
M. Ayala-Rincón E. Bonelli and I. Mackie (Eds):
Developments in Computational Models (DCM 2013)
EPTCS 144, 2014, pp. 41–56, doi:10.4204/EPTCS.144.4

c© Compagnoni, Giannini, Kim, Milideo, Sharma
This work is licensed under the
Creative Commons Attribution License.

A Calculus of Located Entities

Adriana Compagnoni
Department of Computer Science
Stevens Institute of Technology

New Jersey, USA
Adriana.Compagnoni@stevens.edu

Paola Giannini∗

Computer Science Institute
DISIT, Univ. Piemonte Orientale

Alessandria, Italy
giannini@di.unipmn.it

Catherine Kim
Department of Computer Science
Stevens Institute of Technology

New Jersey, USA
ckim@stevens.edu

Matthew Milideo
Department of Computer Science
Stevens Institute of Technology

New Jersey, USA
mmiledeo@stevens.edu

Vishakha Sharma
Department of Computer Science
Stevens Institute of Technology

New Jersey, USA
vsharma1@stevens.edu

We define BioScapeL, a stochastic pi-calculus in 3D-space. A novel aspect of BioScapeL is that
entities have programmable locations. The programmer can specify a particular location where to
place an entity, or a location relative to the current location of the entity. The motivation for the ex-
tension comes from the need to describe the evolution of populations of biochemical species in space,
while keeping a sufficiently high level description, so that phenomena like diffusion, collision, and
confinement can remain part of the semantics of the calculus. Combined with the random diffusion
movement inherited from BioScape, programmable locations allow us to capture the assemblies of
configurations of polymers, oligomers, and complexes such as microtubules or actin filaments.

Further new aspects of BioScapeL include random translation and scaling. Random translation
is instrumental in describing the location of new entities relative to the old ones. For example, when
a cell secretes a hydronium ion, the ion should be placed at a given distance from the originating cell,
but in a random direction. Additionally, scaling allows us to capture at a high level events such as
division and growth; for example, daughter cells after mitosis have half the size of the mother cell.

1 Introduction
Our earlier work on BioScape[10] was motivated by the need to visualize the evolution of species in
3D space. The simulator of BioScape randomly places initial distributions of entities within specified
confinement areas.1 However, while BioScape naturally captures a large family of wet-lab experiments,
it does not have the ability to describe the assembly of entities into compound structures such as dimers,
polymers, oligomers, etc. In order to describe the composition of such structures from smaller com-
ponents, we introduce a new calculus where an entity’s location can be programmed. The long-term
goal of our research program is to create programming platforms to describe complex 3D landscapes,
where agents interact with the environment. Applications of such modeling platforms include simulating
intracellular viral traffic, and designing multifunctional antibacterial surfaces that prevent or minimize
infection while maximizing tissue growth.

In this paper we define BioScapeL, a stochastic π-calculus in 3D-space with programmable locations.
It builds on BioScape[10] by adding three new features: programmable entity’s location, random trans-
lation and scaling. As we just mentioned, programmable locations allow the programmer to specify the
location of new entities, either by describing an absolute location in the global frame, or by specifying
a location relative to the current location of the generating entity. Random translation lets the program-
mer describe a distance from the original position where to place the new entity without specifying an
∗Partly funded by “Progetto MIUR PRIN CINA Prot. 2010LHT4KM”.
1Models of biological and biomedical applications using BioScape can be found in Compagnoni’s website.

http://dx.doi.org/10.4204/EPTCS.144.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

42 A Calculus of Located Entities

val Cytosol:space = cuboid(50.0,50.0,30.0) @ <1.0,2.0,24.0>

val step = 0.0,stepP = 0.1, r = 0.0, rP= 0.2

new MTConstruction@0.116,rP:ch(ch(),fl*fl*fl)

let MTPart()@Cytosol,stepP,sphere(1.0)=(new y@0.27,r:ch()

do ?MTConstruction(x,u); MTLeft(x)_glue(this,u)

or !MTConstruction(y,this); MTRight(y)_this

or mov.MTPart()_this)

and MTRight(rht:chan())@Cytosol,step,sphere(1.0) =

do delay@1.0; MTRight(rht)_this

or ?rht; MTPart()_this

and MTLeft(lft:chan())@Cytosol,step,sphere(1.0) =

(new z@0.27,r:ch()

do delay@1.0; MTLeft(lft)_this

or !MTConstruction(z,this); MTMiddle(lft,z)_this

or !lft; MTPart()_this

or ?lft;MTPart()_this)

and MTMiddle(rht1:chan(),lft1:chan())@Cytosol,

step,sphere(1.0) =

do delay@1.0; MTMiddle(rht1,lft1)

or !lft1;MTLeft(rht1)_this

run (MTPart()_p1 | MTPart()_p2 |...| MTPart()_pN)

Figure 1: Microtubules polymerization

absolute or relative location. For example a random translation from point p of 1cm will place the new
entity’s barycentre somewhere on the 1cm radius sphere around p. Finally, scaling enables the creation
of new entities whose shape is obtained by resizing the shape of the original entity. The key aspect of all
three extensions is their high level nature. The placement of new objects in space needs to account for
confinement and collision, which in BioScapeL are part of the semantics of the calculus, unlike in low
level calculi, where they are a burden to the programmer.

As we observed before, dynamic spatial arrangement of components is useful in representing as-
sembly of polymers such as actin filaments and cytoskeletal microtubules. Microtubules are part of the
cytoskeleton of eukaryotic cells, and form roads on which organelles ride on their way to the cell nucleus.
Microtubules are hollow and formed with dimers of α and β tubulin. They are anchored to a starting
point around the Microtubules Organizing Center, and while the starting point is fixed, microtubules
grow and shrink from the end piece. We now motivate the programmable entity’s location feature, by
implementing a simplified model of microtubules polymerization in BioScapeL. Random translation and
scaling are introduced later in Section 4.

A motivating example
For our next example, microtubules polymerization, consider Fig. 1, containing the BioScapeL code as
well as a graphical representation of the evolution of the system. Microtubules are dynamic tubulin
polymers; although they are formed with dimers of α and β tubulin, we simplify their structure in our
example, and consider them as assembled starting from parts, MTPart, where a part is an α-β tubulin
dimer. MTParts are scattered in the Cytosol. Microtubules have a start piece MTRight and an end piece
MTLeft. Between the start (right) and the end (left) pieces there can be any number of MTMiddle pieces.

Compagnoni, Giannini, Kim, Milideo, Sharma 43

While the start piece is fixed, microtubules grow and shrink from the end piece. In order to grow, a new
MTPart becomes the new MTLeft, and the old MTLeft becomes an MTMiddle. Similarly the end piece
can disassemble making the last MTMiddle the new MTLeft, and making the old MTLeft a free MTPart.
The construction is done using private channels, similar to the process modeling of actin polymerization
of [6], so that only adjacent pieces share channels. In this model, we assume that MTLeft, MTMiddle,
and MTRight do not move, unless they become a free MTPart.

We assume an initial concentration of N MTPart’s placed in the Cytosol, implemented with a parallel
composition of N copies of MTPart with barycentres p1, · · · , pN in the run command at the end of the
program.

The first line of code defines the space within which all the entities are enclosed. It is a cuboid
whose bottom left vertex is the point (1.0,2.0,24.0). The second line defines four floating point
constants which will be used to specify the step of the diffusion rate of the entities, and the radius of
the channels. The diffusion rates are: step=0.0 for the components of the microtubules, i.e., MTLeft,
MRight, and MTMiddle, since we assume that they do not move, and stepP=0.1 for MTParts, which
are subject to brownian motion. The radius of a channel is the maximum distance between two entities
synchronizing on that channel. Communications between entities forming microtubules requires radius
r=0.0, specifying that communication can only happen upon contact. Instead, the radius rP specifies
that for two entities to synchronize on channel MTConstruction, their closest points must be at most
0.2 units apart.

The expression new MTConstruction@0.116,rP:ch(ch(),fl*fl*fl) declares channel
MTConstruction, with stochastic rate 0.116, and radius rP. The stochastic rate is used by the simulation
algorithm to determine the probability and the reaction time for synchronization on the channel. The type
ch(ch(),fl*fl*fl) declares MTConstruction, as a channel on which the data exchanged are pairs
whose first component is another channel and the second component is a triple of floating-point numbers.

In the rest of the program MTPart, MTRight, MTLeft, and MTMiddle are defined. Each definition has
four components. Consider the case of MTPart, the Cytosol is the confinement area, where instances
of MTPart can be located; stepP is the diffusion rate of an MTPart, sphere(1.0) is its shape, and the
rest is a process describing the behavior of MTPart.

An MTPart can either synchronize with another MTPart and become MTRight and MTLeft respec-
tively. It can also synchronize with an MTLeft, or move.

In more detail, for each instance of MTPart, a new private channel is created with new y@0.27,r,
where y is the name of the channel. The stochastic reaction rate of the channel is 0.27, and the channel
radius is r. MTPart can either do an input on channel MTConstruction, ?MTConstruction(x), or an
output on the same channel, !MTConstruction(y).

Consider MTPart()_p1 | MTPart()_p2, representing MTPart’s at locations p1 and p2 respec-
tively. If the closest points of the two parts are closer that rP, there can be a synchronization on channel
MTConstruction. The entity MTPart()_p1 sends on channel MTConstruction the private channel
name y and the position p1, and it becomes MTRight(y)_p1, whereas MTPart()_p2 receives y, and
p1, on channel MTConstruction, binds y to x and u to p1, and it becomes MTLeft(y)_p3. Point p3,
the result of glue(p2,p1), is such that MTLeft(y)_p3 and MTRight(y)_p1 are in contact with each
other. MTLeft(y)_p3 shares the private channel y with MTRight(y)_p1. This evolution is shown in
the picture at Fig. 1, by Assembly 2. Note that, this denotes the barycentre of the MTPart from which
MTRight or MTLeft evolve. The metavariable this is an abstract reference to the runtime position of the
generating entity; this is similar to the origin, z, of 3π[7]. The position of an entity can be the result
of an operation such as the sum of points or scalar product derived from the location of the originating
entity (this).

44 A Calculus of Located Entities

The entity MTPart()_p1 can perform the move action, in which case a new point p4 placed randomly
at distance stepP from p1 is generated, and MTPart()_p1 evolves into a new MTPart located at p4.

The entity MTRight can remain an MTRight with a delay prefix, or it can do an input action with the
adjacent MTLeft with which it shares the channel rht and evolve into a MTPart placed in its original
position (this). This corresponds to the final disassembling of the microtubule, shown in the picture in
Fig. 1, by Disassembly 1. Notice that, in this case, there is no information sent on channel rht.

The entity MTLeft has a parameter lft, which is a channel private to MTLeft and the adjacent
MTRight or MTMiddle. MTLeft has four alternative behaviors. It can remain an MTLeft with a
delay prefix (first line of the definition). It can interact with a MTPart, by synchronizing on channel
MTConstruction, and evolve into a MTMiddle with which it shares the private channel z for interac-
tions, and to which it passes the private channel lft, shared with adjacent MTMiddle or MTRight. In
other words, MTLeft(y)_p3 | MTPart()_p4 becomes MTMiddle(y,z)_p3 | MTLeft(z)_p5, where
p5 is glue(p4,p3); see Assembly 4 and 6 in Fig. 1. In Assembly 4, the channel y is shared with the
adjacent MTRight, whereas in Assembly 6, it is shared with the adjacent MTMiddle. MTLeft can also
interact with a MTRight, by synchronizing on their private channel and disassemble; see Disassembly 1
in Fig. 1. Finally, MTLeft can interact with a MTMiddle on their private channel, and disassemble; see
Disassembly 5 and 3 in Fig. 1. For example, consider MTMiddle(y,z)_p3 | MTLeft(z)_p5, the syn-
chronization on private channel z makes MTMiddle(y,z)_p3 evolve into MTLeft(y)_p3. Alternatively,
with the same synchronization, MTLeft(z)_p5 evolves into MTPart()_p5, becoming a free part.

The entity MTMiddle can remain an MTMiddle with a delay prefix, or it can synchronize with the
adjacent MTLeft. As previously described, MTMiddle(y,z) p3 evolves into MTLeft(y) p3, which, in
Disassembly 5, shares the channel y with an MTMiddle, whereas in Disassembly 3, it shares the channel
y with the final MTRight.

2 BioScapeL: Syntax
The abstract syntax of BioScapeL extends that of BioScape [9], and it appears in Fig. 2. We assume a
set of channel names, denoted by a, b, and a set of variables, denoted by x, y, and the metavariable c for
real numbers. We will also use r for the stochastic rate, and rad to specifying the radius of channels,
both r, and rad, are real numbers. Points, denoted by the metavariable p, are triples (c1,c2,c3) of real
numbers.

Expressions δ may be channel names, variables, real numbers, the metavariable this, tuples of ex-
pressions, including the empty tuple (), tuple selection δ .i, and operators applied to expressions op(δ).
The metavariable this denotes the barycentre of the entity instance in which the expression is evaluated.
Expression values, are either channel names, real numbers, or tuples of value. The BioScapeL types char-
acterizing these values are: channel types, chan{T}, specifying the type T of the values sent on them;
the type of real numbers, fl; the type of tuples, T1 ∗ · · · ∗Tn, specifying the types Ti of its components,
and >, which is the type of the empty tuple. Channels only used for synchronization, such as lft in
Fig. 1 have type chan{>}.

The empty process is 0. By X(δ)δ ′ we denote an instance of the entity defined by X , with actual
parameter δ and positions δ ′. The process P | Q is the parallel composition of processes P and Q. The
process (νa@δ ,δ ′ : chan{T}).P defines the channel name a with stochastic rate δ , radius δ ′, and type
chan{T} in process P. As mentioned before, the radius is the maximum distance between entities in
order to communicate through channel a, the reaction rate determines how long it takes for two entities
to react given that they are close enough to communicate, and chan{T} states that a is a channel for
communicating values of type T .

Compagnoni, Giannini, Kim, Milideo, Sharma 45

P,Q ::= 0 Empty Process

| X(δ)δ Located Entity Instance

| P | Q Parallel Composition

| (νa@δ ,δ : chan{T}).P Restriction

M ::= π.P [+ M] Choice of Prefixed Process

π ::= delay@δ Delay

| !u(δ) Output

| ?u(x) Input

| mov Move

N ::= M | (νa@δ ,δ : chan{T}).N Restricted Choice

u ::= a | b | · · · | x | y | · · · Identifiers

δ ::= u | c | this | δ1, . . . ,δn | () | δ .i | op(δ) Expressions

v ::= a | b | · · · | c | () | v1, . . . ,vn Expression Values

T ::= chan{T} | fl | T1 ∗ · · · ∗Tn | > Expression Types

D ::= /0 | D,X(x : T) = Nξ ,ω,σ FV(M)⊆ x Entity Definitions

E ::= /0 | E,a@r,rad : chan{T} Channel Declarations

Γ ::= /0 | Γ,X :T | Γ,u:T Type Environment

Figure 2: Syntax of BioScapeL

The heterogeneous choice is denoted by M, where π.P [+ M] means π.P | π.P + M. Choices may
have reaction branches and movement branches. The reaction branches are probabilistic (stochastic),
since reactions are subject to kinetic reaction rates, while the movement branches are non-deterministic,
since diffusion is always enabled. The prefix π denotes the action that the process π.P can perform. The
prefix delay@δ is a spontaneous and unilateral reaction of a single process, where δ is the stochastic rate
of the reaction. The prefix !u(δ) denotes the output of the value of δ on channel u, and the prefix ?u(x)
denotes input on channel u with bound variable x. The prefix mov denotes the movement of processes
in space according to their diffusion rate ω . We use standard syntactic abbreviations such as π for π.0.
The restricted choice, denoted by N, is a choice of prefixed processes M with top level local channel
definitions.

We denote by D a global list of entity definitions. The clause X(x : T) = Nξ ,ω,σ defines entity X with
formal parameter x of type T to be the restricted choice N with geometry ξ ,ω,σ , specifying a movement
space ξ , a step ω , and a shape σ . The restricted choice N describes the behavior of X with a choice of
prefixed processes M, and the set of channels private to the entity X . The movement space ξ is a 3D
area where instances of X are allowed to be located. The step ω ∈ R≥0, is the distance that X can move
in a unit of time, and it corresponds to the diffusion rate of X ; σ is the three-dimensional shape (sphere,
cube, etc.) of X , having a barycentre. The movement space for the empty process 0 is everywhere, the
global space, and its movement step is 0. Each entity variable X can be defined at most once in D, and
the free variables of N, must be a subset of the variables x. We also write X(x) = (π.π ′.P)ξ ,ω,σ as short

46 A Calculus of Located Entities

for X(x) = (π.Y (x))ξ ,ω,σ and Y (x) = (π ′.P)ξ ,ω,σ .
Free variables, FV, and free channel names, FN, of processes and choices can be defined in the usual

way. The input prefix ?u(x), and the restriction νa@ are binders, and define the scope of the variable x,
and the channel name a respectively.

E ranges over environments of channel name declarations. a@r,rad : chan{T} defines channel
name a with rate r, radius rad and type chan{T}. The domain of E is the set of channel names declared
in E, and channel names are declared at most once in E.

Γ ranges over type environments, which map entity names X with the type of the parameter of the
entity, channel names a with channel types, and variables with their type.

In the concrete syntax of the example in Fig. 1, we used new instead of ν ; do-or instead of +, and
!a, ?a, and chan() instead of !a(), ?a(), and chan{>}, when no value is exchanged,

3 BioScapeL: Semantics
We now introduce the static and dynamic semantics of BioScapeL. In Fig. 3 we define the well formed
processes and definitions, and in Fig. 4, 5, and 6 the operational semantics of BioScapeL.

In Fig. 3 we define the rules for the judgements:

• Γ ` δ : T , meaning, in the type environment Γ, the expressions δ has type T ;

• Γ ` R �, meaning, in the type environment Γ, R is well formed, where R is either a process P, a
choice M or a restricted choice N, and

• Γ ` D �, meaning, in the type environment Γ, the list of definitions D is well formed.

To define the type expressions, we assume a function typeOf such that typeOf(op) = (T1,T2) means
that the operator op takes a parameter of type T1 and returns a value of type T2. The rules for expressions
are standard; notice that the type of this in rule (TY.THIS) is a triple of floating-points representing 3D
coordinates. An entity instance X(δ)δ ′ is well formed (rule (TY.INST)), if the actual parameter δ has the
type associated with X in the type environment, and if δ ′ has the type of a 3D point. In rules (TY.OUT) and
(TY.IN) the channel identifier u must have a channel type.

Definition 3.1 (BioScapeL Program, Initial Process, and Initial Configuration). • A BioScapeL pro-
gram is a triple (D,E,P) such that D is a collection of entity declarations, E is a collection of
channel declarations, and P is a parallel composition of entity instances.

• We call P the initial process.

• We call E ` P the initial configuration of program (D,E,P).

For the example of Fig. 1, the initial configuration is E ` P, where P is the argument of the run

command:
P= MTPart() p1 | MTPart() p2 | ... | MTPart() pN, and

E= MTConstruction@0.116,0.2 : chan{chan{>}∗ (fl∗fl∗fl)}

The type environment corresponding to channel declarations or entity definitions env is defined as
follows, where the notation νi, is an abbreviation for νai@ri,radi : chan{Ti}.

Definition 3.2 (Type Environment). • env(/0) = /0

• env(E,a@r,rad : chan{T}) = a:chan{T},env(E)

• env(D,X(x : T) = Nξ ,ω,σ) = X :T,env(D)

Compagnoni, Giannini, Kim, Milideo, Sharma 47

(TY.ID)
u:T ∈ Γ

Γ ` u : T
(TY.CONST)

Γ ` c : fl
(TY.THIS)

Γ ` this : fl∗fl∗fl

(TY.TUPLE)
Γ ` δi : Ti (1≤ i≤ n)

Γ ` δ1, . . . ,δn : T1 ∗ · · · ∗Tn
(TY.EMPTY)

Γ ` () :>

(TY.SEL)
Γ ` δ : T1 ∗ · · · ∗Tn (1≤ i≤ n)

Γ ` δ .i : Ti
(TY.OP)

typeOf(op) = (T1,T2) Γ ` δ : T1

Γ ` op(δ) : T2

(TY.NIL)
Γ ` 0 �

(TY.INST)
X :T ∈ Γ Γ ` δ : T Γ ` δ ′ : fl∗fl∗fl

Γ ` X(δ)δ ′ �

(TY.PAR)
Γ ` P � Γ ` Q �

Γ ` P | Q �
(TY.RESTR)

Γ,a:chan{T} ` R � Γ ` δ : fl Γ ` δ ′ : fl
Γ ` (νa@δ ,δ ′ : chan{T}).R �

(TY.OUT)
u:chan{T} ∈ Γ Γ ` δ : T Γ ` P �

Γ `!u(δ).P �
(TY.IN)

u:chan{T} ∈ Γ Γ,x:T ` P �
Γ `?u(x).P �

(TY.PREF)
Γ ` P �

Γ ` mov.P �
(TY.PREF)

Γ ` P � Γ ` δ : fl
Γ ` delay@δ .P �

(TY.CHOICE)
Γ `M � Γ `M′ �

Γ `M + M′ �

(TY.DEFS)
Γ ` D � Γ,x:T ` N �

Γ ` D,X(x : T) = Nξ ,ω,σ �

Figure 3: Well typed expressions, processes, and definitions

Definition 3.3 (Well Formed BioScapeL Program). A BioScapeL program (D,E,P) is well formed iff
env(E) ` D �

and
env(E),env(D) ` P �

The big-step operational semantics of the expression language is presented in Fig. 4. The statement
δ ⇓ v means that the evaluation of δ produces the value v. The rules are standard, just notice that
selection of the i-th component of a tuple is successful only when the value of the expression to which
it is applied has at least i components. We conjecture that evaluation of well typed expressions not
containing free variables or the metavariable this, produces a value of the same type as the one of the
original expression.

We now define distance between entities, run-time configurations, structural equivalence, and the
reduction relation, −→.
Definition 3.4 (Distance Between Located Entities). We call {X(v)}p a located entity. If σ is the shape
of X, and σ ′ the shape of Y , we define
• Ps(p,X) = {p+q | q ∈ σ} to be the set of points of X positioned at p, and

• dis({X(v)}p,{Y (v′)}p′) for the distance between two located entities, as the minimum of the set
{d(p1, p2) | p1 ∈ Ps(p,σ) ∧ p2 ∈ Ps(p′,σ ′)}, where d(p1, p2) is the euclidean distance between
the points p1 and p2.

48 A Calculus of Located Entities

(EXP.CH)
a ⇓ a

(EXP.CONST)
c ⇓ c

(EXP.TUPLE)
δ1 ⇓ v1 · · ·δn ⇓ vn

δ1, . . . ,δn ⇓ v1, . . . ,vn
(EXP.())

() ⇓ ()

(EXP.SEL)
δ ⇓ v1, . . . ,vn 1≤ i≤ n

δ .i ⇓ vi
(EXP.OP)

δ ⇓ v op(v) = v′

op(δ) ⇓ v′

Figure 4: Operational semantics of expressions

(S.LOC)
P≡ Q

{P}p ≡ {Q}p
(S.LOC.PAR)

{P}p | {Q}p ≡ {P | Q}p

(S.LOC.NU)
(δ [p/this]) ⇓ r (δ ′[p/this]) ⇓ rad

(νa@r,rad:chan{T}).{P}p ≡ {(νa@δ ,δ ′:chan{T}).P}p

(S.NU.COM)
a 6= b

(νa@r,rad:chan{T}).(νb@r′,rad′:chan{T ′}).A≡ (νb@r′,rad′:chan{T ′}).(νa@r,rad:chan{T}).A

(S.NU.ABS)
(νa@r,rad:chan{T}).(νa@r′,rad′:chan{T ′}).A≡ (νa@r′,rad′:chan{T ′}).A

(S.NU.PAR)
a 6∈ fn(B)

((νa@r,rad:chan{T}).A) | B≡ (νa@r,rad:chan{T}).(A | B)

Figure 5: Structural Equivalence

Definition 3.5 (Spatial Configuration). Spatial configurations, denoted by A, B, . . . are defined as:

A,B ::= {P}p | A | B | (νa@r,rad:chan{T}).A | {X(v)}p

where P is closed.

The spatial configuration {P}p indicates an entity that has its barycentre at p and whose behavior is
described by the process P, and {X(v)}p denotes the entity whose behavior is described by the definition
of X and has its barycentre at p. This is different from {X(δ)δ ′}p, which represents the entity X evolved
from an unspecified entity originally positioned at p. The position and the actual parameter of X will
be given by the evaluation of the expressions δ ′ and δ respectively, in which the metavariable this is
substituted by p, see function place below, which evaluates the locations of entities. This will change
when we add random translation and scaling.

For instance, in our example from Fig. 1, the suffix this in the expression MTRight(y)_this of
the definition of MTPart, means that the barycentre of a new instance of MTRight will be the original
barycentre of MTPart. Another example in the same definition is MTLeft(x)_glue(this,u), where
glue is an operator applied to the pair (this,u), and its value determines the barycentre of the new
instance of MTLeft.

The structural equivalence on configurations is defined in Fig. 5, where we omit the rules for associa-
tivity and commutativity of | and + and reflexivity, symmetry and transitivity of ≡. Parallel composition
has neutral element {0}p for any p. Rule (S.LOC) uses the standard structural equivalence of pi-calculus
processes. In rule (S.LOC.PAR) the point p is distributed on the two processes saying that both processes
will be located at position p. The rest of the rules deal with channel name restriction, and allow us to

Compagnoni, Giannini, Kim, Milideo, Sharma 49

bring all the restrictions outside the process, renaming if needed. Rule (S.LOC.NU) moves the restriction
inside process located at p, evaluating the expressions for the rate and radius of the channel after the
substitution of p for the metavariable this. Therefore, rate and radius could depend on the location of
the process.

In the following, the notation νi (i≥ 0) is an abbreviation for νai@ri,radi : chan{Ti}.

Definition 3.6. • A spatial configuration A is pre-canonical if it is of the form:

ν1.νm.{X1(δ1)δ ′1
}p1 | · · · | {Xn(δn)δ ′n

}pn

• The function place is defined as follows:

(i) place(/0) = /0
(ii) place({X(δ)δ ′}p | A) = {X(v)}p′ | place(A)}, where δ [p/this] ⇓ v, and δ ′[p/this] ⇓ p′

(iii) place((νa@r,rad:chan{T}). A) = (νa@r,rad:chan{T}). place(A)

• A spatial configuration A is canonical if it is of the form:

ν1.νm.{X1(v1)}p1 | · · · | {Xn(vn)}pn

The structural equivalence of Fig. 5, allows us to find for any B, a pre-canonical A such that A ≡ B.
The function place evaluates the argument and location of the entity instances in the pre-canonical con-
figuration, transforming it into its corresponding canonical configuration. In a canonical configuration
all the entities are located. Note that, in the evaluation of both δ and δ ′ the metavariable this denotes
p, the barycentre of the entity of which X is the evolution.

A canonical configuration is space consistent, if all its entities are contained in their respective move-
ment space, and, furthermore, there are no overlapping entities. The space consistency predicate, SC, is
defined as follows.

Definition 3.7. Let A be the canonical configuration ν1.νm.{X1(v1)}p1 | · · · | {Xn(vn)}pn . A is SC if:

• for all i, 1≤ i≤ n, we have that Ps(pi,Xi)⊆ ξi, and

• for all i, j, 1≤ i 6= j ≤ n, we have that Ps(pi,Xi)∩Ps(p j,X j) = /0.

The operational semantics of BioScapeL is given in Fig. 6, by the reduction relation −→ on run-
time configurations of the form E ` {X1(v1)}p1 | · · · | {Xn(vn)}pn , where all the free channel names of
{X1(v1)}p1 | · · · | {Xn(vn)}pn are in the domain of E. We denote the reflexive and transitive closure
of −→ with −→∗. The reduction −→ is defined by the rule (PAR). This rule uses the auxiliary reductions
r
↪→ and

mv
↪→. The spatial configuration B to which A reduces (E ` A

l
↪→B) may not be a pre-canonical

configuration, so, in order to produce a correct canonical configuration, we consider a pre-canonical
configuration, ν1.νm.D′, structurally equivalent to B, and then use the function place to transform
it into a canonical configuration D. In the configuration resulting from the reduction, all the channel
definitions corresponding to the restrictions ν1.νm are moved into the channel environment. In so
doing, we assume renaming of the names in the restriction to avoid clashes with channel names already
in the domain of E. In this rule, we also check that the configuration produced is space consisten, with
D | C SC. The rule (PAR) cannot be applied, when there is no auxiliary rule that can yield a space con-
sistent configuration. The selection of one of the choices depends not only on the available interactions
with other processes, but also on the available space. Therefore, the evolution of systems in BioScapeL

preserves space consistency.

50 A Calculus of Located Entities

(PAR)
E ` A

l
↪→B B≡ ν1.νm.D′ pre-canonical place(D′) = D D |C SC l ∈ {r,mv}

E ` A |C −→ E,a1@r1,rad1:chan{T1}, . . . ,am@rm,radm:chan{Tm} ` D |C

(DELAY)
X(x) = (ν1.νn.delay@δ .P [+ M])ξ ,ω,σ ∈ D δ [p/this,v/x] ⇓ r

E ` {X(v)}p
r
↪→{ν1.νn.P[v/x]}p

(COM)

X(x) = ν1.νn.M
ξ ,ω,σ
x ∈ D Mx[vx/x] = (!a(δa).P [+ M]) δa[px/this] ⇓ va

Y (y) = ν ′1.ν
′
m.M

ξ ′,ω ′,σ ′
y ∈ D My[vy/y] = (?a(z).Q [+ N])

dis({X(vx)}px ,{Y (vy)}py)≤ rad

E,a@r,rad : chan{T} ` {X(vx)}px | {Y (vy)}py

r
↪→{ν1.νn.P}px | {ν ′1.ν ′m.Q[va/z]}py

(MOVE)
p′ = p+rand(ω) X(x) = (ν1.νn.mov.P [+ M])ξ ,ω,σ ∈ D

E ` {X(v)}p
mv
↪→{ν1.νn.P[v/x]}p′

Figure 6: Reduction Relation

The rules of the auxiliary reductions involve entities, X(v), and entities evolve according to one of
the choices in their definitions in D. In the rules (DELAY), (COM), and (MOVE), there is no check of whether
the entities of the resulting process overlap or whether they are contained in their confinement space.
These checks are done, as previously said, in the reduction rule (PAR).

In the two stochastic rules, (DELAY), and (COM), r is the rate of the synchronization that determines
probability and duration of the reduction. Rule (DELAY) makes the entity X evolve into the process P with
a stochastic rate r, which is the result of the evaluation of the expression δ after the substitution of p by
this. Consequently, the rate may depend on the position in space of the entity and its actual parameter.
In rule (COM) the entity X(vx) sends on channel a the value va to the entity Y (vy), and evolves into process
P located at px. The entity Y (vy) receives va and evolves into Q, in which va substitutes the variable z,
and it is located at py. This communication happens on the common channel a, if the located entities
{X(vx)}px and {Y (vy)}py are close enough. In particular, to interact on channel a@r,rad, it must be the
case that dis({X(v)}p,{Y (v′)}p′) ≤ rad. For instance, rad = 0 means that the two entities must be in
contact to react.

The non-stochastic rule (MOVE) defines movement. In this rule, rand(ω) returns a random point
whose distance from 〈0,0,0〉 is ω , and the located entity is moved randomly a distance ω from its
original position. This prefix mov says that the entity is subject to brownian motion.

We conjecture that if (D,E,{X1(v1)}p1 | · · · | {Xn(vn)}pn) is a well formed BioScapeL program, then
for all E ′ and A such that env(E),env(D) ` {X1(v1)}p1 | · · · | {Xn(vn)}pn −→∗ E ′ ` A, we have that E ′ `
A �.

4 Random Translation and Scaling
Random Translation Consider the case of a bacterium that secretes a hydronium ion (HIon). The
language extension discussed so far will allow us to describe where to locate the HIon, but it will be
at a specified location with respect to the position of the bacterium. Instead we would like to be able
to say that it should be at a given distance, but in a random direction. To this end, we annotate entity

Compagnoni, Giannini, Kim, Milideo, Sharma 51

instances with expressions evaluating to pairs, whose first component is, as before, a translation point,
and the second component, a number which specifies a distance from which we generate a random point,
as in the rule (MOVE) of Fig 6. In the fragment of code in Fig. 7(a), the barycentre of the instances of Bac
will be in the position of the Bac they evolve from. On the other hand, the barycentre of the instances of
HIon will be in a random position that is at a distance equal to the sum of the radii of the bacterium and
the ion, from the barycentre of the Bac it evolves from.

Bac()@_,_,_ =

do mov.Bac()_(this,0)

or delay@0.005.(Bac()_(this,0) | HIon()_(this,rB+rH))

or ...

(a)

Bac()@_,_,_,max-size =

do mov.Bac()_((fst(this),0),1.1)

or delay@0.005.(Bac()_((fst(this),0),1) | HIon()_((fst(this),rB+rH),1))

or delay@0.2.(Bac()_((fst(this),rB),0.5) | Bac()_((fst(this),rB),0.5))

or

(b)

Figure 7: (a) Random translation and (b) scaling

As far as the definition of the syntax for this extension, we have to change the typing rule for entity
instances so that the type of the subscript expression, δ ′, is a pair whose first component has the type of
a point (giving the deterministic component of the translation) and the second component is a floating
point (giving the random component of the translation). The new rule is (TY.INST.R) of Fig. 8. Notice
that, up until now, given an entity instance. X(δ)δ ′ , the metavariable this and δ ′ had the same type.
However, this is no longer the case, since, even though the expression δ ′ has type (fl∗fl∗fl)∗fl, the
metavariable this still has type fl∗fl∗fl.

(TY.INST.R)
X :T ∈ Γ Γ ` δ : T Γ ` δ ′ : (fl∗fl∗fl)∗fl

Γ ` X(δ)δ ′ �

(TY.INST.RS)
X :T ∈ Γ Γ ` δ : T Γ ` δ ′ : ((fl∗fl∗fl)∗fl)∗fl

Γ ` X(δ)δ ′ �

(TY.THIS.RS)
Γ ` this : (fl∗fl∗fl)∗fl

Figure 8: Typing rule for entity instance and this for random translation and scaling

Regarding the semantics, the located entities are still annotated with a point, however, we have to
change the definition of entity placing into space, since now, the evaluation of δ ′ (the subscript of the
entity instance) produces a pair, whose first component is a point, giving the deterministic translation,
and the second component is a floating point giving the length of the random translation. To this extent,

52 A Calculus of Located Entities

clause (ii) of function place in Definition 3.6 is modified as follows:

place({X(δ)δ ′}p | A) = {X(v)}p′+rand(c) | place(A)

where δ [p/this] ⇓ v and δ ′[p/this] ⇓ (p′,c). Notice that while δ ′ evaluates to a pair, and it is specified
by the programmer, p′+rand(c) evaluates to a point (a triple of floating points).

Scaling We now consider the shape of entities. As it is now, we have a specific shape and always the
same dimension. In order to represent a change in scale, a new entity with a smaller or bigger shape
would have to be defined. Alternatively, we would like to be able to change the size of the entity using
scaling directives. For instance, consider adding to the previous example of the bacterium the fact that
bacteria grow and divide, and that movement is associated with a growth of 10%. Accordingly, we add
this behavior in Fig. 7(b), by specifying that the bacterium may spontaneously divide into two bacteria
of half the size of the original one (0.5), and moved apart in random directions a distance equal to the
radius of the shape of the original bacterium (rB). Moreover, movement is associated with a growth of
10% (1.1).

As far as the syntax of the language is concerned, instances are annotated with an expression, δ ′,
evaluating to a pair ((p,c),s), whose first component is also a pair, (p,c), which specifies, as in the
random translation extension, the deterministic and random components of the translation. The second
component of the evaluation of δ ′, is s, the scaling factor for the shape. A located entity is now char-
acterized by having a location for its barycentre, and a scaling factor affecting its shape. Consequently,
the metavariable this, denotes a pair: point and scaling factor. In Fig. 8, we give the new typing rules:
(TY.INST.RS) for entity instances, and (TY.THIS.RS), for this. We use fst and snd to access the first and
second component of a pair.

Going back to the example of Fig. 7(b), mov.Bac()_((fst(this),0),1.1) specifies that the
barycentre of this instance of Bac after mov, will be the same as the one of the Bac it evolved from,
since fst(this) is the barycentre of the generating Bac and the random translation is of length 0. The
scaling 1.1 gives a 10% increase in size with respect to the generating Bac. Additionally, in the definition
of the entity Bac, we fix a growth limit with max-size. Finally the original move rule will generate the
position of the located entity according to the diffusion rate of Bac.

The second line of the definition, specifying the secretion of the HIon is as for the example in
Fig. 7(a). Just note that, the barycentre of the instance of Bac is specified by (fst(this),0), i.e.,
it is the same as the one of the generating Bac, and the one of HIon is (fst(this),rB+rH), i.e., at a
distance rB+rH from the one of the generating Bac.

Finally, delay@0.2.(Bac()_((fst(this),rB),0.5)|Bac()_((fst(this),rB),0.5)) speci-
fies that the two instances of the daughter bacteria are positioned at a distance rB from the generating
bacterium, (fst(this),rB), and they are half its size, 0.5.

Spatial configurations now record the scaling factor s, in addition to the barycentre of the shape of
the entity, and are defined as follows.

A,B ::= {P}(p,s) | A | B | (νa@r,rad).A | {X(v)}(p,s)

The structural equivalence rules of Fig. 5 are modified by replacing (p,s) for p, in rules (S.LOC), (S.LOC.PAR),
and (S.LOC.NU). We also modify clause (ii) of function place in Definition 3.6, as follows:

place({X(δ)δ ′}(p,s) | A) = {X(v)}(p′+rand(cr×s),s×cs)

where δ [(p,s)/this] ⇓ v, and (δ ′[(p,s)/this]) ⇓ ((p′,cr),cs). As we can see, both the length of the
random translation and the scaling factor of the located entity X are obtained by multiplying the result of
the evaluation of the expression δ ′ by the scaling factor s of the entity from which X evolved.

Compagnoni, Giannini, Kim, Milideo, Sharma 53

(MOVE.S)
X(x) = (ν1.νn.mov.P [+ M])ξ ,ω,σ ∈ D

{X(v)}(p,s)
mv
↪→{ν1.νn.P[v/x]}(p+rand(s×ω),s)

Figure 9: Modified rule (MOVE) for random translation and scaling

The auxiliary reduction relations are obtained from the rules Fig. 6, by replacing (p,s) for p in rule
(DELAY), (px,sx) for px, and (py,sy) for py, in rule (COM). Moreover, since scaling affects the dimension
of the shape of entities, the definition of the distance between entities will have to take into account this
fact. In particular, dis({X()}(px,sx),{Y ()}(py,sy)) is the minimum of the following set.

{d(p1, p2) | p1 ∈ Ps(px,Sc(sx,X)) ∧ p2 ∈ Ps(py,Sc(sy,Y))},

where Sc(s,X) = {s× p | p ∈ σ}.
Finally, in rule (MOVE) we have to scale the random quantity added to the translated point since this

quantity refers to the initial (standard) dimension of entity X . The new rule (MOVE.S) is shown in Fig. 9.
Since scaling affects the dimension of the shape of entities, and therefore the space occupied by them,

the definition of space consistent configuration (Definition 3.7) is modified as follows.

Definition 4.1. Let A be the canonical configuration ν1.νm.{X1(v1)}(p1,s1) | · · · | {Xn(vn)}(pn,sn). A is
SC if:

• for all i, 1≤ i≤ n, we have that Ps(pi,Sc(si,Xi))⊆ ξi,

• for all i, 1≤ i≤ n, we have that si ≤ µi, and

• for all i, j, 1≤ i 6= j ≤ n we have that Ps(pi,Sc(si,Xi))∩Ps(p j,Sc(s j,X j)) = /0.

We still conjecture that, starting from a space consistent initial configuration we get subsequent space
consistent configurations.

5 Related Work
In this paper we define BioScapeL, a stochastic pi-calculus in 3D-space with programmable locations. It
is an extension of BioScape[10], of which the authors have also provided a parallel semantics [9]. We
have introduced the language with its type system and the operational semantics. The position and size
of the entities can be programmed, and the operational semantics enforces the constraint that during the
evolution of the system, entities are confined in their containing space and do not overlap.

BioScapeL, like BioScape, is a stochastic process algebras. As an alternative to models built around
sets of ordinary differential equations (ODEs), process algebras are formal languages where multiple
objects with different behavioral attributes can interact with each other and dynamically influence overall
systems development. Process algebras have been originally introduced for the description of complex
reactive processing systems. The description of a system is modular, with sub-components interacting
through shared channels. This is similar to the structure of biological systems where species can be seen
as processes, and their interaction with other species is described by synchronization on channels. In
stochastic process algebras, synchronization happens at a stochastic rate. This reflects more closely the
behavior of biological system. Some stochastic process algebras which have been proposed, are PEPA
[11] and EMPA [3]. With name passing stochastic process algebras, such as stochastic pi-calculus [16],
information or data can be exchanged on communication channels. By using the tool SPiM (Stochastic

54 A Calculus of Located Entities

Pi Machine) [15], computer simulations can be run, and the change in time of the biological species is
displayed. A number of biological systems have been modeled with the use of stochastic pi-calculus
[17, 5, 1, 19].

One of the motivations for the introduction of BioScapeL is the desire to model biological systems in
which position of entities in space could be used to determine their behavior. A limited notion of space
is incorporated in BioAmbients [14] and BioPepa [8]. Geometric capabilities are present in a spatial
extension of the pi-calculus [12], Shape Calculus [2], and CCS-like timed calculus with an associated
simulating tool [4]. However, both [12] and [2] lack stochasticity. As already mentioned in the introduc-
tion, the calculus that is closer to BioScapeL is 3π[7], a geometric process algebra in which the processes
are equipped with affine transformations. There are two main differences between BioScapeL and 3π .
First, in BioScapeL we do not consider affine transformations, but just a uniform scaling in all directions
maintaining the barycentre of the entity in its original position, and in addition to standard translation
also a random translation. Neither our scaling nor our random translation are affine transformations.
Second, and most important, is the fact that 3π is a low level language that gives absolute control of spa-
tial attributes to the programmer, while in BioScapeL the programmer specifies species at a higher level,
and it has been designed to program biological and biomaterial processes and their interactions. In 3π ,
diffusion and confinement, have to be explicitly controlled by the programmer in terms of the low level
abstraction provided by affine transformations. In [6] an extension of pi-calculus for displaying geomet-
ric information is introduced. However, this is a rather ad hoc extension motivated by the description of
the biological processes to model actin polymerization.

6 Future Work
In collaboration with materials scientist Matthew Libera, from the Stevens Institute of Technology, we
are working on the computationally assisted development of antibacterial surfaces [18]. Traditionally
biomaterials development consists of designing a surface and testing its properties experimentally. This
trial-and-error approach is limited, because of the resources and time needed to sample a representative
number of configurations in a combinatorially complex scenario. In many cases the design is also aided
by computational models tailored to a specific application. In these cases, there have been successful at-
tempts to identify biomaterials with optimal properties [13, 20, 21]. However, developing such dedicated
software frameworks is time consuming, and small modifications in the understanding of the application
can lead to significant and time consuming software changes.

Our proposal consists of designing antibacterial biomaterials from first principles. Using the antibac-
terial effect of individual components, we will computationally design optimally antibacterial surfaces,
which simultaneously promote the growth of healthy tissue. Our model will stochastically assemble
surface blocks whose connectivity will be determined by their antibacterial properties, as well as their
ability to encourage tissue growth, in the same way a child assembles building blocks. These designed
surfaces will then be tested in virtual experiments in the same platform. In order to test these surfaces
we will use BioScapeL, where surfaces will be described by a collection of located entities generated by
the surface design process.

The emerging surface patterns with maximal antibacterial effect will be used to design tiling patterns,
which will motivate the design of new biomaterials that will then be tested in wet lab experiments.

7 Acknowledgements
We are grateful to Philip Leopold for introducing us to the fascinating world of intracellular transport.
We also thank Mariangiola Dezani for illuminating discussions and comments on earlier drafts. This
article was also improved due to the helpful suggestions of the anonymous referees of DCM 2013.

Compagnoni, Giannini, Kim, Milideo, Sharma 55

Vishakha Sharma acknowledged the generous support from the Stevens Center for Complex Systems
and Enterprises.

References
[1] Yifei Bao, Adriana B. Compagnoni, Joseph Glavy & Tommy White (2010): Computational Modeling for

the Activation Cycle of G-proteins by G-protein-coupled Receptors. In: MeCBIC’10, EPTCS 40, pp. 39–53.
Available at http://dx.doi.org/10.4204/EPTCS.40.4.

[2] Ezio Bartocci, Flavio Corradini, Maria Rita Di Berardini, Emanuela Merelli & Luca Tesei (2010): Shape
Calculus. A Spatial Mobile Calculus for 3D Shapes. Sci. Ann. Comp. Sci. 20, pp. 1–31. Available at
http://www.info.uaic.ro/bin/Annals/Article?v=XX&a=0.

[3] Marco Bernardo & Roberto Gorrieri (1998): A tutorial on EMPA: A theory of concurrent processes with
nondeterminism, priorities, probabilities and time. Theor. Comput. Sci. 202(12), pp. 1–54. Available at
http://dx.doi.org/10.1016/S0304-3975(97)00127-8.

[4] F. Buti, D. Cacciagrano, F. Corradini, E. Merelli & L. Tesei (2010): BioShape: a spatial shape-based scale-
independent simulation environment for biological systems. Procedia Computer Science 1(1), pp. 827–835.
Available at http://dx.doi.org/10.1016/j.procs.2010.04.090.

[5] Luca Cardelli, Emmanuelle Caron, Philippa Gardner, Ozan Kahramanoğulları & Andrew Phillips (2009): A
process model of Rho GTP-binding proteins. Theor. Comput. Sci. 410(33), pp. 3166–3185. Available at
http://dx.doi.org/10.1016/j.tcs.2009.04.029.

[6] Luca Cardelli, Emmanuelle Caron, Philippa Gardner, Ozan Kahramanogullari & Andrew Phillips (2009): A
Process Model of Actin Polymerisation. Electr. Notes Theor. Comput. Sci. 229(1), pp. 127–144. Available at
http://dx.doi.org/10.1016/j.entcs.2009.02.009.

[7] Luca Cardelli & Philippa Gardner (2012): Processes in Space. Theor. Comput. Sci. 431, pp. 40–55. Available
at http://dx.doi.org/10.1016/j.tcs.2011.12.051.

[8] Federica Ciocchetta & Jane Hillston (2009): Bio-PEPA: A framework for the modelling and analysis of
biological systems. Theor. Comput. Sci. 410(33-34), pp. 3065–3084. Available at http://dx.doi.org/
10.1016/j.tcs.2009.02.037.

[9] Adriana B. Compagnoni, Mariangiola Dezani-Ciancaglini, Paola Giannini, Karin Sauer, Vishakha Sharma
& Angelo Troina (2012): Parallel BioScape: A Stochastic and Parallel Language for Mobile and Spatial
Interactions. In: MeCBIC, pp. 101–106. Available at http://dx.doi.org/10.4204/EPTCS.100.7.

[10] Adriana B. Compagnoni, Vishakha Sharma, Yifei Bao, Matthew Libera, Svetlana Sukhishvili, Philippe
Bidinger, Livio Bioglio & Eduardo Bonelli (2013): BioScape: A Modeling and Simulation Language
for Bacteria-Materials Interactions. Electr. Notes Theor. Comput. Sci. 293, pp. 35–49. Available at
http://dx.doi.org/10.1016/j.entcs.2013.02.017.

[11] Jane Hillston (2005): Process algebras for quantitative analysis. In: Logic in Computer Science, 2005.
Proceedings. 20th Annual IEEE Symposium on, IEEE Computer Society, pp. 239–248. Available at http:
//dx.doi.org/10.1109/LICS.2005.35.

[12] Mathias John, Roland Ewald & Adelinde M. Uhrmacher (2008): A Spatial Extension to the π Calculus.
ENTCS 194(3), pp. 133–148. Available at http://dx.doi.org/10.1016/j.entcs.2007.12.010.

[13] Damien Lacroix, Josep A Planell & Patrick J Prendergast (2009): Computer-aided design and finite-element
modelling of biomaterial scaffolds for bone tisse engineering. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 367(1895), pp. 1993–2009. Available at
http://dx.doi.org/10.1098/rsta.2009.0024.

[14] Vinod Mugathan, Andrew Phillips & Maria Vigliotti (2008): BAM: BioAmbient Machine. In: Application
of Concurrency to System Design, IEEE Computer Society, pp. 45–49. Available at http://dx.doi.org/
10.1109/ACSD.2008.4574594.

http://dx.doi.org/10.4204/EPTCS.40.4
http://www.info.uaic.ro/bin/Annals/Article?v=XX&a=0
http://dx.doi.org/10.1016/S0304-3975(97)00127-8
http://dx.doi.org/10.1016/j.procs.2010.04.090
http://dx.doi.org/10.1016/j.tcs.2009.04.029
http://dx.doi.org/10.1016/j.entcs.2009.02.009
http://dx.doi.org/10.1016/j.tcs.2011.12.051
http://dx.doi.org/10.1016/j.tcs.2009.02.037
http://dx.doi.org/10.1016/j.tcs.2009.02.037
http://dx.doi.org/10.4204/EPTCS.100.7
http://dx.doi.org/10.1016/j.entcs.2013.02.017
http://dx.doi.org/10.1109/LICS.2005.35
http://dx.doi.org/10.1109/LICS.2005.35
http://dx.doi.org/10.1016/j.entcs.2007.12.010
http://dx.doi.org/10.1098/rsta.2009.0024
http://dx.doi.org/10.1109/ACSD.2008.4574594
http://dx.doi.org/10.1109/ACSD.2008.4574594

56 A Calculus of Located Entities

[15] Andrew Phillips & Luca Cardelli (2007): Efficient, Correct Simulation of Biological Processes in the Stochas-
tic Pi-calculus. In: Computational Methods in Systems Biology, Lecture Notes in Computer Science 4695,
pp. 184–199. Available at http://dx.doi.org/10.1007/978-3-540-75140-3_13.

[16] Corrado Priami (1995): Stochastic pi-Calculus. Comput. J. 38(7), pp. 578–589. Available at http://dx.
doi.org/10.1093/comjnl/38.7.578.

[17] Corrado Priami, Aviv Regev, Ehud Y. Shapiro & William Silverman (2001): Application of a stochastic
name-passing calculus to representation and simulation of molecular processes. Information Processing
Letters 80(1), pp. 25–31. Available at http://dx.doi.org/10.1016/S0020-0190(01)00214-9.

[18] Vishakha Sharma, Adriana Compagnoni, Matthew Libera, Agnieszka K. Muszanska, Henk J. Busscher &
Henny C. van der Mei (2013): Simulating Anti-adhesive and Antibacterial Bifunctional Polymers for Surface
Coating Using BioScape. In: Proceedings of the International Conference on Bioinformatics, Computational
Biology and Biomedical Informatics, BCB’13, ACM, pp. 613–613. Available at http://dx.doi.org/10.
1145/2506583.2506646.

[19] Vishakha Sharma & Adriana B. Compagnoni (2013): Computational and mathematical models of the JAK-
STAT signal transduction pathway. In Agostino G. Bruzzone, Peter Kropf, Linda Ann Riley, Maryam
Davoudpour & Adriano O. Solis, editors: SummerSim, Society for Computer Simulation International /
ACM DL, p. 15. Available at http://dl.acm.org/citation.cfm?id=2557714.

[20] Jack R. Smith, Agnieszka Seyda, Norbert Weber, Doyle Knight, Sascha Abramson & Joachim Kohn
(2004): Integration of Combinatorial Synthesis, Rapid Screening, and Computational Modeling in Bioma-
terials Development. Macromolecular Rapid Communications 25(1), pp. 127–140. Available at http:
//dx.doi.org/10.1002/marc.200300193.

[21] Kyriacos Zygourakis & Pauline A. Markenscoff (1996): Computer-aided design of bioerodible devices with
optimal release characteristics: a cellular automata approach. Biomaterials 17(2), pp. 125–135. Available
at http://dx.doi.org/10.1016/0142-9612(96)85757-7.

http://dx.doi.org/10.1007/978-3-540-75140-3_13
http://dx.doi.org/10.1093/comjnl/38.7.578
http://dx.doi.org/10.1093/comjnl/38.7.578
http://dx.doi.org/10.1016/S0020-0190(01)00214-9
http://dx.doi.org/10.1145/2506583.2506646
http://dx.doi.org/10.1145/2506583.2506646
http://dl.acm.org/citation.cfm?id=2557714
http://dx.doi.org/10.1002/marc.200300193
http://dx.doi.org/10.1002/marc.200300193
http://dx.doi.org/10.1016/0142-9612(96)85757-7

	1 Introduction
	2 BioScapeL: Syntax
	3 BioScapeL: Semantics
	4 Random Translation and Scaling
	5 Related Work
	6 Future Work
	7 Acknowledgements

