers, London.

[2] R. Crandall & C. B. Pomerance (2005): Prime numbers: a computational perspective. Springer Verlag.

[3] B. Nagy (2005): An interval-valued computing device. In S.B. Cooper, B. Löwe & L. Torenvliet, editors: CiE
2005: New Computational Paradigms, ILLC Publications X-2005-01, Amsterdam, pp. 166–177.

86 Computing discrete logarithm by interval-valued paradigm

[4] B. Nagy & S. Vályi (2007): Visual reasoning by generalized interval-values and interval temporal logic. In
Philip T. Cox, Andrew Fish & John Howse, editors: Proceedings of the VLL 2007 workshop on Visual Lan-
guages and Logic in Coeur d’Aléne, Idaho, USA, 23rd September 2007 as part of the 2007 IEEE Symposium
on Visual Languages and Human Centric Computing VL/HCC 07. CEUR-WS.org 2007 CEUR Workshop
Proceedings, pp. 13–26.

[5] B. Nagy & S. Vályi (2008): Interval-valued computations and their connection with PSPACE. Theoretical
Computer Science 394(3), pp. 208–222, doi:10.1016/j.tcs.2007.12.013.

[6] B. Nagy & S. Vályi (2011): Prime factorization by interval-valued computing. Publicationes Mathematicae
Debrecen 79(3–4), pp. 539–551, doi:10.5486/PMD.2011.5134.

[7] V.R. Pratt & L.J. Stockmeyer (1976): A characterization of the power of vector machines. Journal of Computer
and System Sciences 12(2), pp. 198–221, doi:10.1016/S0022-0000(76)80037-2.

[8] P.W. Shor (1997): Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM Journal on Computing 26(5), pp. 1484–1509, doi:10.1137/S0097539795293172.

[9] D.R. Stinson (2006): Cryptography: theory and practice, 3rd edition. Discrete Mathematics and its Applica-
tions (Boca Raton), Chapman & Hall/CRC.

http://dx.doi.org/10.1016/j.tcs.2007.12.013
http://dx.doi.org/10.5486/PMD.2011.5134
http://dx.doi.org/10.1016/S0022-0000(76)80037-2
http://dx.doi.org/10.1137/S0097539795293172

	1 Introduction
	2 Preliminaries
	2.1 Interval-values
	2.2 Operators on interval-values
	2.3 Syntax and semantics of computation sequences
	2.4 Computing a discrete function by interval-values

	3 Computing the discrete logarithm by interval-values
	4 Concluding remarks

